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1. Introduction

Existence and multiplicity of periodic trajectories of Hamiltonian vector fields
on symplectic manifolds is a traditional field of research, which found new input
from the work on Arnold’s conjecture. Fitzpatrick, Pejsachowicz and Recht in
[8],[9] studied bifurcation of periodic solutions of one-parameter families of (time
dependent) periodic Hamiltonian systems in R2n relating the spectral flow to the
bifurcation of critical points of strongly indefinite functionals.

In [6] we extended their results to families of time dependent Hamiltonian vector
fields acting on symplectic manifolds and the related problems of bifurcation of fixed
points of one parameter families of symplectomorphisms were discussed. Namely we
proved that for a 1-parameter family of time dependent Hamiltonian vector fields,
acting on a symplectic manifold M which possesses a known trivial branch uλ of
1-periodic solutions if the relative Conley Zehnder index of the monodromy path
along uλ(0) is defined and does not vanish then any neighborhood of the trivial
branch contains 1-periodic solutions not in the branch.

Fixed points of Hamiltonian symplectomorphisms are in one to one correspon-
dence with 1-periodic orbits of the corresponding vector field. Hence as a conse-
quence we obtained, assuming that (M,ω) is a closed symplectic manifold with
trivial first De Rham cohomology group, for a path φ : [0, 1] → Symp0(M) of
symplectomorphisms with a known smooth path p : [0, 1] → U of fixed points, i.e. ,
p(λ) is a fixed point of φλ. If the Conley-Zehnder index CZ(φ, p) of φ along p is
defined and does not vanish then there is a bifurcation of fixed points of φ from the
trivial branch p.

The Arnold conjecture states that a generic Hamiltonian symplectomorphism
has more fixed points that could be predicted from the fixed point index. More
precisely, by the fixed point theory a diffeomorphism isotopic to the identity with
non-degenerate fixed points must have at least as many fixed points as the Euler-
Poincaré characteristic of the manifold. But the number of fixed points of a
Hamiltonian symplectomorphism verifying the same non-degeneracy assumptions
is bounded bellow by the sum of the Betti numbers. Roughly speaking, this can be
explained by the presence of a variational structure in the problem. Fixed points
viewed as periodic orbits of the corresponding vector field are critical points of the
action functional either if the orbits are contractible or when the symplectic form
is exact.

Applied to bifurcation of fixed points of one parameter families of Hamiltonian
symplectomorphisms our result shows a similar influence on the presence of a vari-
ational structure. In order to see the analogy consider a one parameter family of
diffeomorphisms ψλ;λ ∈ [0, 1] of an oriented manifold M , assuming for simplicity
that ψλ(p) = p and that p is a non degenerate fixed point of ψi; i = 0, 1. The work
of Ize [11] implies that the only homotopy invariant determining the bifurcation of
fixed points in terms of the family of linearizations L ≡ {Tpψλ} at p is given by the
parity

π(L) = sign det(Tpψ0) · sign det(Tpψ1) ∈ Z2 = {1,−1}.
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Here det is the determinant of an endomorphism of the oriented vector space TpM .
In other words bifurcation arise whenever the det(Tpψλ) change sign at the end
points of the interval. Moreover, any family of diffeomorphisms close enough to
ψ in the C1-topology and having p as fixed point undergoes bifurcation as well.
On the contrary if both sign coincide one can find a perturbation as above with
no bifurcation points at all. The integer valued Conley-Zehnder index provides a
stronger bifurcation invariant for one parameter families of Hamiltonian symplecto-
morphisms. It forces bifurcation of fixed points whenever the Conley-Zehnder index
CZ(L) is non zero even when π(L) = 1. The relation between the two invariants is
π(L) = (−1)CZ(L).

A natural generalization of the classical Arnold’s conjecture estimates the num-
ber of intersection points of two Lagrangian submanifolds of a symplectic manifold.

The cause that forces Hamiltonian deformation L1 = φ(L) of a compact La-
grangian submanifold L of M to have a huge intersection with L can be explained
as follows: by a well known theorem of Weinstein the submanifold L has a neigh-
borhood symplectomorphic to a neighborhood of the zero section in the cotangent
bundle T ∗(L). If L is simply connected and if L1 is a Lagrangian submanifold that
is C1 close to L then L1 is given by the image of the differential dS : L → T ∗(L)
of a smooth function S : L → R2n and therefore will have as many intersection
points with L as critical points has the function S on L. The latter is bounded
from below by Lusternik-Schnirelmann inequalities or by Morse inequalities if the
critical points are non-degenerate. Of course L1 need not be C1-close to L. But
when M = T ∗(N) using an Hamiltonian isotopy φλ with φ1 = φ one can still pro-
duce a family of generating functions S : N ×Rk → R with k big enough such that
critical points of S correspond to intersections of N with L1. This is a Theorem
of Sikorav [18]. Using this theorem one can still get estimates on the number of
intersection points but weaker than in the previous case. Functions S as before are
usually called generating families.

In [7] we showed that intersections of one parameter families of Lagrangian sub-
manifolds with a given one have stronger bifurcation properties than the intersec-
tions of general submanifolds of right codimension essentially for the same reason
as above. For families Lλ close enough in the C1 topology to a given Lagrangian
submanifold L0 bifurcation of intersection points of Lλ with L0 reduces, by the
above described process, to bifurcation of critical points of one parameter families
of smooth functions. In this setting bifurcation arises whenever the spectral flow, or
what is the same, the difference between the Morse indexes of the end points of the
trivial branch is non-zero. This gives a stronger invariant than the usual bifurcation
index obtained by comparing the sign of the determinant of the Jacobian matrix
of the gradient at the end points of the trivial branch. Via generating functions
we showed that the assumption of being C1 close can be substituted with a more
general one without modifying the conclusions.

Namely the main result in [7] is as follows. Let N be a closed manifold and let
L = {Lλ} be an exact, compactly supported family of Lagrangian submanifolds
of the symplectic manifold M = T ∗(N) such that L0 admits a generating family
quadratic at infinity. Let p : [0, 1] → M be a path of intersection points of Lλ with
N . Assume that Lλ is transversal to N at p(λ) for λ = 0, 1 and that the Maslov
intersection index µ(L, N ; p) is different from zero. Then arbitrarily close to the
branch p there are intersection points of Lλ with N such that do not belong to p.
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The results exposed here were obtained in collaboration with J. Pejsachowicz.
Symplectic features nedeed for our purpose are collected in section §2. In section §3
we extend the definitions of the Maslov and Conley-Zehnder indeces to manifolds.
This relies on the existence of symplectic trivializations of symplectic vector bun-
dles over an interval. In §4 we outline how the bifurcation results of Fitzpatrick,
Pejsachowicz and Recht are applied to the situations described above.

I would like to thank Ramadas Ramakrishnan from ICTP and the EAUMP’s
coordinators John Mango, Egbert Mujuni, Sylvester Rugeihyamu for inviting me
to take part on the EAUMP project. I also wish to thank Velleda Baldoni for
finantial support.

2. Symplectic features

A symplectic manifold M is a differentiable manifold together with a closed
nondegenerate differentiable two form ω, i.e. ,

dω = 0 and ∀Y ̸= 0 ∃X : ω(X, Y ) ̸= 0, X, Y ∈ TmM.

Hence M must have even dimension and because ωn/n! gives the canonical volumen
form it is oriented.
The non-degeneracy condition induces an isomorphism between the tangent T (M)
and the cotangent space of the manifold T ∗(M) that assigns to each vector field X
a 1-form ιXω = ω(X, .).

A diffeomorphism φ : (M,ω) → (M,ω) that satisfies φ∗ω = ω is called symplec-
tomorphism. In particular, a simplectomorphism preserves the volumen.
The requirement on the 2-form ω to be closed provides a correspondence between
closed 1-forms and conservative vector fields since in this case LXω = 0 if and only
if d(ιXω) = 0, such vector fields are called symplectic. The flow generated by a
symplectic vector field consist of symplectomorphisms, i.e. , φ∗tω = ω ∀t. A vector
field is called Hamiltonian if the 1-form ιXω is exact.
Because on a manifold there are many 1-forms the dimension of the group of sym-
plectomorphisms of M , Symp(M,ω) is infinity. To the subset of exact 1-forms
α = dH corresponds a normal subgroup Ham(M,ω) of Symp(M,ω).

In symplectic geometry there are no local invariants like for instance the curva-
ture in Riemannian geometry. Darboux Theorem states that in some neighborhood
of a given point one can choose a coordinate system (U ; x1, . . . xn, y1, . . . , yn) such
that the restriction of the form to the neighborhood U is ω|U = ω0 :=

∑n
i=1 dxi∧dyi.

Hence the universal local model of a symplectic form is the standard symplectic
form ω0 in R2n. In this case the isomorphism between the tangent and cotangent
space is given explicity by X = ∂/∂xj → ιXω0 = dyj , X = ∂/∂yj → ιXω0 = −dxj .

An important example of symplectic manifolds is the cotangent bundle of any
manifold. Let N be an n-dimensional differentiable manifold. Let T ∗(N) be the
cotangent bundle of N and π : T ∗N → N the projection on N . There is a canonical
1-form λN on T ∗N defined as follows: let ξ be a tangent vector to T ∗N at the point
p ∈ T ∗N (ξ ∈ Tp(T ∗(N))). Since the element p is a cotangent vector on Tx(N)
where x = π(p) and π∗(ξ) ∈ Tx(N) define λN (ξ) := p(π∗(ξ)). In local coordinates
λN (ξ) = pdq and the symplectic 2-form is Ω = dλN . Being exact it is closed and it
is non-degenerate because in local coordinates Ω = dp ∧ dq.
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Let W be a vector subspace of a symplectic vector space (V,ω), the symplectic
orthogonal to W is the vector subspace Wω := {v ∈ V/ω(v, w) = 0 ∀v, w ∈ W}.
W is said to be isotropic if W ⊂ Wω. It is said to be coisotropic if W ⊃ Wω. If it
is both isotropic and coisotropic it is called Lagrangian.

If W is isotropic, then Wω is coisotropic and the symplectic form ω induces a
symplectic form ϖ on the quotient space Wω/W defined by ϖ(v + W, w + W ) =
ω(v, w) ∀v, w ∈ Wω. The space (Wω/W,ϖ) is called the isotropic redution. More-
over if L is a Lagrangian subspace of (V,ω) then LW = (L ∩ Wω)/(L ∩ W ) is a
Lagrangian subspace of Wω/W .

Lagrangian submanifolds of a symplectic manifold (M,ω) are the submanifolds
of maximal dimension where the symplectic form vanishes. They are characterized
by TL = (TL)ω. Examples of Lagrangian submanifolds are the vertical fibers of
a cotangent bundle T ∗N . As for submanifolds transverse to the fibers, any such
submanifold is locally the graph of a 1-form α : N → T ∗N . The graph of a 1-form
α is Lagrangian if and only if α is closed. If the 1-form is exact, i.e. , if α = dS the
funtion S is called a generating function for the corresponding submanifold.

Any Lagrangian submanifold can be generated locally by a function on the prod-
uct of N with a paramenter space, in which case it is called generating family.
The definition goes as follows (see [21]). Let V be a finite dimensional vector
space. Consider a smooth function S : N × V → R such that the differential dS is
transversal to the submanifold

N0 = T ∗(N) × V × {0} of T ∗(N × V ) ≡ T ∗(N) × V × V

Denote by Sn the function Sn : V → R defined by Sn(v) = S(n, v) and by Sv the
function Sv : N → R defined by Sv(n) = S(n, v). By the implicit function theorem,
the set C = {(n, v)/dSn(v) = 0} of vertical critical points of S is a submanifold of
N × V of the same dimension as N .
Let e : C → T ∗(N) defined by e(n, v) = dSv(n). The map e is a Lagrangian
immersion (but generally not an embedding) of the manifold C into T ∗N . Given
a Lagrangian submanifold L of T ∗(N), S is said to be a generating family for L if
there is a diffeomorphism h from C onto L such that e = ih, where i : L → T ∗(N)
denotes the inclusion. The generating family S is said to be quadratic at infinity if
there is a non-degenerate quadratic form Q on V such that S(n, v) = Q(v) for ∥v∥
big enough.

Diffeomorphisms of a manifold may be identified with their graphs, that is,
with submanifolds of M × M which are mapped diffeomorphically onto M by the
projections π1, π2. If M carries a symplectic structure ω, the form π∗

1ω − π∗
2ω

defines a symplectic structure on the product manifold M ×M . A diffeomorphism
φ of a symplectic manifold (M,ω) is a symplectomorphism if and only if its graph
is a Lagrangian submanifold of (M ×M,π∗

1ω− π∗
2ω). Fixed points of φ correspond

to intersections of the graph with the diagonal ∆ of M × M .

On a closed symplectic manifold (M2n,ω) every smooth time dependent (Hamil-
tonian) function H : R × M → R gives rise to a family of time dependent Hamil-
tonian vector fields X : R × M → TM defined by

ω(X(t, x), ξ) = dxH(t, x)ξ
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for ξ ∈ TxM . If H is periodic in time with period 1, then so is X . By compactness
and periodicity the solutions u(t) of the initial value problem for the Hamiltonian
differential equation

(2.1)

{
d
dtu(t) = X(t, u(t)),
u(s) = x

are defined for all times t. The flow (or evolution map) associated to X is the
two-parameter family of symplectomorphisms ψ : R2 → Symp(M) defined by

ψs,t(x) = u(t)

where u is the unique solution of (2.1).
By the uniqueness and smooth dependence on initial value theorems for solutions
of differential equations the map ψ : R2×M → M is smooth. The diffeomorphisms
ψs,t verify the usual cocycle property of an evolution operator i .e. ,ψs,r ◦ψr,t = ψs,t

and ψt,t = Id . From this property it follows that for each fixed s, the map sending u
into u(s) is a bijection between the set of 1-periodic solutions of the time dependent
vector field X and the set of all fixed points of ψs,s+1. Hence in order to find periodic
trajectories of (2.1) we can restrict our attention to the fixed points of P = ψ0,1.
The map P = ψ0,1 is called the period or Poincaré map of X.
A 1-periodic trajectory is called non degenerate if p = u(0) is a non degenerate
fixed point of P , i.e. , if the monodromy operator Sp ≡ TpP : TpM → TpM has no
1 as eigenvalue. Consistently, the eigenvalues of the monodromy operator will be
called Floquet multipliers of the periodic trajectory. The particular choice of s = 0
is irrelevant to the property of being non degenerate since the Floquet multipliers
do not depend on this choice. (see [1])

Every symplectomorphism that can be represented as a time 1-map of such a
time dependent Hamiltonian flow is called a Hamiltonian map. If M is simply
connected the connected component of the identity map Symp0(M,ω) in the space
of symplectic diffeomorphisms Symp(M,ω) consists of Hamiltonian maps (see [12]).

3. The Maslov index and the Conley-Zehnder index

Before going to the manifold setting let us discuss the case of R2n = T ∗Rn with
the standard symplectic form ω0 =

∑
dxi∧dyi. The group of real 2n×2n symplectic

matrices will be denoted by Sp(2n, R).
The relative Conley-Zehnder index is a homotopy invariant associated to any

path ψ : [0, 1] → Sp(2n, R) of symplectic matrices with no eigenvectors correspond-
ing to the eigenvalue 1 at the end points. This invariant counts algebraically the
number of parameters t in the open interval (0, 1) for which ψ(t) has 1 as an eigen-
value. One of the possible constructions uses the Maslov index for non-closed paths.
We shall define it along the lines of Arnold [3] for closed paths. For an alternative
construction see Robbin and Salamon [15].

The Lagrangian Grassmaniann Λ(n) consists of all Lagrangian subspaces of R2n

considered as a topological space with the topology it inherits as a subspace of the
ordinary Grassmanian of n-planes. Let J be the selfadjoint endomorphism repre-
senting the form ω0 with respect to the standard scalar product in R2n. Namely,
ω0(u, v) ≡< Ju, v >. Then J is a complex structure, it is indeed the standard one.
It coincides with multiplication by i under the isomorphism sending (x, y) ∈ R2n
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into x + iy in Cn. In terms of this representation, a Lagrangian subspace is char-
acterized by JL = L⊥.

Using the above description one can identify Λ(n) with the homogeneous space
U(n)/O(n). This can be done as follows: given any orthonormal basis of a La-
grangian subspace L there exist a unique unitary endomorphism A ∈ U(n) sending
the canonical basis of L0 = Rn×{0} into the given one and in particular sending L0

into L. Moreover the isotropy group of L0 can be easily identified with O(n). Hence
we obtain a diffeomorphism between U(n)/O(n) and Λ(n) sending the class [A] into
A(L0). Since the determinant of an element in O(n) is ±1, the map sending A into
the square of the determinant of A factorizes through Λ(n) ≡ U(n)/O(n) and hence
induces a one form Θ ∈ Ω1

(
Λ(n)

)
given by Θ = [det2]∗θ, where θ ∈ Ω1(S1) is the

standard angular form on the unit circle. This form is called the Keller-Maslov-
Arnold form.

The Maslov index of a closed path γ in Λ(n) is the integer defined by µ(γ) =
∫

γ Θ.

In other words µ(γ) is the winding number of the closed curve t → det2
(
γ(t)

)
. The

Maslov index induces an isomorphism between π1(Λ) and Z.
The construction can be extended to non-closed paths as follows: fix L ∈ Λ(n). If L′

is any Lagrangian subspace transverse to L then L′ can be identified with the graph
of a symmetric transformation from JL into itself. It follows from this that the set
ΛL of all Lagrangian subspaces L′ transverse to L is an affine space diffeomorphic
to the space of all symmetric forms on Rn and hence it is contractible.
We shall say that a path in Λ(n) is admissible with respect to L if the end points
of the path are transverse to L. The Maslov index µ(γ, L) of an admissible path
γ with respect to L is defined as follows: take any path δ in ΛL joining the end
points of γ and define

µ(γ; L) ≡ µ(γ′) =
∫

γ′
Θ.

where γ′ is the path γ followed by δ. The result is independent of the choice of δ.
Moreover, since ΛL is contractible, µ(γ; L) is invariant under homotopies keeping
the end points in ΛL.
Geometricaly, the Maslov index µ(γ; L) can be interpreted as an intersection index
of the path γ with the one codimensional analytic set Σl = Λ(n) − ΛL (see [16]).
From the definition it follows that the index is additive under concatenation of
paths. Namely, given two admissible paths α and β with α(1) = β(0)

µ(α ⋆ β; L) = µ(α; L) + µ(β; L).

Since Sp(2n, R) is connected it follows from the homotopy invariance that

µ(Sγ; SL) = µ(γ; L)

for any symplectic isomorphism S. This allows to extend the notion of Maslov Index
to paths of Lagrangian subspaces in Λ(V ), where (V,ω) is any finite dimensional
symplectic vector space.

Graphs of symplectic endomorphisms are Lagrangian subspaces of the symplectic
vector space V × V endowed with the symplectic form ω × (−ω). The graph of
P ∈ Sp(2n, R) is transversal to the diagonal ∆ ⊂ V × V if and only if 1 is not an
eigenvalue of P . A path φ : [0, 1] → Sp(2n, R) will be called admissible if 1 is not in
the spectrum of its end points. For such a path the relative Conley-Zehnder index
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is defined by

(3.1) CZ(φ) = µ(Graphφ, ∆).

From the above discussion it follows that CZ(φ) is invariant under admissible ho-
motopies and it is additive with respect to concatenation of paths. If the fixed
point space of φ(λ) reduces to {0} for all λ then CZ(φ) = 0 .
There is one more property of the Conley-Zehnder index that we use in the sequel.
Namely, that for any α : [0, 1] → Sp(2n, R) and any admissible path φ

(3.2) CZ(α−1φα) = CZ(φ).

This can be seen as follows. Since the spectrum is invariant by conjugation, the
homotopy (t, s) → α−1(s)φ(t)α(s) shows that CZ(α−1φα) = CZ(α−1(0)φα(0)).
Now (3.2) follows by the same argument applied to any path joining α(0) to the
identity.
The property (3.2) allows to associate a Conley-Zehnder index to any admissible
symplectic automorphism of a symplectic vector-bundle over an interval. Let I be
the interval [0, 1], then any symplectic bundle π : E → I over I has a symplectic
trivialization. If S : E → E is a symplectic endomorphism of E over I well behaved
at the end points, then we can define the Conley-Zehnder index of S as follows:
if T : E → I × R2n is any symplectic trivialization, then TST−1(λ, v) has the
form (λ,φT (λ)v) where φT is an admissible path on Sp(2n, R). Any change of
trivialization induces a change on φT that has the form of the left hand side in
(3.2) and hence CZ(φT ) is independent of the choice of trivialization. Thus the
Conley-Zehnder index of S is defined to be CZ(S) ≡ CZ(φT ).
Now let’s define the relative Conley-Zehnder index of a path of symplectomorphisms
along a path of fixed points: let M be a closed symplectic manifold and let Symp(M)
be the group of all symplectomorphisms endowed with the C1 topology. Let φ : I →
Symp(M) be a smooth path of symplectomorphisms of M . Let p : I → M be a
path in M such that p(λ) is a fixed point of φ(λ). Floquet multipliers of φ(λ) at
p(λ) are by definition the eigenvalues of Sλ = Tp(λ)φ(λ) : Tp(λ)(M) → Tp(λ)(M).
A fixed point will be called non degenerate if none of its Floquet multipliers is
one. Consistently, we will call the pair (φ, p) admissible whenever p(i) is a non
degenerate fixed point of φ(i) for i = 0, 1.
Let E = p∗[T (M)] be the pullback by p of the tangent bundle of M (we use the
same notation for the bundle and its total space). The family of tangent maps
Sλ = Tp(λ)φ(λ) induces a symplectic automorphism S : E → E over I. Define the
relative Conley-Zehnder index of φ along p by

(3.3) CZ(φ; p) ≡ CZ(S).

From the properties discussed above it follows that the relative Conley-Zehnder in-
dex CZ(φ; p) of φ along p is invariant by smooth pairs of homotopies (φ(s, t), p(s, t))
such that φ(s, t)(p(s, t)) = p(s, t) and such that for i = 0, 1; p(s, i) is a non degen-
erate fixed point of φ(s, i).
The index is additive under concatenation. It follows from (3.2) that it has another
interesting property, which for simplicity we state in the case of a constant path
p(t) ≡ p. If φ,ψ : I → Symp(M) are two admissible paths in the isotropy subgroup
of p then

CZ(ψ ◦ φ, p) = CZ(φ ◦ ψ, p).
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In other words CZ is a trace.
Finally let us define the Maslov intersection index of two families of Lagrangian

submanifolds Lλ and Nλ of a symplectic manifold M along a given path p : I → M
of intersection points.
Since the interval I is contractible, the pullback p∗(TM) by p of the tangent bundle
of M is a trivial bundle whose fiber over λ is the tangent space Tp(λ)M. Taking any
trivialization T : p∗(TM) → I ×R2n of this bundle the images under the trivializa-
tion maps Tλ : Tp(λ)M → R2n of the tangent spaces TpLλ and TpNλ determine two
paths l(λ) and n(λ) in the space Λn of all Lagrangian subspaces of R2n. Assuming
that the paths l, n have transverse intersection at the end points, the path l × n
has endpoints transversal to the diagonal ∆ in (R2n × R2n). Since the space of
Lagrangian subspaces transversal to a given one is contractible, if we take any path
δ joining the endpoints of l × n the Maslov index of a close path made by l × n
followed by δ, is independent of the choice of δ. The index of this closed path is by
definition the relative Maslov index µ(l, n) (cf. [15]). This index is an integer which
counts with appropriate multiplicities the points in (0, 1) where l(λ) ∩ n(λ) ̸= {0}.
From the invariance of the Maslov index under the action of the symplectic group
it follows that µ(l, n) is independent of the choice of trivialization. We call it (once
more!) the Maslov intersection index of the family L = {Lλ} with N = {Nλ} along
p, and we denote it by µ(L, N, p).
The last crucial property that we need to mention is the invariance of the Maslov
index under isotropic reduction. Consider a Lagrangian subspace L ⊂ (V,ω) and
a path of Lagrangian subspaces l : [0, 1] → Λ(V ) such that the endpoints l(0) and
l(1) are transverse to L. If W is an isotropic subspace such that W ⊂ L which has
transverse intersection with l(t) for all t ∈ [0, 1] then following the lines of Viterbo
(cf. Proposition 3 of [20]) it can be proved that the path lW : [0, 1] → Λ(Wω/W )
defined by lW (t) := l(t)/W is continuous and that the Maslov index of the path
lW relative to the Lagrangian subspace LW := L/W of Wω/W coincide with the
Maslov index of the path l relative to the Lagrangian subspace L, that is,

µLW (lW ) = µL(l).

4. Bifurcations

a) from periodic orbits of 1-parameter families of time dependent
Hamiltonian systems
Bifurcation theory deals with the problem of existence of nontrivial solutions arbi-
trary closed to a known family of solutions. For this purpose one takes into consid-
eration a smooth one parameter family of time dependent Hamiltonian functions
H : I ×R×M → R, where I = [0, 1] is the parameter set and each Hλ : R×M → R
is one periodic in time. Let X ≡ {Xλ}λ∈[0,1] be the corresponding one parameter
family of Hamiltonian vector fields. Then the flows ψλ,s,t associated to each Xλ

depend smoothly on the parameter λ ∈ I. Suppose also that the 1-parameter fam-
ily of Hamiltonian vector fields Xλ possesses a known smooth family of 1-periodic
solutions uλ; uλ(t) = uλ(t+1). Solutions uλ in this family are called trivial and we
seek for sufficient conditions in order to find nontrivial solutions arbitrarily close to
the given family. Identifying R/Z with the circle S1 we regard the family of trivial
solutions either as a path τ : I → C1(S1; M) defined by τ(λ) = uλ or as a smooth
map u : I × S1 → M.
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A point λ∗ ∈ I is called a bifurcation point of periodic solutions from the trivial
branch uλ if every neighborhood of (λ∗, uλ∗) in I ×C1(S1; M) contains pairs of the
form (λ, vλ) where vλ is a nontrivial periodic trajectory of Xλ.
A necessary condition for a point λ∗ to be of bifurcation is that 1 is a Floquet
multiplier of uλ∗ . This condition is not sufficient (See for example [2] Proposition
26.1). Thus non degenerate orbits cannot be bifurcation points of the branch. In
what follows we will assume that u(0) and u(1) are non degenerate and we will seek
for bifurcation points in the open interval (0, 1).
Consider the path p : I → M given by p(λ) = uλ(0). Each p(λ) is a fixed point
of the symplectomorphism Pλ = ψλ,0,1. Under our hypothesis, the pair (P, p) is
admissible. The number CZ(P, p) constructed in the previous section will be called
the relative Conley-Zehnder index of X ≡ {Xλ}λ∈[0,1] along the trivial family u.
We denote it by CZ(X, u). If this index is not zero one has the following

Theorem A: Let X ≡ {Xλ}λ∈[0,1] be a one parameter family of 1-periodic Hamil-
tonian vector fields on a closed symplectic manifold (M,ω). Assume that the family
Xλ possesses a known, trivial, branch uλ of 1-periodic solutions such that u(0) and
u(1) are non degenerate. If the relative Conley-Zehnder index CZ(X, u) ̸= 0 then
the interval I contains at least one bifurcation point for periodic solutions from the
trivial branch u.

For the proof (see [6]) we followed an idea of Salamon and Zehnder [17] (Lemma 9.2.)
in the nonparametric case. It consist in using appropiate symplectic trivializations
and applying Moser’s Method [14] to construct local Darboux coordinates (V,ψλ,t)
on the manifold M adapted to the λ-parameter family uλ(t) of periodic solutions
of the Hamiltonian differential equation

(4.1)

{
d
dtuλ(t) = Xλ(t, uλ(t)),
uλ(s) = x

i.e. , we showed the existence of an open neighborhood V of 0 in R2n and of a family
of symplectomorphisms ψλ,t : V → M that satisfies ψλ,t(0) = uλ(t) and ψ∗

λ,tω = ω0

on V . The new coordinates allowed us to reduce our problem to the Fitzpatrick,
Pejsachowicz and Recht’s bifurcation theorem in [9].

b) from intersection points of 1-parameter families of lagrangian sub-
manifolds
Let T ∗(N) be the cotangent bundle of a closed manifold N endowed with the
standard symplectic structure. We will consider bifurcations of intersections of N ≡
0N identified with the zero section of the bundle T ∗(N) with an exact one-parameter
family of Lagrangian submanifolds L = {Lλ}λ∈[0,1] such that Lλ coincides with
L0 outside of a compact subset of T ∗(N). More precisely we consider families
Lλ = iλ(L0) where iλ : L0 → T ∗(N) is a smooth family of Lagrangian embeddings
with iλ ≡ i0 outside of a compact subset of L0. Such a family is said to be
compactly supported. Moreover L is called exact if the one-form i∗ω( ∂

∂λ ,−) is exact
on [0, 1]×L0. The natural topology in the space of all Lagrangian submanifolds of
a given manifold is discussed in [22]. Remark that a family iλ as above induces a
continuous path in the space C∞(L0, T ∗(N)) with respect to the fine C1 topology.
Therefore Lr is C1 close to Ls whenever r is close enough to s.
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Let I = [0, 1] and let p : I → T ∗(N) be a smooth path such that p(λ) ∈ Lλ∩N . A
point p(λ∗) ∈ Lλ∗∩N is called bifurcation point from the given path p of intersection
points if any neighborhood of (λ∗, p(λ∗)) in [0, 1]×T ∗(N) contains points (λ, q) with
q ∈ Lλ ∩ N, q ̸= p(λ).
It follows from the implicit function theorem that a necessary condition for p(λ∗) to
be a bifurcation point of intersection is that the manifold Lλ∗ fails to be transversal
to N at p(λ∗). This means that for p∗ = p(λ∗) one has that Tp∗Lλ∗ + Tp∗N is a
proper subset of the tangent space Tp∗(T ∗(N)). Since dim Tp∗Lλ∗ = dim Tp∗N =
1
2dim T ∗(N) this turns out to be equivalent to

Tp∗Lλ∗ ∩ Tp∗N ̸= {0}.
This condition is not sufficient. Assuming that the manifolds L0, L1 are trans-
verse to N , under some extra assumption the nonvanishing of µ(L, N, p) provides
a sufficient condition for the existence of at least one bifurcation point.

Theorem B: Let N be a closed manifold and let L = {Lλ} be an exact, compactly
supported family of Lagrangian submanifolds of T ∗(N) such that L0 admits a gen-
erating family quadratic at infinity. Let p : [0, 1] → T ∗(N) be a path of intersection
points of Lλ with N . Assume Lλ is transverse to N at p(λ) for λ = 0, 1 and that
the Maslov intersection index µ(L, N, p) ̸= 0, then there exist a λ∗ ∈ (0, 1) such
that p(λ∗) is a point of bifurcation for intersection points of Lλ with N from the
trivial branch p.
If L0 = N then the first assumption of the theorem holds by taking S = 0.

The basic idea of the proof of Theorem B is to convert our problem to that of
finding bifurcations of critical points of one parameter families of functionals. We
used a result of Sikorav which guarantees the existence of generating families for
deformations of Lagrangian submanifolds under Hamiltonian isotopies (see propo-
sition 1.2 and Remark 1.7 in [18]). More precisely, if φλ is a Hamiltonian isotopy
of T ∗(N) and if L0 ⊂ T ∗(N) is generated by a family quadratic at infinity then
there exists a smooth family of functions Sλ : N × Rk → R quadratic at infinity
such that φλ(L0) is generated by the family Sλ. On the other hand Chaperon [4]
[5] proved that any one parameter exact compactly supported family of Lagrangian
embeddings Lλ = iλ(L0) can be extended to a Hamiltonian isotopy of the ambient
manifold. Putting both results toghether we have that for any smooth family Lλ

of Lagrangian submanifolds of T ∗(N) there exists a smooth family

S : [0, 1] × N × Rk → R
quadratic at infinity such that Sλ generates Lλ, where Sλ(n, v) = S(λ, n, v).
Thus each Lλ = eλ(Cλ) where Cλ = {(u, v)/v is critical of Sλ,n}, the functions
Sλ,n : Rk → R and Sλ,v : N → R are given by Sλ,n(v) = Sλ(n, v) and Sλ,v(n) =
Sλ(n, v) and eλ : Cλ → T ∗(N) is defined by eλ(n, v) = dSλ,v(n).
Since here each eλ is an embedding it induces a bijection between critical points
of Sλ : N × Rk → R and intersection points in Lλ ∩ N . Therefore the path of
intersection points p has a corresponding path τ : I → N × Rk of critical points of
Sλ. Because L0, L1 are transversal to N at p(0), p(1) it follows that τ(0) and τ(1) are
non-degenerate critical points. This is a direct consequence of the linear algebra
of symplectic reductions. Indeed, let N ′ = N × Rk and consider the symplectic
manifold T ∗(N ′) = T ∗(N)×R2k. The manifold {0}×Rk is an isotropic submanifold
of T ∗(N ′) and T ∗(N) is the symplectic reduction of T ∗(N ′) modulo the isotropic
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submanifold {0}×Rk. On the other hand N ′ and dSλ are lagrangian submanifolds of
T ∗(N ′) whose symplectic reductions are N and Lλ respectively. Since Lλ intersects
transversally N at p(λ), for λ = 0, 1, then dSλ intersects transversally N ′. But this
is equivalent to the non-degeneracy of the critical point τ(λ) for λ = 0, 1.

At any critical point the Hessian H(Sλ, τ(λ)) of Sλ at τ(λ) is a well defined
symmetric bilinear form. The Morse index m(S, x) of S at a nondegenerate critical
point is the dimension of the negative eigenspace of H(S, x). From Morse theory
the inequality m(S1, τ(1)) ̸= m(S0, τ(0)) guarantees the existence of bifurcation
critical points [13]. Since Lλ is the image of dSλ,v : N → T ∗(N), identifying N
with the zero section we have that Lλ is transversal to N for λ = 0, 1 and by the
localization properties of the relative Maslov index (Theorem 2.3 in [16]) it equals
the difference of the Morse indeces at the endpoints of the path, that is,

µ(dS, N ′, τ) = m(S1, τ(1)) − m(S0, τ(0)).

But the Maslov index is invariant under isotropic reduction thus

µ(dS, N ′, τ) = µ(L, N, p).

Hence the hypothesis of Theorem B implies that it is possible to find a sequence of
critical points of Sλ bifurcating from the trivial branch. Via eλ those critical points
correspond to nontrivial intersections of Lλ with N

c) from fixed points of a one parameter family of symplectomorphisms
We discusse now bifurcations of a path of fixed points of a one parameter family
of symplectomorphisms. Consider a closed symplectic manifold (M,ω). We as-
sume here that the first Betti number β1(M) of M vanishes, since in this case any
symplectic diffeomorphism belonging to the connected component of the identity
Symp0(M) of the group of all symplectic diffeomorphisms can be realized as the
time one map of a 1-periodic Hamiltonian vector field. The following result can be
obtain as a consequence either of Theorem A or of Theorem B.

Corollary: Assume that β1(M) = 0. Let φλ be a path in Symp0(M) such that
φλ(p) = p for all λ and such that as fixed point of φ0 and φ1, p is non degenerate.
Then if CZ(φ, p) ̸= 0, there exist a λ∗ ∈ (0, 1) such that any neighborhood of (λ∗, p)
in I × M contains a point (λ, q) such that q is a fixed point of φλ different from p
(i.e λ∗ is a bifurcation point for fixed points of φλ from the trivial branch p).
Moreover the same is true for any close enough path in the C1-topology lying in the
isotropy group of p.

To each symplectomorphism φλ there corresponds a time dependent family of
vector fields Xλ, and to each of this it corresponds a time dependent family of
Hamiltonian function Hλ. In [6] we proved that there exist a family of time de-
pendent hamiltonian functions H ′ : I × I × V → R that depends smoothly on the
parameter λ such that φλ is the time-one map of the corresponding time-dependent
Hamiltonian vector field X ′

λ : I × M → TM . Then because of the one to one cor-
respondence between 1-periodic orbits of the Hamiltonian vector field with fixed
points of the period map we can apply Theorem A.

Let us discuss now the relationship with intersection points of lagrangian sub-
manifolds. Consider M ×M with the symplectic form π∗

1ω− π∗
2ω. Given a path of

symplectomorphisms φλ and a path of fixed points p(λ) of φλ having non-degenerate
end points (i.e. , such that Tp(λ)φλ is nonsingular for λ = 0, 1), the path of fixed
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points corresponds to a path of intersection points of the graph of φλ with the
diagonal ∆ and the Maslov intersection index µ(Graph φ, ∆, p× p) along the inter-
section path is well defined and coincides with the relative Conley-Zehnder index
of φ along p.

By Weinstein’s theorem [22] any Lagrangian submanifold of a symplectic man-
ifold has a neighborhood that is symplectomorphic to a neighborhood of the zero
section of its own cotangent bundle. We apply Weinstein’s theorem to the diago-
nal ∆ in M × M and then modify the Hamiltonian and the flow φλ,t outside of a
neighborhood of p in such a way that the new flow equals the identity outside of
a compact neighborhood of p. There the graph of φλ coincide with ∆ and thus it
can be viewed as a one parameter family of Lagrangian submanifolds of T ∗∆ with
compact support.

Since H1(M, R) = 0 we get that L ≡ Lλ is exact. Moreover by Sikorav’s theorem
L0 possesses a generating family being φ0 isotopic by a Hamiltonian isotopy to the
identity map of T∗N . Hence we can apply Theorem B to the family L and ∆.

We close this section with a formula that allows to compute the individual con-
tribution of a regular point in the trivial branch to the Conley-Zehnder index and
give an example where bifurcation cannot be detected using the parity.

Assume that λ0 is an isolated point in the set

Σ = {λ/p(λ)is a degenerate fixed point of φ(λ)}.

Define CZλ0(φ) ≡ limϵ→0 CZ(φ; p|[−ϵ,ϵ]). The point λ0 is called regular (cf. [16]) if
the quadratic form Qλ0 on the eigenspace E1(Sλ0) = Ker(Sλ0 − Id) corresponding
to the eigenvalue 1 defined by Qλ0(v) = ω(Ṡλ0v, v) is nondegenerate.
Here Sλ = Tp(λ)φ(λ) as before and Ṡλ0 denotes the intrinsic derivative of the vector
bundle endomorphism S (See [10] chap 1 sect 5). If t0 is a regular point then it is
an isolated point in Σ and

(4.2) CZλ0(φ) = −σ(Qλ0)

where σ denotes the signature of a quadratic form. This formula follows from the
definition of the intrinsic derivative and formula (2.8) in [9].

Example: Let M be the symplectic manifold S2 = C ∪ {∞}. Consider the closed
path of symplectic maps φθ : S2 → S2; θ ∈ [0, 1] defined by

φθ(z) =

{
ei2π(θ−1/2) · z if z ∈ C,

∞ if z = ∞

φθ is a rotation of angle θ− 1/2 so it leaves fixed only the points z = 0 and z = ∞
except for θ = 1/2, in which case the fixed point set is the sphere S2. For each θ
the tangent map T0φθ of φθ at the fixed point z = 0 equals φθ. The only value
of θ for which 1 is an eigenvalue of the tangent map T0φθ is θ = 1/2 for which
the corresponding eigenspace is C. Moreover 0 is a regular degenerate fixed point
of φ1/2. The relative Conley-Zehnder index CZ0(φ; 0) of the symplectic isotopy
φ along the constant path of fixed points p = 0 coincides with the signature of
the quadratic form Q1/2 = ω(φ̇1/2−,−) that is non degenerate on the eigenspace
E1(φ1/2). Then since

φ̇(1/2) = i2πId
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it follows from (4.2) that

CZ0(φ; 0) = −σ[v → ω(φ̇(1/2)v, v)] = σ[v → 2π < v, v > ] = 2.

Therefore any closed path of symplectomorphisms on the sphere keeping 0 fixed
and homotopic to φ has nontrivial fixed points close to zero.
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