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ABSTRACT 
 

This chapter deals with the description of recent developments concerning with both 
hardware and software implementation for supporting reverse engineering procedures by 
using an augmented reality environment. The discussed investigation is mainly focused 
on applications in the study of cultural and archaeological heritage. The use of augmented 
reality for engineering purposes allows the development of specific analysis tools in 
which the computer graphics supports the user with virtual contents that are included and 
harmonized in a real context. For the specific reverse engineering implementation, thanks 
to this integration, it is possible to perform interactive shape acquisition, geometrical 
analyses and assisted reconstruction of shards being supported by efficient computer 
aided tools and three dimensional computer graphics. The chapter begins with a brief 
introduction on the use of virtual environments for supporting the visualization and the 
sharing of cultural and archaeological heritage. In a second part, a detailed description of 
both hardware and software implementations is presented. In a third part, the integration 
of the reverse engineering algorithms and methodologies is addressed together with some 
examples of application.  
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1. INTRODUCTION 
 
During the last decades, the implementations of computer-aided methodologies have 

revolutionized many fields of the human knowledge. Thanks to the increasing of 
computational and graphical performances, many activities have been simplified and new 
methodologies to approach and solve problems have been developed. In particular, the 
scientific literature reports many contributions about the successful use of computer graphics 
(CG) and computer-aided design (CAD) supporting the investigation of archaeological finds, 
their classification and, in particular way, their visualization. Starting from the results of these 
promising methodologies, a new discipline has born: the virtual archaeology [1]. Although 
there are many applications and specific implementations, this new discipline bases its 
innovative idea on the use of computer graphics in particular and computer-aided tools in 
general to support the work of archeologists and experts in the study, reconstruction and 
dissemination of historical and artistic objects [2-9].  

One of the main applications of the virtual archaeology is about the building of virtual 
museums in which the presence of physical objects is replaced with virtual replicas 
projection. After an initial effort to prepare the virtual contents by digitization of the shapes, 
the exhibitions can be set up with lower costs than the real ones and the limited presence of 
real objects reduces the risk of wear and damage. Another important advantage of virtual 
museums is the possibility to disseminate the contents overtaking the limits imposed by 
geographic distance and to organize simultaneous exhibitions in different locations. 
Moreover, the visualization of virtual objects allows to investigate and appreciate several 
aspects which cannot be observed on the real ones. A virtual replica of a physical object 
allows the visualization from different points of view, animations, entire scenarios 
reconstruction, augmented visual information about related historical, cultural and 
technological aspects. The main challenge of these methodologies is about the increase of 
realism in order to reduce the gap between the appearance of digital and physical objects.  

The most of CG applications in archeological heritage concerns with the use of Virtual 
Reality (VR) which allows visual experiences, displaying a fully virtual environment (both 
background and additional objects) either on an external computer screen (non immersive) or 
through stereoscopic head mounted displays (immersive). In some applications the visual 
experience is enhanced with the use of additional sensory information, such as sound through 
speakers or headphones. 

Figure 1 shows an example of a fully virtual museums environments built with computer 
graphics methodologies and used for VR implementation.  

During the last years, another important methodology, based on the realistic visualization 
of virtual contents, has been developed: the Augmented Reality (AR) [10]. AR is a field of 
Computer Vision (CV) concerning with the techniques for projecting virtual contents in a 
scene with real objects, creating the illusion of a unique real environment [11-13]. This 
approach is different from VR where all the objects and background in the scene are virtual. 
In order to achieve an adequate level of realism in AR applications, it is important a real-time 
computation of the relative position between the user and the scene and precise collimation 
and registration between real and virtual objects. The augmented scene (i.e. the scene with 
both virtual and physical objects) is then projected back to the user by means of head 
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2. HARDWARE AND SOFTWARE SETUP 
 
A general augmented reality implementation needs devices for acquiring a video stream 

from a real scene, a processing unit for decoding and analyzing the acquisition and rendering 
the augmented scene, and devices for projecting it back to the user. In order to ensure an high 
level of interaction other devices for tracking user's position and interpret his intent have to be 
included and integrated in the whole system. For  the specific purpose of  this  investigation, 
the implemented AR system (depicted in Figure 4) is based on that proposed in [29] and it is 
comprised of: 

 
• one input video device Microsoft LifeCam VX6000 USB 2.0 camera, able to catch 

frames up to 30 Hz with a resolution of 1024x768 pixels; 
• one Head Mounted Display equipped with OLed displays (Z800 3D visor by Emagin 

- http://www.3dvisor.com/);  
• one personal computer with an Intel Core 2 Quad-core processor, 3 Gb RAM and a 

NVidia Quadro FX3700 graphic card.  
 
In order to achieve an interactive application, a tracking device has to be included in the 

system. This device must also to be suitable to perform user-assisted shape acquisition for 
reverse engineering purposes.  

Previous investigations have dealt with possible solutions involving electromagnetic 
devices [28] or optical markers [19, 29]. Both these instrumentations have some limitations 
and seem inappropriate for the purpose of this investigation. On the one hand, 
electromagnetic trackers are precise but they are very sensible to the perturbation of the 
magnetic field which may produces inaccurate acquisitions. Archaeological finds often 
include metallic parts or ferromagnetic powder which cause inacceptable perturbation of the 
magnetic field. On the other hand, optical markers are less precise but are insensitive to 
material composition. Moreover, a continuous acquisition requires that the markers have to be 
always visible to the camera and this may limit the traceable movement and the working 
space. The accurate reverse engineering acquisition and post processing of the real shapes 
need a very precise position tracking that cannot be ensured by these simple optical means. 
For all these reasons, for tracking the user in the scene, the augmented reality system has been 
integrated with: 

 
• one Revware Microscribe GX2 (http://www.revware.net/microscribe_g.asp).  
 
The Microscribe GX2 is an instrumented arm digitizer able to a real-time acquisition of 

position and attitude of a stylus end-effector with a precision of ±0.2 mm in a working space 
of about 1.2 m of diameter. Moreover it has been successfully used in many user-assisted 
reverse engineering procedures.  

The complete implemented hardware system is depicted in Figure 3. 
In order to integrate the use of the digitizer in the augmented reality application, the 

information coming from its acquisition has to be real time computed and synchronized to the 
augmented reality computational sequence. 
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 
   


 
  

3x3 3x1
Orientation Position

0 0 0 1
T       (1) 

 
In the same way the generic point P  can be expressed with the following coordinate vector: 
 

    1
T

P x y z        (2) 

 
The coordinate transformation of a generic point P  from the local coordinate system of the 
digitizer to the world coordinate system related to the marker can be written as: 
 

      
digitizer

worldworld digitizer
P T P         (3) 

 
where: 
 

 
world

P is the vector containing the coordinate of the point P  expressed in the world 

reference frame; 

 
digitizer

P  is the vector containing the coordinate of the point P  expressed in the local 

reference frame (digitizer). 

Considering a collection of points 
1 2

...
n

P P P , we can built two matrices as: 

 

          1 2
...

nworld world worldworld
P P P P      (4) 

 

          1 2
...

ndigitizer digitizer digitizerdigitizer
P P P P     (5) 

 

In order to compute the matrix   
digitizer

word
T  we have to solve the system of equations 

 

      
digitizer

worldworld digitizer
P T P        (6) 

 

for the unknown elements of the matrix   
digitizer

word
T . An homogeneous transformation matrix is 

defined by 6 independent parameters (three for the description of the rotation and three for the 
translation). For this reason, the system (6) has more equations than unknowns and the 
solution can be computed as: 
 

   


  
1digitizer

world world digitizer
T P P        (7) 

 

where the  
1

world
P  denotes the pseudo-inverse matrix of the  

world
P  matrix.  
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Due to numerical approximation or errors in measurement, the orientation block of the 

computed matrix   
digitizer

word
T  can result not exactly orthogonal. Since it represents a rigid 

spatial rotation, it is important to correct this imprecision. For this purpose, we can operate a 
QR decomposition of this orientation block: 

 

      1 13x3 3x33x3

digitizer

word
Orientation R U      (8) 

 
where (due to the QR algorithm): 

 1R is an orthogonal matrix representing the corrected rotation and  1U is a matrix 

whose upper band contains the errors of approximation and the lower band has only zero 

elements. In case of a pure rotation (orientation block without errors)    
1

U I .  

In order to compute the transformation matrix between the digitizer and the camera 

  
digitizer

camera
T , useful to collimate the acquired points to the visualized ones, a matrix 

multiplication has to be performed: 
 

          
digitizer digitizer word

camera word camera
T T T  .       (9) 

 
 

3. INTERACTIVE STUDY OF REAL OBJECTS 
 
An accurate study of the real archaeological objects requires geometrical and 

morphological analysis of the corresponding shapes. In order to process these components, 
the real geometrical features have to be traduced into a mathematical representation suitable 
for computational purposes. The activities related to the building of mathematical 
representation of real shapes are often addressed as reverse engineering (RE) methodologies. 
The most of RE methodologies begins from the acquisition of a collection of points on the 
surface of the interesting object. In a second phase, these points can be connected in the right 
order in order to form a network of curves sketched on the acquired surface. In a third phase, 
the network of curves can be used to build a mathematical representation of an interpolated 
surface (Figure 7). 

By the combination of reverse engineering techniques and augmented reality, it is 
possible to implement the basic reverse engineering procedures in an interactive environment 
where the user can built the mathematical representation and graphical rendering of curves 
and surfaces directly on the real shape.  

The high level of interaction that can be reached by this integration is very important 
especially in those fields where the contribution of an expert user is crucial. The use of 
augmented reality gives the opportunity to sketch and visualize the geometrical entities 
directly on the real objects using three dimensional graphics. By this way, the building of 
geometrical entities can be guided by the user and assisted by computer aided tools and can 
be performed with a continuous reference to the real shapes. Thanks to the use of a precise 
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where  i
b u  are the blending functions (piecewise polynomial functions of the variable u). 

In general, the blending functions depend on the degree of the interpolating polynomials. It is 
important to notice that, chosen the degree of the blending functions, one can use a small set 
of points to describe a complex curve shape. Moreover, following the reverse approach, one 
can use a small set of points to built a complex curve obtaining an exact mathematical 
representation for further computations. 

In order to simplify the evaluation of local geometrical properties of a curve (e.g. tangent 
vector, curvature, etc.) it is useful to introduce the Frenet frame, which is a local frame 
moving along the curve. Assuming that the curve is given in the algebraic form as in Eq. (10), 
the versors associated with the Frenet coordinate system can be expressed as follows: 

 

   
 
'

'

p u
t u

p u
    is the tangent unit vector    (11) 

 

     m u b u t u    is the normal unit vector    (12) 

 

     
   
' ''

' ''

p u p u
b u

p u p u





  is the binormal unit vector   (13) 

 
where: 
 

   
'

p u
p u

u





 and    2

2
''

p u
p u

u





 

 
Considering the changing of the Frenet frame along the curve, it is possible to define two 

scalar parameters: the Frenet curvature  u and the Frenet torsion  u : 

 

     
  3

' ''

'

p u p u
u

p u
 


       (14) 

 

        
    2

' '' '''

' ''

p u p u p u
u

p u p u


 



      (15) 

 
For the representation of the surfaces, the approach is similar. A surface can be reviewed as a 
piecewise interpolating function of two variables. In this case the interpolation is among a 

collection of m x n control points  
ij  (control points net). The surface can be expressed in 

the parametric form as:  
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     
1 1

0 0

,
m n

i j ij

i j

u v b u b vs
 

 

         (16) 

 

where  i
b u

 
and  jb v

 
are the blending functions (piecewise polynomial functions of the 

variables u and v, respectively) fitting the control points. 
As for the curve, for each point of a surface it can be defined a reference frame with the 

following versors: 
 

1

u

u

s
t

s
    is the first tangent unit vector    (17) 

 

2

v

v

s
t

s
   is the second tangent unit vector    (18) 

 

u v

u v

n
s s

s s





 is the normal unit vector     (19) 

 

where 
 ,

u

s u v
s

u





 and 

 ,
v

s u v
s

v





. 

The details about the definition of blending functions, their practical computation and the 
particular way to interpolate points and curve network go beyond the scope of this chapter. 
An interested reader can find useful material in [36-37].  

 
 

3.2. Acquisition of Curves and Surfaces of Archeological Fragment 
 
The first step in the interactive study of the archaeological finds is the acquisition of the 

shapes and their mathematical representation. This activity can be performed using the 

mechatronic digitizer and picking a set of m  jL points directly on the surface of the 

interesting object. These points can be used of the real time building of spline curves using 

the representation in Eq. (10). The only difference is that that points   
0 ‐1
...

m
 in Eq. (10) 

are the control points, i.e. points that only approximate the shape of the curve. The picked 

 jL entities are points interpolating the curve, i.e. points that belong exactly to the curve. In 

order to build an exact representation of the curve, the control points set has to be computed 
from the interpolating points set. This evaluation can be performed solving a system of 3·m 

equations in 3·m unknowns (points  
i

  coordinates) imposing the passing of the curve 

through the m interpolating points  jL : 
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between profiles is an important issue in many different research field as computer vision, 
geometric design and pattern recognition.  

For the implementation in the augmented reality environment, we have to chose a method 
which is able to achieve results in real time and suitable for the introduced mathematical 
representation. In 1995 Lewis [46] proposed a method based on the use of cross correlation 
that has revealed to be fast and accurate. In 2005 the method has been enhanced by Cui et al. 
[47]. Following this approach, the matching between two curves can be checked computing 
the cross correlation between their geometrical invariants, i.e. topological properties that are 
not affected by geometrical transformation as rotation and translation. One of the most 
important geometrical invariant of a curve is the curvature [36]. The spline representation 
allows the robust computation of this parameter and the use of 3rd degree blending functions 
ensures an adequate curvature continuity. 

Given two curves a(u) and b(t) the first step is to re-parameterize them considering the 
arc length s: 

 

     

   

 

 





0

0

          '

( )            '

s

s

a u a s s a u du

b t b s s b t dt

       (24) 

 

The spatial curvature   s  for the two curves can be computed as: 

 

     
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
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2

2

2

2

a

b

a s

s

a s
s

s

b s
b s

s

       (25) 

 
It is interesting to notice that Eq. (25) gives the same result of Eq. (14), but the relationship is 
deduced in term of arc-length. 

The normalized cross correlation CC between the two curvature expressions along their 
entire length can be computed as: 

 

 
    

   

 
 

 








 
,

a b

a b

a a

s s ds

CC

s ds s ds

     (26) 

 
The CC is a function in the range [-1..+1]. The more the curve are similar, the more the CC is 
near to 1. 
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In many cases involving fragments, the matching between two curves has to be checked 
only for a limited physical portion. It means that a curve b(s) has to be compatible to a part of 
the other curve a(s) only. In this case the correlation has to be computed with the corrected 
formula: 
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 
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
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*

,

*

a b

whole to part a b

a a

s s s ds

CC

s ds s s ds

   (27) 

 
in which the parameter s* represents the offset of one curve with respect to the other one.  

In this more frequent occurrence, we have to deal with different cross correlation values, 
in which the curve a can be considered as a template window sliding along the second curve 
b. In this case the best correlation is given for a specific value of the offset parameter s*. 

Recent contributions have introduced other methods for checking the congruency of 
profile based on stochastic, heuristic and Bayesian methods. A complete overview of these 
methodologies goes beyond the scope of this chapter and the interested reader can find further 
details in [48-51].  

 
3.3.3. Profile Recognition and Database Comparison 

The normalized cross correlation computed considering geometrical invariants can be 
used also for the comparison between an acquired profile and a database of reference shapes. 
In this case the problem is that the database shape are collected using reference dimensions 
that are usually scaled with respect to the real one. The curvature is not an invariant under the 
scaling operation, but it is affected by the same scale factor [47]. It means that a basic curve 
with a curvature  when it is subjected to a scaling operation using an uniform scale factor sf, 

changes its curvature that becomes 

sf

.  

In this case, the Eqs. (26) and (27) can be used for the comparison between two curves a 
and b after a normalization according to the scale factor. This normalization can be performed 

finding the highest value of both curvatures ,maxa  (maximum curvature value of profile a) 

and ,maxb  (maximum curvature value of profile b) and their ratio: 

 




 ,max

,max

a

b

sf          (28) 

 
as an esteem of the scale factor. Then, the comparison can be made computing the cross 

correlation between the corrected curvature values ,maxa and ,maxbsf  . 

Figure 13 shows an example of profile analysis and database comparison. 
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     , ,
scaled scaledscaling

u v u vs T s        (29) 

 
where: 
 

 ,u vs  is the parametric representation of the surface to be scaled; 

 ,
scaled

u vs  is the parametric representation of the scaled surface; 

 
scaling

T  is the homogeneous transformation matrix of the scaling operation that in case 

of uniform scaling with respect to the origin of the global reference frame can be set as: 
 

 

0 0 0

0 0 0

0 0 0

0 0 0 1

sf

sf
T

sf


 
 
 
 
 
 

        (30) 

 
in which the parameter sf  is the scale factor. 

 
 

4.3. Interactive Live Sectioning of Virtual Objects 
 
Another interesting operation that can be performed on the virtual replicas of the real 

objects is the interactive sectioning of the geometry. With this action, the user can perform a 
geometrical cut of the acquired geometry using a virtual plane that can be moved by the user 
in real time. The operation can be implemented by limiting the rendering of the surface only 

to the portion that lay on one side of the cutting plane  ,r tcp . Mathematically this condition 

can be expressed by the following relationships: 
 

      
      

, ,

, ,

distance

distance

, 0  point  ,

, 0  point  ,

p p

p p

p p

p p

u v r t

u v r t

s cp

s cp

render s u v

skip s u v

 

 
   (31) 

 
The position and attitude of the cutting plane in the scene can be set and modified by the user 
interactively. This operation can be performed using the mechanical tracker. In this case the 
tip of the tracker can define the location in space of a point on the plane and its attitude the 
direction of its normal vector. By this way, if the user moves the tracker, the position and 
attitude of the cutting plane change accordingly. 

Figure 14 shows an example of an interactive section of a virtual replica of a vase. The 
position and the attitude of the cutting plane are defined by the user using the tracker.  
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engineering activities from the acquisition of the shapes to their interrogation and 
reconstruction can be performed with the help of realistic computer graphic contents directly 
superimposed to the real scene in a mixed real-virtual environment. The use of the digitizer 
can be assimilated to the use of a special pen whose tip position can be tracked and recorded 
is a three dimensional space.  

The entire implementation has been programmed using open source libraries and this 
feature allows simpler development for further investigations.  
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