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Abstract 
We focus on the problem of designing a supply chain for a new product. We propose a 

stochastic dynamic program based on a Stochastic Bass Model of the product demand 

dynamics. We heuristically solve our model using Monte Carlo simulation and math 

programming techniques. We apply our approach to the case of a new distribution service 

for Made-in-Italy wine and food products, benchmarking the performance of our heuristic 

policy against the performance of an easier to compute heuristic policy and a lower bound.  
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Introduction  

A firm’s competitive advantage is strongly related to how the firm manages its material and 

information flows, balances its logistic and manufacturing costs, and matches its supply 

and demand. Supply Chain Management (SCM) is thus a crucial function for 

manufacturing and service enterprises. Supply Chain Network Design (SCND) represents a 

strategic SCM decision that focuses on determining the physical configuration and 

infrastructure of the supply chain (SC). Facility Location (FL) is one of the most critical 

SCND steps, as these decisions are difficult to modify even in the middle term. In contrast, 

transportation, inventory management, and information sharing choices can be readily re-

evaluated in response to environmental changes. Moreover, SCM and the design of 

marketing policies are interrelated: designing a SC without taking into account the 

evolution of the customers’ distribution in a given geographical area, or, vice versa, making 

a marketing decision without considering logistic constraints can negatively impact a firm’s 
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competitive advantage. Hence, a crucial SCND objective is to capture the interactions 

between operations and marketing concerns during a product life cycle. 

In the product launch phase, when the number and location of potential customers are 

unknown, the evolution of demand is uncertain. Integrating SCND and New Product 

Diffusion (NPD) concerns may thus be highly beneficial. This problem involves two key 

strategic choices: (i) determining the number, location, and size of the facilities (e.g., 

warehouses); and (ii) allocating customers to each facility. This problem is both dynamic – 

the decisions about facilities must be made at the beginning of each time period and their 

impact must be evaluated for the remaining part of the planning horizon – and stochastic – 

the number and location of customers are uncertain. 

The Operations Management and Operations Research literatures on SCND are 

extensive. However, to the best of our knowledge, the extant literature has paid little 

attention to FL models for designing the SC of a newly launched product, whose demand 

evolves in a random fashion. We thus develop and analyze a stochastic and dynamic SCND 

model for an innovative product/service, integrating both operations and marketing 

concerns. The Bass Model (BM) and its revised forms have long been used for analyzing 

and forecasting the market penetration of new products in different sectors (Mahajan et al., 

1990). We propose a Stochastic Dynamic Programming (SDP) model based on a Stochastic 

Bass Model (SBM) of the product demand evolution over a given planning horizon, given a 

set of potential customers and warehouse locations. SBM allows us to assign to each 

potential customer a probability of requiring service during each time period in the 

planning horizon, hence describing the product diffusion process at a disaggregate level. 

Due to the difficulty of solving our model to optimality, we propose a heuristic solution 

procedure integrating Monte Carlo simulation and optimization. We assess the 

effectiveness of this heuristic policy by estimating an alternative, easier to compute, upper 

bound (UB) and a lower bound (LB), applied to the industrial case of a new distribution 

service for Made-in-Italy wine and food products. 

 

Literature Review 

Dynamic and Stochastic SCND 

Rosenthal et al. (1978) were the first to analyse a Stochastic Dynamic Location problem 

where servers have to be located in the face of stochastic customer relocations driven by a 

stationary Markov chain. Berman and Odoni (1982) approached the same issue to minimize 

travel times and relocation cost. Berman and LeBlanc (1984) proposed an efficient heuristic 

for the multi-facility and multi-state version of the problem. Carson and Batta (1990) 

presented a case study on ambulance relocation on the SUNY Buffalo's Amherst campus 

based on solving a 1-median problem for each considered time period. Jornsten and 

Bjorndal (1994) studied a dynamic and stochastic FL problem through an aggregation and 

augmented Lagrangian approach to minimize expected discounted total cost. Current et al. 

(1997) investigated the p-median problem when the number of facilities to be located is 

uncertain. Vairaktarakis and Kouvelis (1999) considered 1-median problems on a tree with 

dynamic and stochastic edge lengths and node weights. Focusing on mixed-integer 

programming models, Romauch and Hartl (2005) analysed a Stochastic Dynamic Facility 

Location Problem to minimize the expected total cost to serve customers during a given 

planning horizon. They proposed an exact solution method based on SDP, as well as Monte 

Carlo based heuristics for large size problems. Aghezzaf (2005) considered multi-period 

strategic capacity planning and warehouse location decisions under uncertain customer 
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demand, using a robust optimization and Lagrangian relaxation method. Klibi et al. (2010) 

investigated the Stochastic Multi-Period Location-Transportation Problem, which 

integrates FL, customer allocation, and transport decisions, by applying stochastic 

programming and hierarchical heuristics. To the best of our knowledge, the extant FL 

literature does not seem to have yet addressed the SCND problem under stochastic 

expanding demand. 

 

SCM and Innovation Diffusion Theory 

The relevant Marketing literature is the one that incorporates SC dynamics into a diffusion 

model (DM). Jain et al. (1991) investigated the influence of supply restrictions on 

innovations by developing a DM to capture the impact of procurement dynamics on the 

growth of the demand for a new product. Ho et al. (2002) added lost sales to this model.  

Kumar and Swaminathan (2003) used BM in a setting with fixed production capacity to 

study the interactions between manufacturing and marketing/sales decisions (e.g., backlog) 

during the product lifecycle. Laínez et al. (2010) developed a mixed integer nonlinear 

programming model that optimizes SC and strategic marketing decisions to maximize 

corporate value. Graves and Willems (2005) examined optimal SC configuration for a new 

product emphasizing safety stock placement and sourcing decisions. Amini and Li (2011) 

proposed an integrated hybrid optimization model for safety stock placement in a SC, 

considering the dynamics of the demand diffusion process. Amini et al. (2012) compared 

the performance of different production–sales policies for new product diffusion. These 

papers demonstrate the benefits of integrating NPD and SCM models. However, it seems 

that the existing literature has not fully investigated the integration of a DM into a SCND 

optimization model. 

 

The Stochastic Dynamic Programming Model for Supply Chain Network Design 

Problem Description and Model Formulation 

We are concerned with the problem of integrating the strategic location of warehouses 

within a considered area and the tactical allocation of customers to warehouses to minimize 

overall logistics costs subject to the constraint of satisfying customer demand. We divide a 

given planning horizon into   time periods, each with the same length (e.g., one year). At 

the start of each time period, we need to select a subset of a given set   of eligible facilities 

(warehouses) and assign them to serve the demand of a subset of customers that are 

foreseen to require the product during a given time period. These decisions are contingent 

on the current set of operating warehouses and state of the customer adoption process. 

More specifically, the location problem in each time period involves deciding which 

warehouses to open/close before demand is known for the period. We denote by        the 

array that describes the status of each warehouse at the start of period t, with 0 and 1 

respectively indicating a closed and open warehouse, before deciding which facilities to 

open/close or maintain in operations in this period. As in the Dynamic Uncapacitated 

Facility Location Problem (Van Roy & Erlenkotter, 1982; Klose & Drexl, 2005), a 

closing/opening option is available in each time period for each open/closed facility (the 

costs of opening and closing facility i in period t are   
   

 and   
   

 and these decisions are 

modelled using the binary variables   
   

 and   
   

, respectively). We assume facilities have 

infinite capacity compared to delivered quantities. This assumption is particularly 

reasonable for third party warehouses. 
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The diffusion of the new product is described by SBM (Niu, 2002). After facilities are 

located in period  , conditional on the set        of all the customers that have already 

joined the system, a subset      of customers from the set of all remaining potential 

customers joins the market in period   according to SBM. This constitutes a scenario (this 

terminology is as in Romauch and Hartl (2005)). Given         we denote by 

    
       the set of possible scenarios in period t, and by      

       the probability that 

scenario   in set     
       occurs. The demands of the new customers that enter the 

system in period t and of those already in the system have to be fully met. We include all 

these customers in set      (that is,                 ), and allocate them to the 

available warehouses. The binary variable     
   

 is set equal to 1 if customer   is allocated to 

facility   under scenario   in period   and 0 otherwise. 

Analogously to Gaur and Fisher (2004), we assume that there is a single homogeneous 

product with deterministic and possibly time-varying demand for each customer. We use 

the integer valued parameter   
   

 to indicate the demand in period   of a customer   that has 

joined the system (in the current period or any of the previous periods). 

We model inventory and transportation costs as proposed by Shen and Qi (2007). In 

particular, we use an Economic Order Quantity model (Harris, 1913; Wilson, 1934) for 

facility inventory management. If   and   are, respectively, the number of shipments per 

year from the supplier and the inventory holding cost per period per unit, we express the 

total inventory cost incurred at all facilities under scenario   in period   as 

 

∑ ∑     
   

  
    

      
                                                                                                                          1.     

 

If customer   is allocated to facility   in period   we incur the transportation cost    
   

.  

This cost is the product of the total number of shipments to each customer per year,  , the 

distance     from facility   to customer  , and the cost   ̅for each kilometre covered. When 

the customer allocation is decided, the space used at facility   in period   is captured by the 

variable   
   

. The unit cost of space at facility   in period   is   
   

. 

We denote by   ( 
             ) the optimal value function of our SDP model in period 

t and state (              ), that is, before observing the customers that enter the market in 

period t. This function satisfies the following Bellman equation: 
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The objective function (2) includes three parts. The first part accounts for the total 

location costs, that is, the costs of opening/closing facilities in period  . The second part 

accounts for the expected total customer allocation cost in period  , that is, the sum of 

warehousing, inventory holding, and transportation costs resulting from serving customers 

in this period. The third part includes the expected optimal total cost in the remaining part 

of the planning horizon. Constraints (3) update the set of customers that have joined the 

market in period   under scenario  . Constraints (4) and (5), respectively, make sure that a 

warehouse is open only if it was previously closed and that a warehouse is closed only if it 

was previously open. Constraints (6) update the operating status of the warehouses. 

Constraints (7) and (8) enforce the condition that a customer is assigned only to an 

operating warehouse and that all customers are assigned to exactly one warehouse, 

respectively. Constraints (9) require that sufficient space is available at each warehouse to 

serve all the demands of customers assigned to this warehouse. Constraints (10) impose 

non-negativity conditions on the used warehousing space. Constraints (11) and (22), 

respectively, enforce binary conditions on the customer allocation variables and the 

warehouse related variable. 

 

Solution Approach 

Solving our SDP model to optimality on realistic instances is computationally intractable, 

due the curve of dimensionality (Falsini, 2011). We thus solve this model heuristically by 
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integrating Monte Carlo simulation and math programming. We label as scenario policy 

(SP) the resulting heuristic policy. This policy is evaluated by repeating the following steps 

for a given number of samples, and averaging the total cost computed on each sample to 

obtain an estimate of the value function of this policy in the initial state and stage: 

Step 1. Initialize   to 1 and set the total cost to 0. 

Step 2. At the beginning of period  , sample a scenario of interest that includes a set of 

customers that adopt the product in this period, as well as a set of analogous additional 

scenarios.  For each of these scenarios, sample a set of scenarios for each remaining time 

period in the planning horizon. Label as a trajectory a sequence of scenarios from period   

through  . 

Step 3. Solve the deterministic version of our SDP model formulated on this set of 

trajectories. This is a math program that does not include a value function in its 

formulation. 

Step 4. Extract from the resulting optimal solution of this math program the array that 

describes the operating condition of the warehouses in period   and the set of allocated 

customers in period   for the scenario of interest generated in Step 2. Cumulate the 

corresponding period   costs of opening/closing warehouses and allocating customers (that 

is, the space, inventory, and transportation costs). Add these cumulated costs to the total 

cost. 

Step 5. Increment   by 1. If   equals     then stop.  Otherwise return to Step 2. 

We benchmark the performance of SP against an estimated hindsight information LB 

and the performance of a myopic policy (MP). We estimate this LB by generating a set of 

trajectories, optimizing a set of deterministic multi-period facility location and customer 

allocation math programs, each formulated on one of these trajectories (that is, each such 

math program uses hindsight information about the customers that enter the market in each 

time period), and averaging the corresponding optimal solutions. MP makes facility 

location and customer allocation decisions in a given period only considering the 

information available in that period. We evaluate the MP performance in a manner similar 

to how we evaluate the SP performance, except that in Step 2 we only consider scenarios 

pertaining to period  , rather than trajectories from period   through period  . 

 

Model Validation 

Case Study Description: A New Made-in-Italy Food and Wine Supply Chain 

We validated our modelling approach by applying our heuristic solution method to a 

project conceived by the Operations Research Group at the Department of Enterprise 

Engineering, “Tor Vergata” University of Rome, and funded by the Italian Ministry of 

Economic Development. This project aims at defining a new distribution format for Made-

in-Italy food and wine goods both on national and international markets through an e-

commerce platform. 

We used the following values for our model parameters: 

 Length of the planning horizon: 4 years.  

 Potential customers: 1,400 Italian restaurants with fairly uniform distribution over all 

the Italian territory. We set the SBM innovation and imitation parameters equal to 0.03 

and 0.38, respectively, on the basis of the meta-analysis of Sultan (1990). Once a 

customer adopts the product, the demand of this customer is estimated to be 1,600 

product units per year. 
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 Potential facilities: 28 logistics platforms that provide warehousing services for the 

small quantities of product foreseen by the project business plan.  

 Logistics costs: The transportation cost is fixed at 1.09 €/km (Falsini et al., 2009).      

Distances are computed using a Geographic Information System. The estimation of the 

remaining logistics costs is based on third-party logistics prices for renting and 

managing a square meter in controlled-temperature warehouses, without quantity 

discounts.   

 

Results and Sensitivity Analysis 

We created a set of 8 test instances by varying the warehouse opening cost   (€/facility) in 

the set {5,000, 20,000, 50,000, 100,000}; for simplicity, this cost does not depend on the 

facility or the time period, and hence we suppress the subscript and superscript from the   

notation. According to common practice, we assumed either weekly or monthly shipments 

to customers. Thus, the total number of shipments per year to each customer,  , varies in 

the set {12, 52}.  Given that warehouses are rented, we set the cost of closing a facility to 

zero. On each instance, we evaluated the LB and the two UBs corresponding to MP and SP, 

respectively denoted as UB-MP and UB-SP, using 10 samples from the beginning through 

the end of the time horizon (albeit this is a small number of samples, the sample values of 

our bounds, that is, their values on each sample, are quite stable). We conducted our 

computational study on a laptop with an Intel Core i5-460M processor (2,53GHz, 3MB L3 

cache) and 4 GB DDR3 of memory. On average, evaluating SP, MP, and LB took 80.8, 

36.5, and 5.0 CPU seconds.  

       
Figure 1 – Estimated bounds (1,000 €) for the parameter pairs (O = 5,000, n = 12), left, and (O = 

20,000, n = 12), right. 

       
Figure 2 – Estimated bounds (1,000 €) for the parameter pairs (O = 50,000, n = 12), left, and (O = 

100,000, n = 12), right. 
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Figure 3 – Estimated bounds (1,000 €) for the parameter pairs (O = 5,000, n = 52), left, and (O = 

20,000, n = 52), right. 

       
Figure 4 – Estimated bounds (1,000 €) for the parameter pairs (O = 5,000, n = 52), left, and (O = 

100,000, f = 52), right. 
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market area. The difference between UB-SP and LB decreases because of the increased 

similarity between the SP decisions and the LB related solutions.  

 

Conclusions 

We focus on designing a supply chain network when launching a new product. We 

formulate a stochastic dynamic programming model that uses a stochastic Bass model to 

describe the demand evolution during a given planning horizon. We propose a heuristic 

policy that integrates Monte Carlo simulation and math programming. We benchmark the 

performance of this heuristic against the one of an alternative, simpler to evaluate, heuristic 

and a lower bound. Application of our methodology to a new Made-in-Italy food and wine 

product distribution network shows that the proposed heuristic outperforms the simpler 

heuristic by 0.7 to 8.8%, and the sub-optimality of the proposed heuristic varies in between 

10.0% (weekly shipments) and 62.1% (monthly shipments). We conjecture that the larger 

sub-optimality of the proposed heuristic with monthly shipments is due to our estimated 

lower bound being looser with monthly shipments rather than weekly shipments. We defer 

to further research the investigation of this issue. 

 

References 
Aghezzaf, E. (2005), “Capacity planning and warehouse location in supply chains with uncertain demands”, 

Journal of the Operational Research Society, Vol. 56, No. 4, pp. 453-462. 

Amini, M. and Li, H. (2011), “Supply chain configuration for diffusion of new products: An integrated 

optimization approach”, Omega, Vol. 39, No. 3, pp. 313-322. 

Amini, M., Wakolbinger, T., Racer, M. and Nejad, M. (2012), “Alternative supply chain production–sales 

policies for new product diffusion: An agent-based modeling and simulation approach”, European Journal 

of Operational Research, Vol. 216, No. 2, pp. 301-311. 

Bass, F. (1969), “A new product growth for model consumer durables”, Management Science, Vol. 15, No. 5, 

pp. 215-227. 

Berman, O. and LeBlanc, B. (1984), “Location-relocation of mobile facilities on a stochastic network”, 

Transportation Science, Vol. 18, No. 4, pp. 315-330. 

Berman, O. and Odoni, A. (1982), “Locating mobile servers on a network with Markovian properties”, 

Networks, Vol. 12, No. 1, pp. 73–86. 

Carson, Y.M. and Batta, R. (1990), “Locating an ambulance on the Amherst Campus of the State University 

of New York at Buffalo”, Interfaces, Vol. 20, No. 5, pp. 43-49. 

Current, J., Ratick, S. and ReVelle, C. (1997), “Dynamic facility location when the total number of facilities 

is uncertain: A decision analysis approach”, European Journal of Operational Research ,Vol. 110, No. 3, 

pp. 597-609. 

Falsini, D. (2011), Dynamic and Stochastic Supply Chain Network Design, PhD Dissertation, University of 

Rome “Tor Vergata”, Rome, Italy. 

Falsini, D., Fumarola, A. and Schiraldi, M. (2009), “Sustainable transportation systems: Dynamic routing 

optimization for a last-mile distribution fleet”, Proceedings of the International Conference Sustainable 

Development: The Role of Industrial Engineering, Porto Giardino (Italy), September 15-19, 2009, pp. 40-

47. 

Gaur, V. and Fisher, M. (2004), “A periodic inventory routing problem at a supermarket chain”, Operations 

Research, Vol. 52, No. 6, pp. 813-822. 

Graves , S. and Willems, S. (2005), “Optimizing the supply chain configuration for new products”, 

Management Science, Vol. 51, No. 8, pp. 1165-1180. 

Harris, F. (1913), “How many parts to make at once”, Factory, The Magazine of Management, Vol. 10, No. 2, 

pp. 135-136. 

Ho, T., Savin , S. and Terwiesch, C. (2002), “Managing demand and sales dynamics in new product diffusion 

under supply constraint”, Management Science, Vol. 48, No. 2, pp. 187–206. 

Jain, D., Mahajan, V. and Muller, E. (1991), “Innovation diffusion in the presenc of supply restrictions”, 

Marketing Science, Vol. 10, No. 1, pp. 83-90. 



 

 10  

Jornsten, K. and Bjorndal, M. (1994), “Dynamic location under uncertainty”, Studies in Regional and Urban 

Planning, September, Issue 3, pp. 163-184. 

Klibi, W., Lasalle, F., Martel, A. and Ichoua, S. (2010), “The stochastic multi-period location-trasportation 

problem”,  Transportation Science, Vol. 44, No. 2, pp. 221-237.  

Klose, A. and Drexl, A. (2005), “Facility location models for distribution system design”, European Journal 

of Operational Research, Vol. 162, No. 1, pp. 4-29. 

Kumar, S. and Swaminathan, J. (2003), “Diffusion of innovations under supply constraints”, Operations 

Research , Vol. 51, No. 6, pp. 866-879. 

Mahajan, V., Muller, E. and Bass, F. (1990), “New product diffusion models in marketing: A review and 

directions for research”, The Journal of Marketing, Vol. 54, No. 1, pp. 1-26. 

Lainez, J., Reklaitis, G. and Puigjaner, L. (2010), “Linking marketing and supply chain models for improved 

business strategic decision support”, Computers and Chemical Engineering, Vol. 34, No. 5, pp. 2107-

2117. 

Niu, S.C. (2002), “A stochastic formulation of the Bass Model of new-product diffusion”, Mathematical 

Problems in Engineering, Vol. 8, No. 3, pp. 249-263. 

Peres, R., Mahajan, V. and Muller, E. (2010), “Innovation diffusion and new product growth models: A 

critical review and research directions”, International Journal of Research in Marketing, Vol. 27, No. 2, 

pp. 91-106. 

Romauch, M. and Hartl, R.F. (2005), “Dynamic facility location with stochastic demands”, in Lupanov, O., 

Kasim-Zade, O., Chaskin, A., Steinhöfel, K. (Eds.), Stochastic Algorithms: Foundations and Applications, 

Springer, Moscow (Russia), pp. 180-189. 

Rosenthal, R., White, J. and Young, D. (1978), “Stochastic dynamic location analysis”, Management Science, 

Vol. 24, No. 3, pp.  645-653. 

Shen, Z.-J. and Qi, L. (2007), “Incorporating inventory and routing costs in strategic location models”, 

European Journal of Operational Research, Vol. 179, No. 2, pp. 372–389. 

Sultan, F., Farley, J.U. and Lehman, D.R. (1990), “A meta-analysis of applications of diffusion models”, 

Journal of Marketing Research, Vol. 27, No. 1, pp. 70-77. 

Vairaktarakis, G. and Kouvelis, P. (1999), “Incorporation dynamic aspects and uncertainty in 1-median 

location problems”, Naval Research Logistics, Vol.  46, No. 2, pp. 147-168. 

Van Roy, T. and Erlenkotter, D. (1982), “A dual-based procedure for dynamic facility location”, Management 

Science, Vol. 28, No. 10, pp. 1091-1105. 

Wilson, R. (1934), “A scientific routine for stock control”, Harvard Business Review, Vol. 13, No. 1, pp. 116-

128. 


