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Abstract. In this chapter, an enhanced methodology for interactive, accurate, fast 
and robust multibody simulations using Augmented Reality is presented and dis-
cussed. This methodology is based on the integration of a mechanical tracker and 
a dedicated impulse based solver. The use of the mechanical tracker for the inter-
action between the user and the simulation allows to separate the processing of the 
data coming from the position tracking from those coming from the image colli-
mation processing. By this way simulation results and visualization remain sepa-
rated and the precision is enhanced. The use of a dedicated sequential impulse 
solver allows a quick and stable simulation also for a large number of bodies and 
overabundant constraints. The final result of this work is a software tool able to 
manage real time dynamic simulations and update the augmented scene according-
ly. The robustness and the reliability of the system will be checked over two test 
cases: a ten pendula dynamic system and of a cross-lift mechanism simulation.    

Keywords: Augmented Reality, Interactive Multibody Simulation,  User Track-
ing, Sequential Impulse Solver. 

1. Introduction 

During the last years, many investigations focused on the increasing trend of using 
Augmented Reality (AR)  [1] to support a variety of engineering activities and to 
develop interactive tools in design.  Augmented Reality has been used for support-
ing geometrical modeling [2], reverse engineering [3], assembly simulation [4-7], 
analysis [8]. 

The augmented reality deals with the combination of real world images and 
computer generated data. Most AR research is concerned with the use of live vid-
eo imagery which is digitally processed and augmented by the addition of com-
puter generated graphics. The purpose of the augmented environment is to extend 
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the visual perception of the world, being supported by additional information and 
virtual objects. One of the most important feature of AR is the possibility to em-
bed an high level of user's interaction with the augmented scene [9]. 

Some recent contributions showed an increasing interest in developing environ-
ments for simulating and reviewing physical simulations based on Augmented Re-
ality [10-14]. They focused on the interactivity between the user and the augment-
ed environment. By this way, the user is not a mere spectator of the contents of the 
augmented scene, but influences them. Interaction in dynamic simulations can 
concern both the definition of boundary conditions and initial parameters and the 
real time control of the process.   

In a recent paper [15], P.P. Valentini and E. Pezzuti developed a methodology 
for implementing, solving and reviewing multibody simulation using augmented 
reality. According to their results, augmented reality facilitates the interaction be-
tween the user and the simulated system and allows a more appealing visualization 
of simulation results. For this reason, this approach has revealed to be suitable for 
didactical applications and teaching purposes as well. 

On the other hand, the development of multibody simulations in augmented real-
ity requires very fast solver in order to produce a smooth animation and an effec-
tive illusion. Valentini and Pezzuti proposed to use an optical marker to track the 
position of the user and interact with the objects in the scene. Moreover, they de-
veloped some simple examples to introduce the methodology.  

Starting from the discussed background, this chapter aims to discuss two im-
portant enhancements of the work in [15] in order to improve the accuracy of us-
er's interaction and to allow a robust simulation of large multibody systems. The 
accuracy in tracking the user is important to perform precise simulation that are 
required in many engineering applications. The use of optical marker is simple but 
in this case position tracking error highly depends on the resolution of the camera 
sensor and on the distance between the camera and the marker. Using standard 
USB cameras, this error can be some millimeters and can be inacceptable for pre-
cise applications, and unwanted flickering may occur due to the tracking algorithm 
limitations [16]. In order to improve the accuracy in tracking, in the present study 
we have included the use of a mechanical instrumented arm which is able to 
achieve a precision of about 0.2 mm in a working space of about 1.2 m of diame-
ter. This enhancement is also important to separate the processing of the data com-
ing from the position tracking from those coming from the image processing (for 
perspective collimation and visualization issues). By this way, higher precision in 
the analysis results can be achieved and only the graphical visualization is affected 
by optical imprecision.  

The second enhancement which has been proposed and tested, is about the use 
of a dedicated solver for managing the integration of the equations of motion. The 
implemented solver makes use of the sequential impulse strategy [17] which al-
lows a quick and stable simulation also for a large number of bodies, in presence 
of overabundant and unilateral constraints. According to some authors and appli-
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cations (i.e. [18-19]), this approach leads to a very fast and stable solution, but 
quite less accurate than global solution methods. 

The chapter is organized as follows. First of all, a brief introduction about the 
state of the art of virtual engineering in augmented reality is presented, focusing 
on the aspects related to multibody simulations. Then, a description of hardware 
and software implementations is discussed, including the explanation of the itera-
tive impulse solver and the details about the strategy for implementing interaction 
between the user and the scene. In the second part, two examples are presented 
and discussed. 

2. Multibody simulations in Augmented Reality environments  

The first and basic implementation of multibody simulations in augmented reality 
is about the possibility to project on a real scenario the results coming from a pre-
computed simulation. It concerns the rendering on the augmented scene of all the 
objects involved in the simulation whose position is updated according to the re-
sults of the simulation.  

This implementation is similar to that of the common post-processing software 
for visualizing graphics results. The only difference is in the introduction of the 
simulated system in a real context. The advantage is to perceive the interaction 
with the real world and check working spaces, possible interferences, etc.  

Although it can be useful, this approach does not unveil all the potential of AR 
[15]. A more powerful way to enhance multibody simulation is to introduce an 
high level of interactivity. It means that the user does not only watch the augment-
ed scene, but interacts with it. In this case, the solution of the equations of motion 
has to be computed synchronously to the animation in order to populate the scene 
with quickly updated information. 

With this type of interaction, the user is active in the scene and can change the 
augmented contents by picking, pushing and moving objects and controlling the 
provided information and the environment behaves according to realistic physics 
laws. The interaction is carried out with advanced input/output devices involving 
different sensorial channels (sight, hear, touch, etc.) in an integrated way [20]. In 
particular, in order to interacts with digital information through the physical envi-
ronment, the environment has to be provided of the so called Tangible User Inter-
faces (TUIs) [21-23]. 

In the most simple implementations, the patterned markers used for collimating 
real and virtual contents are used also as TUIs. In advanced implementation visual 
interaction is achieved by dedicated interfaces (mechanical, magnetic, optical, 
etc.).  By this way, the image processing for the computation of the camera-world 
perspective transformation can be separated from the acquisition and processing of 
the user intent. Thanks to this split computation, it is possible to achieve a very 
precise interaction and simulation and a less precise (and more efficient) visual 
collimation. This means that the results of the simulations can be accurate and 
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suitable for technical and engineering purposes. On the other hand, the small im-
precisions in the optical collimation are limited to graphics display.   

Starting from these considerations, the generic integration algorithm between 
multibody simulations and augmented reality presented in [15] can be modified 
separating the contributions of interaction and collimation. For this reason, an 
high-interactive generic multibody simulation in augmented reality can be imple-
mented following five main steps: 

1. Before the simulation starts, the geometries and topological properties 
(joints and connections) have to be defined (as for any multibody sys-
tem); 

2. The real scene has to contain information for collimating the real world 
to the virtual objects; 

3. The real environment has to contain one or more TUIs for the acquisition 
of the user’s intent of interacting with the scene; 

4. During each frame acquisition, the user’s intent has to be interpreted; the 
multibody equations have to be built and solved synchronously in order 
to compute the correct position of all the virtual bodies in the scene; 

5. For each frame acquisition, virtual objects have to be rendered on the 
scene, after the numerical integration, in the correct position and atti-
tude. 

3. Implementation of the Augmented Reality environment  

3.1 Hardware setup 

For the specific purpose of this investigation, the implemented AR system (depict-
ed in Figure 1) includes an input video device Microsoft LifeCam VX6000 USB 
2.0 camera, an Head Mounted Display (Emagin Z800) equipped with OLed dis-
plays, a Revware Microscribe GX2 mechanical tracker and a personal computer. 

The Revware Microscribe is an instrumented arm (digitizer) which can be 
grabbed and driven by the user and possesses five degrees of freedom. It is able to 
acquire the real-time position of its tip stylus. The operating space is a sphere of 
about 1.2 m of diameter and the precision of tracking is up to 0.2 mm. 

3.2 Implementation and interaction strategy 

In order to implement a AR environment suitable for multibody dynamics interac-
tive simulation, we have chosen the following strategy (see Figure 2). Before the 
simulation starts, the geometries and topological properties (joints and connec-
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The information acquired by the digitizer is concerned with the position and atti-
tude of the end effector with respect to the reference frame fixed to the device it-
self. 

In order to ensure the collimation between the data stream coming from the 
camera and that from the tracker, it is important to compute the relative transfor-
mation matrix between the tracker and the world (described by the marker). This 
calibration has to be performed only at the beginning of the application and it has 
to be repeated only if the relative position between the world marker and the digi-
tizer changes. 

The calibration procedure can be performed by picking with the tracker stylus a 
set not-aligned points (four no-coplanar points at least) at known positions with 
respect to the relative frame associated to the marker.  

For expressing the coordinate transformation between points, it is useful to deal 
with homogeneous transformation matrices which include information on both ro-
tation and translation parameters. A generic homogeneous transformation matrix 
can be expressed in the form:   

     
3x3 3x1

Orientation Position

0 0 0 1

 
 
 

T                                             (1)        

In the same way, a generic point can be expressed with the following coordinate 
vector:                 

   1 T
P x y z                                                               (2) 

The coordinate transformation of a generic point P from the local coordinate 
system fixed to the digitizer to the world coordinate system attached to the marker 
can be written as: 

      
digitizer

worldworld digitizer
P T P                                              (3) 

where: 

 world
P  is the vector containing the coordinate of the point P expressed in the 

world reference frame; 

 digitizer
P is the vector containing the coordinate of the point P expressed in the 

local (tracker) reference frame. 
Considering a collection of points 1 2 ... nP P P , we can built two matrices 

as: 

       1 2 ...   nworld world worldworld
P P P P                               (4) 

       1 2 ...   ndigitizer digitizer digitizerdigitizer
P P P P

                      
(5) 
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In order to compute the matrix   
digitizer

wordT   we have to solve the following sys-

tem of equations: 

      
digitizer

worldworld digitizer
P T P                                                           (6) 

for the unknown elements of the matrix    
digitizer

wordT  .  

An homogeneous transformation matrix is defined by 6 independent parameters 
(three for the description of the rotation and three for the translation). For this rea-
son, the system (6) has more equations than unknowns and the solution can be 
computed as: 

   1   
digitizer

world world digitizer
T P P                                                     (7) 

where the   1

world
P   is the pseudo-inverse matrix of  the  world

P   matrix.  

Due to numerical approximation or errors in acquisition, the orientation block of 

the computed matrix   
digitizer

wordT  can result not exactly orthogonal. Since it repre-

sents a rigid spatial rotation, it is important to correct this imprecision. For this 
purpose, we can operate a QR decomposition of this orientation block: 

   1 13x3 3x33x3
   

digitizer
wordOrientation R U                                     (8) 

where (due to the QR algorithm): 

 1R  is an orthogonal matrix representing the corrected rotation; 

 1U  is a matrix whose upper band contains the errors of approximation and the 

lower band has only zero elements. In case of a pure rotation (orientation block 

without errors)     1 U I  . 

Finally, in order to compute the transformation matrix between the digitizer and 

the camera   
digitizer

cameraT , useful to collimate the acquired points to the visualized 

ones, a matrix multiplication has to be performed: 

          
digitizer digitizer word

camera word cameraT T T                                                    (9) 

Figure 5 shows some snapshots acquired during a calibration procedure. The 
reference points are picked using a reference cube of known dimensions (80 mm x 
80 mm x 80 mm). 
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 q ,  q  and  q  are the vectors of absolute generalized coordinates, velocities 

and accelerations, respectively; 

q    is the Jacobian matrix of the constraint equations (differentiated with re-

spect to the generalized coordinates); 

   is the vector of Lagrange multipliers associated to the constraint equations; 

 e
F  is the vector containing all the elastic and external forces (including the fic-

titious spring contribution). 
In order to reduce the complexity of the solution, the constraint equations are of-

ten differentiated two times with respect to time and Eq. (11) is rearranged as: 

 
 

 
 

 
 0

T

q e

q

M q F
 

                           


    (12) 

where 

          2q qt tt
q

q q q                 (13) 

and the subscripts "q" and "t" denote the differentiation with respect to the gener-
alized coordinates and time, respectively.  

Both Eq. (11) and Eq. (12) allow to solve for the unknown generalized accelera-
tion, velocities and positions taking into account all the constraint equations simul-
taneously. Of course, this approach can achieve accurate results with suitable 
DAE solver. On the other hand, a dynamic system with a lot of constraints in-
creases the complexity of the problem and the computational effort to solve it. For 
this reason, the system in (12) can be rearranged for being suitable for the sequen-
tial impulse solution strategy. 

There are two main steps in the impulse-based methodology. Firstly, the equa-
tions of motion are tentatively solved considering elastic and external forces but 
neglecting all the kinematic constraints. This produces a solution that is only ap-
proximated because the constraint equations are not satisfied. In a second step, a 
sequence of impulses are applied to each body in the system in order to correct its 
velocity according to the limitation imposed by the constraint. This second step is 
iterative. It means that a series of impulse is applied to the bodies until the con-
straint equations are fulfilled within a specific tolerance.  It is important to under-
line that each impulse is applied independent from the others. By this way the 
constraint equations are not solved globally, but iteratively. 
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4.1 Solving the equations of motion 

Following the approach introduced in the previous section, the sequential impulse 
formulation can be split into two main steps. The first one is about the solution of 
the equations of motion in (11) neglecting the constraint equations and constraint 
forces: 

    eapprox
M q F       (14) 

By this way, Eq. (14) can be solved for  approx
q  that represent the vector of 

approximated generalized accelerations. 
The values of the corresponding approximated generalized velocities and posi-

tions can be computed by linear approximation: 

   approx approx
q h q        (15) 

   approx approx
q h q        (16) 

where h  is the integration time step. 

In order to correct the   approx
q  and fulfill the constraint equations, a series of 

impulses  constraint
P  has to be applied to the bodies. Each impulse is computed 

imposing the fulfillment of the constraint equations written in terms of generalized 
coordinates. As well-known from the Newton's law, the application of the impuls-
es causes a variation of momentum: 

        corrected approx constraint
M q q P      (17) 

where  

 corrected
q is the vector of generalized velocities after the application of impulses 

 constraint
P . 

  The corrected velocities can be computed from Eq. (17) as: 

       1

corrected approx constraint
q q M P

      (18) 

Considering that the impulses are related to the constraint equations, they can be 
computed as 

   T

qconstraint
P           (19) 

where    is the vector of Lagrange multipliers associated to the impulses. 

Since the effect of the impulses is to correct the generalized velocities and fulfill 

the kinematic constraints, the  corrected
q   has to satisfy the constraint equations 

written in terms of velocities: 
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           d
0 0

d q tq
t


            (20) 

     0q corrected tq           (21) 

Inserting Eq. (19) into Eq. (18) and substituting  corrected
q  into Eq. (21) we can 

obtain: 

          1
0

T

q approx q tq M              (22) 

Eq. (22) can be solved for   obtaining: 

         
1

1 T

q q q tapprox
M q    


              (23) 

Then, the impulses can be computed using Eq. (19) and the corrected values of 
generalized velocities using Eq. (18). 

Since the impulses are computed sequentially, the global fulfillment of the con-
straint equations cannot be directly achieved. Some iterations are required. The 

computation of   ,  constraint
P  and  corrected

q  can be repeated till a tolerance 

on the fulfillment of Eq. (21) is reached or for a maximum number of time. Expe-
rience [17] shows that four or five iterations are sufficient to achieve an adequate 
tolerance. Since the constraints are imposed at velocity level, a stabilized formula-
tion is required to control the constraints fulfillment at the position level. Details 
are provided in section 4.3. 

4.2 Computation of reaction forces 

When simulating multibody dynamics, one of the most interesting results for en-
gineers is the knowledge of the reaction forces, i.e. the forces exerted by the joints. 

Using the sequential impulse formulation, the reaction forces cannot be comput-
ed directly but a preliminary computation is required. The problem is that impuls-
es are applied sequentially, it means that each joint exerts more than one impulse 
during each time step and the various impulses have to be recollected. 

In order to deduce a methodology for evaluating the reaction forces of the joints 
we have to introduce the concept of the accumulated impulse. It can be defined as 
the resultant impulse of each joint produced each time step and it can be computed 
as the sum of all the impulses exerted by the joint over the iteration. 

In the solution of the equations of motion, the joint impulses are evaluated using 
Eq. (23) and Eq. (19). This computation is performed iteratively in order to reach 
a set of velocities congruent to kinematic joints. It means that at each iteration a 

new impulse vector constraint
P   is computed. 



15 

The accumulated Lagrange multipliers    of the impulses  for each time step 

can be evaluated as: 

   
iterations

         (24) 

The accumulated impulse  tot constraint
P  can be computed using Eq. (19) obtain-

ing: 

   T

tot qconstraint
P          (25) 

The reaction forces  constraint
F  exerted by the joints can be computed using 

the general relation between forces and impulses: 

   tot constraint
constraint

P
F

h
      (26) 

4.3 Stability issues 

The use of the sequential impulse strategy is subjected to the use of constraint 
equations expressed in terms of generalized velocity. It means that the exact in-
formation about the kinematic joints may be lost during the integration process. In 
this case a position drift can be observed and stability problems may occur. 

In order to enforce the constraints on position a stabilized formulation can be 
adopted. In this case, the constraint equations in Eq. (21) can be modified as: 

       0q corrected tq
h

            (27) 

where   is a scalar chosen in the range 0 ÷ 1. 

5. Examples of simulation 

In order to test the proposed methodology and both hardware and software inte-
gration, in this section two examples of implementation are presented and dis-
cussed.  
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5.1 Ten pendula dynamic system 

The first simulated scenario is about a collection of 10 rigid pendula that move 
under the effect of gravity. All the pendula have the same geometry and inertial 
properties which have been summarized in Table 1.  

Table 1. Geometrical and inertial parameters of the first example. 

Parameter Value 

Pendulum length 50 mm 

Pendulum mass 0.1 kg 

Pendulum principal moments of inertia [21,21,0.5] kg  mm2 

 
The first pendulum is pivoted to a fixed frame by means of a point-to-point 3 

d.o.f. joint. The other pendula are sequentially connected by mean of revolute 
joints (hinges). The user can interact with the scene by connecting a fictitious 
spring between the tracker stylus and the free end of the last pendulum. In particu-
lar, the user can decide when the connection between the tracker and the last pen-
dulum has to be activated (simulating the clipping) or deactivated (simulating the 
release). This scenario is also important to test the methodology with event based 
changes in the equations of motion.  

In order to achieve stable and correct results, the solution strategy has to be able 
to manage rapid changes in force definition. The simulation has been performed 
with a fixed time step of 0.01 s.  

Per each video frame, 4 integration steps are computed and the augmented scene 
is updated accordingly. 

Figure 6 reports a series of four snapshots taken during the run of the simulation. 
The rigid body collection is real-time rendered along with the simulation. In the 
first part of the simulation (snapshot A of Figure 6) the pendula are free to move 
and they are in an equilibrium position (aligned along the vertical direction).  

Then, the user locates the tracker near the last pendulum tip and activates the fic-
titious spring connection (snapshot B). From this moment, the tip of the last pen-
dulum moves subjected to this connection.  

When the user moves the tracker, the tip of the pendulum follows it. It is im-
portant to notice that the motion of all the rigid body collection is continuously 
simulated according to the external action of the gravity and the driving force due 
to the user’s presence.  

When the user decides to release the fictitious spring connection (snapshot C), 
the collection of pendula moves subjected to gravity force only and it oscillates 
around the equilibrium position (snapshot D). 
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 _stylus tipv  is the absolute velocity of the stylus tip. 

4.2 Cross-lift dynamic simulation 

The second simulated scenario is about the dynamic motion of a cross lift device 
which is comprised of 11 rigid bodies connected by 16 hinges and 4 slider joints 
(see Figure 7). The links are connected by means of the following constraints: 

 Two revolute joints between the frame and the first link on both side A and B 
of the mechanism 

 Two slider joints between the frame and the second link on both side A and B 
of the mechanism 

 Four revolute joints between adjacent links on each side of the mechanism (8 in 
total) 

 A revolute joint between the third link and the upper plate on both side A and B 
of the mechanism; 

 A slider joint between the fourth link and the upper plate on both side A and B 
of the mechanism; 

 Four revolute joints connecting the two horizontal rods between the two side of 
the mechanism. 

Two linear spring-damper elements act horizontally between the frame and the 
slider joint location of the second link on both side A and B of the mechanism. 
The gravity field acts downward along the vertical direction. 

The example has been chosen in order to test the capabilities of the solver to 
deal with many overabundant constraints.  Geometrical, inertial and elastic proper-
ties of the simulation have been summarized in Table 2.  

Table 2. Geometrical, inertial and elastic parameters of the second example. 

Parameter Value 

Cross links length 300 mm 

Distance between the two side of the mechanism (transverse rod 
length) 

350 mm 

Mass of the cross links 0.1 kg 

Cross link principal moments of inertia [750, 750, 2] kg  mm2 

Mass of the transverse rods 0.1 kg 

Transverse rod principal moments of inertia [1021, 1021, 2]  kg  mm2 

Mass of the upper plate 0.1 kg 

Upper plate principal moments of inertia [1021, 1021, 2]  kg  mm2 

Horizontal spring stiffness 40 N/mm 
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the reaction force of the fictitious spring and the velocity of the digitizer stylus tip 
using Eq. (28). 

6. Conclusions  

In this chapter, an enhanced methodology for interactive, accurate, fast and robust 
multibody simulations of mechanical systems using Augmented Reality has been 
presented and discussed. This methodology is based on the integration of a me-
chanical tracker and a dedicated impulse based solver. 

In this context, the simulation of movement of mechanical systems in an Aug-
mented Reality environment can be useful for projecting virtual animated contents 
into a real world.  By this way, it is possible to build comprehensive and appealing 
representations of interactive simulations including pictorial view and accurate 
numerical results.  

In particular, two important enhancements have been presented with respect to a 
previous implementations. First of all, it has been possible to improve the preci-
sion of the interaction between the user and the scene by means of a precise me-
chanical tracking instrumentation. This constitutes an important improvement if 
compared with the use of simple optical markers for tracking the user in the scene. 
In the latter case, the precision in tracking was affected by the resolution of the 
camera, while with a mechanical device, it is possible to separate the processing of 
the data coming from the position tracking, from those coming from the image 
collimation processing.  By this way, the simulation input is independent from the 
visualization input and output. 

The second important enhancement is the use of a dedicated solver based on the 
sequential impulse strategy in order to perform a fast and robust simulation.  

According to this approach, the solution is based on the less computational de-
manding solution strategy. Following the implemented algorithm, the equations of 
motion are firstly tentatively solved considering elastic and external forces but ne-
glecting all the kinematic constraints. This produces a solution that is only approx-
imated because the constraint equations are not satisfied. In a second step, a se-
quence of impulses are applied to each body in the collection in order to correct its 
velocity according to the limitation imposed by the constraint. This second step is 
iterative and involves the application of a series of impulses to the bodies until the 
constraint equations are fulfilled within a specific tolerance.   

The final result of this work is a tool able to manage real time dynamic simula-
tion and to update the augmented scene accordingly. The robustness and the relia-
bility of the system have been checked over two test cases: a ten pendula dynamic 
system and the dynamics of a cross-lift mechanism. 

According to the proposed methodology, the user can directly control the simu-
lation by a smooth visualization on the head mounted display. 
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The integration among Augmented Reality, dedicated solver and precise input 
tracker can be considered an advantage for the future development of a new class 
of multibody simulation software. Moreover, this integrated simulation environ-
ment can be useful for both didactical purposes and engineering assessments of 
mechanical systems. 
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