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1. Introduction

Understanding the precise infrared behaviour of asymptotically free gauge theories is a

daunting task. For instance, determination of the confining properties of the theory has

proven to be impossibly difficult. The reason for the difficulty in analysing the low-energy

dynamics of the theory is related to the fact that perturbative methods have a limited range

of applicability as the coupling is growing larger in the infrared. On the other hand, we lack

systematic non-perturbative methods. Up to date, the most powerful tool at our disposal

is undoubtedly represented by lattice simulations. Still this is a numerical approach and

any possible piece of analytic information would be greatly valued.

Interestingly, however, there exist relevant exceptions to the previous picture repre-

sented by supersymmetric theories. The constraints on the structure of the theory imposed

by supersymmetry are so strong that it is possible to obtain detailed low energy information

about holomorphic quantities, such as the holomorphic superpotential. Holomorphicity, in

fact, protects physical quantities from quantum corrections and/or allows to safely control

them providing numerous and very useful non-renormalization theorems [1, 2, 3].

In recent years, there has been a renewed interest in the field after Dijkgraaf and

Vafa conjectured that holomorphic quantities in the low-energy regime are related to the

free-energy of an hermitian Matrix Model (MM). The correspondence has passed various
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non-trivial tests [4, 5] and it has become a powerful tool for studying the low-energy limit

of N = 1 gauge theories with massive chiral superfields.

At the same time, a particular N = 1 model, known as the β-deformation of the

N = 4 Super Yang-Mills (βd SYM), attracted the attention of the community. Leigh and

Strassler discovered this model in the nineties [6] and various aspects of the model have

been studied [7, 8, 9], but only after its gravity dual was found [10] the βd SYM was

extensively investigated in numerous papers [11, 12, 13, 14, 15, 16].

In this paper we apply the Dijkgraaf–Vafa correspondence to the study of the holo-

morphic low-energy superpotential of the βd SYM model. In particular, we are able to

compute the low-energy coupling constants controlling the surviving massless degrees of

freedom, after the U(Nc) 7→ ∏n
i=1 U(Ni) spontaneous symmetry-breaking has occurred.

Along the way, as a side result, we also compute the low-energy effective superpotential of

the massive version of the βd SYM model as an inverse mass power expansion.

The paper is organized as follows. In section 2 we review the standard lore about

the MM approach and the general properties of various deformations of the N = 4 SYM

model. In section 3, relying on MM techniques, we compute the holomorphic low energy

superpotential in various situations. In section 4 we investigate the phenomenon of spon-

taneous breaking of the gauge symmetry. We end in section 5 with some conclusion and a

few considerations about possible lines of future developments. A few more technical issues

are discussed in appendices.

2. Preliminary material

2.1 The Matrix Model

It has been suggested [17] that for a wide class of supersymmetric gauge field theories there

exists a deep connection between the “free-energy” of certain (zero-dimensional) MM’s and

the holomorphic superpotential as function of the glueball superfield degrees of freedom.

In its original formulation it was believed that such a correspondence was limited to

the perturbative corrections to the low-energy superpotential, thus explicitly excluding the

celebrated N = 1 Veneziano–Yankielowicz (VY) superpotential [18, 4, 19], WVY. This

deficiency was attributed to the fact that the overall constant of the matrix model integral

measure could not be unambiguously fixed. In [20] a first attempt was made to relate it

to the gauge fixing procedure necessary to give meaning to the matrix model1, but a clear

cut derivation of WVY was not provided.

In this context the works of refs. [23, 24] appeared, where the direct correspondence

between the Dijkgraaf–Vafa approach and certain generalizations of gauge field theories (on

non-commutative space-time) was displayed. Immediately after, in ref. [25], the boundary

condition constraint imposed by the triviality of the N = 4 superpotential was exploited

to determine the unknown overall coefficient of the MM functional integral, much in the

spirit of [26] thus allowing the determination of WVY.

1A similar idea was brought up, in the context of the Eguchi–Kawai one-plaquette model [21], in ref. [22].
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For the sake of completeness we want to review the derivation of ref. [25]. There one

starts with a N̂ -dimensional MM characterized by the tree-level action (potential) for the

hermitian N̂ × N̂ matrices Φ̂I , I = 1, 2, 3

Sm =
N̂

gm
tr

(

gΦ̂1[Φ̂2, Φ̂3] +Waux(Φ̂1) +
M2

2
Φ̂2
2 +

M3

2
Φ̂2
3

)

(2.1)

and the definition of the Dijkgraaf–Vafa-type free-energy

Zm = exp

[

−N̂2

g2m
Fm

]

= CN̂

∫

dΦ̂1 dΦ̂2 dΦ̂3 exp[−Sm]. (2.2)

In the above formulae, gm only plays the rôle of a scaling constant for the matrix action

but in the following we will uncover its meaning on the gauge theory side. The matrix

function Waux(Φ̂1) is an auxiliary potential term chosen according to computational needs.

For instance, to determine the overall normalization coefficient CN̂ , one has to consider the

specific form Waux(Φ̂1) =
1
2M1Φ̂

2
1 leading to

Sm =
N̂

gm
tr

(

gΦ̂1[Φ̂2, Φ̂3] +
M1

2
Φ̂2
1 +

M2

2
Φ̂2
2 +

M3

2
Φ̂2
3

)

. (2.3)

This is nothing else but the so-called MM formulation of the N = 1∗ model. The N = 1∗

model is the N = 4 SYM theory supplemented by mass terms for the chiral superfields (all

belonging to the adjoint representation of the gauge group U(Nc)). For large values of the

mass parameters {MI} ≡ {M1,M2,M3}, this model can be regarded as a regularization

of the N = 1 SYM theory by means of a mass deformation of N = 4 SYM [27, 28].

The N = 1∗ model is free of UV divergences for arbitrary masses just like the original

N = 4 (superconformal) theory [29, 30, 31, 32, 33], as no new UV divergences arise upon

introducing mass terms.

The pure N = 1 SYM is reached in the {MI} ≡ M0 → ∞ and g → 0 limit keeping

fixed

ΛN=1 = M0 exp

(

− 8π2

3Ncg2

)

, (2.4)

while in the {MI} → 0 limit, the N = 4 SYM theory is recovered for any fixed value of g.

The key observation in the determination of CN̂ is that in the {MI} → 0 limit (where

N = 4 SYM is reobtained) one should find that the only holomorphic contribution to the

superpotential is just given by the tree-level kinematical term. Dijkgraaf and Vafa instruct

us to compute the effective superpotential by taking the derivative of the planar (which is

the contribution singled out in the N̂ → ∞ limit) MM free-energy with respect to S, once
the latter is introduced in place of the MM coupling constant gm. In formulae,

Weff ≡ Nc
∂Fm(gm → S)

∂S , Fm ≡ − lim
N̂→∞

g2m

N̂2
logZm. (2.5)

Then, CN̂ is found requiring that the {MI} → 0 limit of the N = 1∗ model in the MM

setup gives for the free-energy the result

FN=4
m = lim

{MI}→0
FN=1∗
m =

πıτ0g
2
m

Nc
⇒ Weff = 2πıτ0S, (2.6)
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where we have introduced the complexified gauge coupling constant

τ0 ≡
4πı

g2
+

ϑ0

2π
. (2.7)

Indeed, upon evaluating the matrix integral in (2.2) for small {MI}, one gets [25]

ZN=1∗
m = CN̂JN̂

(

2πgm

N̂g

)N̂2(

2πgm

N̂M1M2M3

)N̂/2
[

1 + . . .
]

, (2.8)

where the dots stand for terms vanishing in the limit {MI} → 0 and JN̂ = (2π e3/2

N̂
)
N̂2

2 is

the result of the integration over the angular variables in the Φ̂-integral2.

The remarkable fact about eq. (2.8) is that the N̂ -leading contribution to the free-

energy, FN=1∗
m (see eq. (2.5)), does not depend on {MI}. Using eq. (2.6), one finds

CN̂ =

(

N̂3g2

(2π)3 e3/2 g2m

)N̂2/2

exp

[

−πıτ0N̂
2

Nc

]

. (2.9)

This coefficient, which is a function of N̂ and gm, is assumed to be independent of the

choice of the potential Waux(Φ̂1) in eq. (2.1).

Exploiting this result, it has been shown explicitly in [25] that choosing Waux(Φ̂1) =
1
2M1Φ̂

2
1 and in the limit {MI} ≡ M0 → ∞, one can also compute the superpotential of

pure N = 1 SYM following the Dijkgraaf–Vafa prescription [17]. The result is

W SYM
eff = Nc

∂

∂S

[S2

2
log

(

e3/2 Λ3

g2S

)]

= NcS
[

1− log

(

g2S
Λ3

)]

= WVY, (2.10)

i.e. precisely the VY effective potential [18].

2.2 Leigh–Strassler deformations

The Kawai and co-authors formulation of the Dijkgraaf–Vafa correspondence [23, 24, 25]

relies on the finiteness of the N = 4 theory. Finiteness is not unique to N = 4 SYM, as

one can concoct various ways (besides adding mass terms [32, 33]) in which it is possible

to deform it without losing finiteness.

In 1995 Leigh and Strassler [6] found that it is not uncommon for a supersymmetric

theory to display a manifold of fixed points, thus discovering new sets of finite theories. In

particular, they were looking for deformations of the N = 4 model which could mantain the

beta-function and the anomalous dimensions of the chiral superfields vanishing. Amongst

them, particular relevance acquired the so-called β-deformation, which corresponds to a

modification of the trilinear coupling in the original N = 4 superpotential. Explicitly this

modification amounts to the following replacement

g tr Φ1[Φ2,Φ3] → h tr Φ1[Φ2,Φ3]β, (2.11)

[X,Y ]β ≡ eıβ/2 XY − e−ıβ/2 Y X,

2We can diagonalize the matrix Φ̂ so that
∫
dΦ̂ = JN̂

∫ ∏
i dλi

∏
i<j(λi − λj)

2.

– 4 –



where h and β are in general complex functions of the coupling constant g. The N = 4

model is recovered at the point β = 0, h = g.

As we said, the deformed model has attracted a lot of interest after its gravity dual

was found [10]. In particular, it was shown that the β-deformed model is finite on a whole

submanifold of the parameter space (h, β) [6, 12, 13, 16].

If the scalars have a vanishing vacuum expectation value (vev), 〈ΦI〉 = 0, the theory

is confining and conformally invariant. In the opposite case, for generic values of the

deformation parameters, it is possible to identify regions of the moduli space (branches,

in the following) where the gauge group gets spontaneously broken. In order to determine

these regions we have to solve the F- and D-flatness conditions which here read

[Φ1,Φ2]β = [Φ2,Φ3]β = [Φ3,Φ1]β = 0 (2.12)

and
3
∑

I=1

[ΦI ,Φ
†
I ] = 0. (2.13)

Unlike the undeformed N = 4 case, in which simultaneous diagonalization of the three

chiral superfield leads to a solution, now the F-flatness equations are no longer satisfied by

arbitrary diagonal matrices, but only by special ones. Setting

〈ΦI〉 = diag(ϕ
(I)
1 , ϕ

(I)
2 , . . . , ϕ

(I)
Nc

), I = 1, 2, 3, (2.14)

it follows that at most only one out of the three numbers ϕ
(1)
a , ϕ

(2)
a , ϕ

(3)
a can be non-zero

for any a ∈ {1, . . . , Nc}. In this situation it is customary [34] to introduce the three sets of

integers, ΓI , which contain the labels of the non-vanishing vev’s. They are

ΓI =
{

a|ϕ(I)
a 6= 0

}

, a ∈ {1, . . . , Nc}, I = 1, 2, 3, (2.15)

and satisfy ΓI ∩ ΓJ = ∅ for I 6= J . Up to gauge transformation, inequivalent branches are

labelled by the triplet {n1, n2, n3}, where nI = dim ΓI . For the sake of illustration we will

concentrate in this paper on the particular branches of the type {Nc, 0, 0}, where only one

of the three chiral superfields (which we take to be Φ1) develops a vev.

Although at some special point of the moduli space (corresponding to sets of coincid-

ing vev’s) some subgroup of the original gauge group can remain unbroken, at a generic

point, i.e. on what we will be calling the “Coulomb branch” [34], the gauge group will

be broken spontaneously to U(1)Nc . In this case, the massless spectrum consists of Nc

“photons”, corresponding to the diagonal elements of the gauge field Aa ≡ (V )aa, and

their gluino superpartners λaα ≡ (λα)aa. The two fields combine to form Nc abelian vector

supermultiplets of N = 1 SUSY. We will denote the corresponding field strength by waα,

a = 1, . . . , Nc. Obviously, there are also Nc massless chiral multiplets, corresponding to

the fluctuations around the non-vanishing eigenvalues ϕ
(1)
a , a = 1, . . . , Nc.

What we expect in this situation is that, although no superpotential can be generated,

the kinetic term for the massless fields may receive quantum corrections. While not much
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can be said about the kinetic term of the scalars, as the latter is a D-term, the effective

low-energy action for the gauge fields is a holomorphic function which must be of the form

Weff ∝
Nc
∑

a,b=1

τabw
α,awb

α. (2.16)

The complex Nc×Nc matrix τab encodes the effective gauge couplings and vacuum angles.

Restricting to the {Nc, 0, 0} branch, τab will obviously depend only on the diagonal part of

the chiral superfield Φ1, which according to eq. (2.14), we shall compactly rewrite as 〈Φ1〉.
At the classical level, τab is proportional to the identity, τ clab = δabτ0. Standard non-

renormalization theorems guarantee that perturbative quantum effects are limited to one-

loop corrections, while non-perturbative instanton-like terms are expected at any order. In

other words we will have for τab(〈Φ1〉) an expansion of the type

τab(〈Φ1〉) = τ0δab + τ1-loopab (〈Φ1〉) +
∞
∑

k=1

τ
(k)
ab (〈Φ1〉) e2πıkτ ≡ τ0δab + τ̂ab(〈Φ1〉). (2.17)

The one-loop perturbative correction has already been computed in [34, 35].

2.2.1 Different formulations of the Leigh–Strassler model

In the plain N = 4 SYM model we have the freedom to (linearly) redefine the chiral

superfields introducing a pair of conjugate fields. Indeed, starting from the usual form of

the superpotential tr Φ1[Φ2,Φ3] and defining

Φ± ≡ Φ2 ± ıΦ3√
2

, (2.18)

the superpotential takes the form ı tr Φ1[Φ+,Φ−] which up to a ı factor has the same

structure as the one we started from (l.h.s. of eq. (2.11)) under the formal replacement

Φ2,3 → Φ+,−. Thus, in the study of the N = 4 model it makes no difference whether one

considers the (2, 3)- or the (±)-formulation of the theory.

However, when β is not zero, it is not true anymore that the form of the superpotential

is left invariant by the rotation (2.18). In detail, starting from the (2, 3)-formulation, the

β-deformed superpotential in the r.h.s. of eq. (2.11) transforms under the redefinition (2.18)

as follows

trΦ1[Φ2,Φ3]β → tr
(

Φ1(Φ
2
+ − Φ2

−) sin β/2 + ıΦ1[Φ+,Φ−] cos β/2
)

. (2.19)

In studying the Leigh–Strassler model a choice must thus be made of which one of the

two possible resulting theories one wishes to study. We can either start from the deformed

standard superpotential

W (2,3) = hΦ1[Φ2,Φ3]β, (2.20)

which is what we do in the following, or pick up as superpotential

W (±) = ıhΦ1[Φ+,Φ−]β , (2.21)
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(obtained by first rotating the fields and then deforming the commutator) which is the

choice preferred by other authors [36]. As argued above, the two models are different, or

to say it in another way, rotation (2.18) and β-deformation are non-commuting operations.

Generically, there is no way of morphing one theory into the other. However, we will show

(see appendix B) that, after adding mass terms for the superfields, in particular limits the

two models become equivalent.

3. The low-energy superpotential of the massive Leigh–Strassler model

We now present the results of the MM computation of the effective low-energy superpo-

tential of the massive Leigh–Strassler model in the confining phase of the theory, i.e. in a

situation where the chiral field vev’s are zero. In the literature, the model has been exactly

solved in the situation in which the glueball superfield S is integrated out [37, 38, 36].

In the Dijkgraaf–Vafa formulation we are required to compute the free-energy of the

MM whose action is given by

Sm(β, {MI}) =
N̂

gm
tr

{

hΦ̂1[Φ̂2, Φ̂3]β +
3
∑

I=1

MI

2
Φ̂2
I

}

. (3.1)

While it is clear that, in the limit {MI} = M0 → ∞, the trilinear coupling becomes

irrelevant, when keeping a finite (but large) value of M0 we expect to recover the correct

VY superpotential of pure N = 1 Yang-Mills plus a perturbative expansion in terms of

inverse powers of M0. This will guarantee that the M0 → ∞ limit will bring us back to

the pure N = 1 SYM result.

The computation proceeds as follows. Starting from

Z(β,M0) = exp

[

−N̂2

g2m
Fm

]

= CN̂

∫

dΦ̂1 dΦ̂2 dΦ̂3 e
−Sm(β,M0), (3.2)

we can immediately integrate over Φ̂2 and Φ̂3. After diagonalizing the remaining matrix

Φ̂1, one obtains (see appendix A for details)

Z(β,M0) = CN̂JN̂

[

(2π)2g3m

N̂3M3
0

] N̂2

2 ∫
∏

i

dλi

∏

i<j

(λi − λj)
2 e−

∑
i λ

2
i /2

∏

i

[

1 + 4ǫλ2
i sin

2 β/2
]− 1

2

∏

i<j

1

1 + ǫ(λ2
i + λ2

j − 2λiλj cosβ)
, (3.3)

where ǫ =
gmh2

N̂M3
0

.

Terms coming from the product over the i index,
∏

i(. . .), in the second line of eq. (3.3)

do not yield leading N̂2-contributions to the MM free-energy, as shown in appendix A. We

are then left with the perturbative expansion of the last product in powers of the small

parameter ǫ. The dominant term is

Z(0)
m = CN̂JN̂

[

2πgm

N̂M0

]
3
2
N̂2

=

[

g2gm

M3
0 e

3/2

]
N̂2

2

exp

[

−πıτ0N̂
2

Nc

]

, (3.4)
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from which the “planar” free-energy immediately follows

F (0)
m = −g2m

2
log

g2gm

M3
0 e

3/2
+

πıτ0g
2
m

Nc
. (3.5)

At this point, application of the Dijkgraaf–Vafa proposal yields for the low-energy effective

superpotential the VY result

W
(0)
eff (S) ≡ Nc

∂

∂SF (0)
m (gm → S) = NcS −NcS log

g2S
M3

0

+ 2πıτ0S

= NcS −NcS log
g2S
Λ3

= WVY, (3.6)

where in rewriting the last equality use was made of the renornalization group running

of the complexified gauge coupling constant (eq. (2.4)). The result (3.6) is precisely the

expected VY superpotential.

The perturbative expansion of eq. (3.3) in terms of the parameter ǫ gives the higher

order corrections to the MM free-energy due to finite mass effects. Explicitely, exploiting

the MM identification of gm with S, one finds

Fm − F (0)
m ≡ ∆Fm(S, β,M0)

= − S2

{(

h2S
M3

0

)

−
(

h2S
M3

0

)2
1

2
(5 + 2 cos2 β)

+

(

h2S
M3

0

)3

(11 + 12 cos2 β)

−
(

h2S
M3

0

)4

3(21 + 42 cos2 β + 4cos4 β)

+

(

h2S
M3

0

)5
4

5
(527 + 1625 cos2 β + 440 cos4 β) + . . .

}

. (3.7)

One can check that in the limit β → 0, i.e. in the pure N = 1∗ model, eq. (3.7) correctly

reproduces the known result [39, 40]

∆Fm(S,M0) = S2

[

−
(g2S
M3

0

)

+
7

2

(g2S
M3

0

)2 − 23
(g2S
M3

0

)3
+ . . .

]

. (3.8)

Instead, in the β 6= 0 case the contribution to the effective superpotential is obtained by

adding eq. (3.6) to the contribution coming from eq. (3.7), and reads (with the superscript
(2,3) we specify that we are dealing with the (2,3)-formulation (eq. (2.20)) of βd SYM)

W
(2,3)
eff (S, β,M0) = NcS − S log

[g2S
Λ3

]Nc

− 3Nc
h2S2

M3
0

+ 2Nc
h4S3

M6
0

(5 + 2 cos2 β)

− 5
h6S4

M9
0

(11 + 12 cos2 β) + . . . (3.9)
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If we eliminate S by the condition which extremizes the superpotential,

∂W
(2,3)
eff

∂S = 0, (3.10)

yielding W
(2,3)
on-shell, we can compare our result with the on-shell formula obtained in [36],

which at all orders in the (±)-formulation takes the form

W
(±)
on-shell(β,M0) =

NcM
3
0

4h2 sin2 β/2
− NcM

3
0 cos β/2

4h2 sin3 β/2

θ1(β/2|τR/Nc)

θ′1(β/2|τR/Nc)
, (3.11)

where θ1(z|τ) is one of the standard Jacobi elliptic functions [41] and

τR = τ0 −
ıNc

π
lnh. (3.12)

As signaled by the superscript (±) attached to the superpotential and as already noted in

sec. 2.2.1, the authors of this paper have worked in the (±)-formulation of the (undeformed)

N = 4 SYM model. Then, in order to be able to make contact with their result, we must

repeat our previous calculation starting from the expression (2.21) of the superpotential.

If we do so, the result for the free-energy differs from eq. (3.7) and reads

F (±)
m =

πıτ0
Nc

S2 − S2

2
log

[

g2S
M3

0 e
3/2

]

− h2S3

M3
0

(1− 2 cos β) + . . . , (3.13)

from which we obtain for the effective superpotential in the (±)-formulation the 1/M0-

expansion

W
(±)
eff (S, β,M0) = NcS − S log

[g2S
Λ3

]Nc − 3Nc
h2S2

M3
0

(1− 2 cos β) + . . . . (3.14)

From the discussion above, it should be no surprise that this result is different from the

one we obtained considering the (2, 3)-form of the superpotential, given in eq. (3.9).

Now we can finally draw comparisons between the MM computation of the superpo-

tential and the result of [36]. In fact, starting from eq. (3.14), we can eliminate S by

extremizing the superpotential (3.14), finding for the on-shell effective superpotential the

expansion

W
(±)
eff (β,M0) =

NcM
3
0

g2
q2 + 3

Nch
2M3

0

g4
q4(2 cos β − 1) +O(q6), q ≡ eπıτ0 , (3.15)

which coincides with the first few terms in eq. (3.11). Letting M0 → 0 produces a vanishing

contribution. This is to be expected since in this limit we should recover pure N = 4 Yang-

Mills whose only holomorphic contribution to the superpotential is the bare kinematical

term of the action.

We have already remarked how, in the β → 0 limit, the (2, 3)- and the (±)-formulations

coincide (and are equivalent to the N = 1∗ model). Indeed, if we integrate out S from
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the effective superpotential (3.7) and then send β to zero we have the same result we get

putting β → 0 in eq. (3.15), namely the Eisenstein series

W
(±)
eff (β = 0) = Nc

M3
0

g2
[

q2 + 3q4 + 4q6 + 7q8 + 6q10 +O(q12)
]

(3.16)

= W
(2,3)
eff (β = 0).

Another interesting result (proved in appendix B) is that, also for non-vanishing β, in

the MM formalism the massless limit of the superpotential of the massive Leigh–Strassler

model does not depend on whether the (±)- or the (2, 3)-formulation is used.

In conclusion, the web of relations between the two formulations in the various limits

considered can be schematically represented by the following flow-chart

(2, 3): W
(2,3)
eff (S, β,M)

M→∞

wwooooooooooooo OO

β→0

��

S out

β 6=0
//

M→0

((PPPPPPPPPPPP

W
(23)
on-shell(β,M)

β→0

''PPPPPPPPPPPP

pure N = 1
N = 4

β-deformed

N = 1∗:

Eisenstein series

(±) : W
(±)
eff (S, β,M)

M→∞

ggOOOOOOOOOOOOO

S out

β 6=0
//

M→0

66nnnnnnnnnnnn

W
(±)
on-shell(β,M)

β→0

77nnnnnnnnnnnn

4. Spontaneous symmetry breaking in the N = 4 Leigh–Strassler model

In this section we investigate the behaviour of the massive Leigh–Strassler deformation

of the N = 4 SYM when the gauge group U(Nc) is spontaneously broken. By varying

the parameters (β,M0) different models are encountered. In particular, when M0 goes to

zero, we expect to recover the βd SYM theory, while for β → 0 we should go back to

the N = 1∗ model. Moreover, the limit in which both β and M0 vanish must reproduce

pure N = 4 SYM, whose holomorphic contribution to the effective superpotential is, as we

repeatedly said, just its tree-level kinematical term. As such, it can be used as a sort of

boundary condition in parameter space useful to constrain the (β,M0) dependence of the

holomorphic superpotential in more general situations.

If one wishes to induce a spontaneous symmetry-breaking of the form

U(Nc) 7→
n
∏

i=1

U(Ni),

n
∑

i=1

Ni = Nc, (4.1)

one has to include in the MM action an auxiliary potential Waux(Φ̂1) of degree n + 1. In

the N̂ → ∞ limit the dominant configuration in the (zero-dimensional) functional integral

will be the one in which the matrix eigenvalues are distributed among the n extrema of

the Waux potential, with N̂i eigenvalues located around the i-th extremum. The integers

N̂i satisfy the constraint N̂ = N̂1+ · · ·+ N̂n and will be also taken to grow infinitely large,

proportionally to N̂ as N̂ → ∞.
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For every gauge group factor U(Ni) we have the choice of defining a glueball superfield

for the full group or for the SU(Ni) subgroup only, namely

Si = − 1

32π2
TrU(Ni)Wα

i Wi,α, Ŝi = − 1

32π2
TrSU(Ni)Wα

i Wi,α, (4.2)

where Wα
i is the supersymmetric gauge field strength. Obviously, it is Ŝi that describes

confinement and gaugino condensation, the abelian U(1) degrees of freedom being IR-

free. However, the form of the Dijkgraaf–Vafa correspondence is particularly simple only

if expressed in terms of the full glueball superfields, Si, corresponding to the U(Ni) gauge

groups. In the MM setup, the Si’s are the objects which are identified by the correspondence

Si ⇔ gm
N̂i

N̂
, (4.3)

once the large-N̂ limit is attained. Thus, for a generic symmetry-breaking pattern, the

Dijkgraaf–Vafa recipe gives, for the S-dependent part of the effective superpotential, the

expression

Weff(S) =
n
∑

i=1

Ni
∂Fm(S)
∂Si

, (4.4)

while, apart from the tree-level term τ0δij , the “coupling constant matrix” of the massless

U(1)’s degrees of freedom is given by (see eq. (2.17))

τ̂ij =
∂2Fm(S)
∂Si∂Sj

− δij
1

Ni

n
∑

k=1

Nk
∂2Fm(S)
∂Si∂Sk

. (4.5)

To obtain the final interesting expression of the coupling constant matrix the last necessary

step is to extremize the effective superpotential, i.e. solve the equations

∂Weff

∂S = 0. (4.6)

The latter is a system of n equations in the n unknowns Si which, once expressed in terms

of the parameters of the model, will have to be put back into eq. (4.5).

In the following, to simplify formulae, we will concentrate on the branch identified by

the triplet {Nc, 0, 0}, i.e. to the case in which the gauge group is U(Nc) broken down to

U(N1) × U(N2) with N1 +N2 = Nc, by a non-vanishing 〈Φ1〉. This situation corresponds

to the following particular form of the MM partition function

Zm = exp

[

−N̂2

g2m
Fm

]

= CN̂

∫

dΦ̂1 dΦ̂2 dΦ̂3 e
−Sm(Φ̂I ;β,M0), (4.7)

Sm(Φ̂I ;β,M0) =
N̂

gm
tr

{

hΦ̂1[Φ̂2, Φ̂3]β +
M0

2
(Φ̂2

2 + Φ̂2
3) +Waux(Φ̂1)

}

. (4.8)

with

Waux(Φ̂1) = γ

[

Φ̂3
1 −

1

2
(ϕ1 + ϕ2)Φ̂

2
1 + ϕ1ϕ2Φ̂1

]

, (4.9)
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where ϕ1,2 (ϕ1 6= ϕ2) are the eigenvalues of Φ̂1 (see eq. (2.14)) identifying the point on

the branch we are interested in. The choice of a cubic potential (which has two stationary

points) allows us to describe the U(Nc) 7→ U(N1) × U(N2) symmetry breaking pattern.

Since Waux(Φ̂1) has only the rôle of inducing the spontaneous breaking of the U(Nc) gauge

symmetry, we expect physical quantities be independent of the magnitude of the breaking

potential. In other words the final answer should not depend on γ.

After integrating the quadratic Φ̂2 and Φ̂3 dependence, diagonalization of the remaining

Φ̂1 matrix leads to the formula

Zm = e−πıτ0N̂2/Nc

[

g2

h2

]
N̂2

2
∫ N̂
∏

i=1

dλi exp

[

− N̂

gm

∑

i

Waux(λi)

]

∏

i

[

M2
0

h2
+ 4λ2

i sin
2 β/2

]−1
∏

i<j

(λi − λj)
2

M2
0

h2 + (λ2
i + λ2

j − 2λiλj cos β)
, (4.10)

where we have inserted the known expression for CN̂ given in eq. (2.9).

At this point, the standard procedure consists in expanding each eigenvalue, λi, around

either ϕ1 or ϕ2 which are the extrema of the potential. We then write

λi =

{

ϕ1 + pi i = 1, . . . , N̂1

ϕ2 + pi i = N̂1 + 1, . . . , N̂1 + N̂2
N̂1 + N̂2 = N̂ (4.11)

For convenience, in the following we will set k = i − N̂1 and pi ≡ qk, whenever i > N̂1.

Then, the symmetry breaking potential becomes

− N̂

gm
Waux(λi) →















−1

2

N̂

gm
γ(ϕ1 − ϕ2)p

2
i −

1

3

N̂

gm
γp3i i = 1, . . . , N̂1

−1

2

N̂

gm
γ(ϕ2 − ϕ1)q

2
k −

1

3

N̂

gm
γq3k k = 1, . . . , N̂2

, (4.12)

where N̂1 and N̂2 are the numbers of eigenvalues chosen to lie around ϕ1 and ϕ2, respec-

tively. Defining

ξ−2 ≡ γ(ϕ1 − ϕ2)
N̂

gm
(4.13)

and rescaling the pi and qk variables in order to recover the standard gaussian weight by

putting

p2i → p′2i =
p2i
ξ2

⇒ γ
N̂

gm
(ϕ1 − ϕ2)p

2
i → p2i ,

q2k → q′2k = −q2k
ξ2

⇒ γ
N̂

gm
(ϕ2 − ϕ1)q

2
k → −q2k,

(4.14)
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one gets

Zm = e−πıτ0N̂2/Nc

[

g2

h2

]
N̂2

2
(

ξ
)N̂2

1
(

− ξ
)N̂2

2

∫ N̂1
∏

i=1

dpi

N̂2
∏

k=1

dqk

N̂1
∏

i<j

(pi − pj)
2
∏

k<l

(qk − ql)
2

N̂1,N̂2
∏

i,k

[

ξpi + ıξqk + ϕ1 − ϕ2

]2

[M2
0

h2 + [(ξpi + ϕ1) eıβ/2 −(ϕ2 − ıξqk) e−ıβ/2][(ξpi + ϕ1) e−ıβ/2 −(ϕ2 − ıξqk) eıβ/2]
]

N̂1
∏

i<j

[M2
0

h2
+ [(ξpi + ϕ1) e

ıβ/2 −(ξpj + ϕ1) e
−ıβ/2][(ξpi + ϕ1) e

−ıβ/2 −(ξpj + ϕ1) e
ıβ/2]

]−1

N̂2
∏

k<l

[M2
0

h2
+ [(ϕ2 − ıξqk) e

ıβ/2 −(ϕ2 − ıξql) e
−ıβ/2][(ϕ2 − ıξqk) e

−ıβ/2 −(ϕ2 − ıξql) e
ıβ/2]

]−1

exp
{

− 1

2

[

N̂1
∑

i

p2i +

N̂2
∑

k

q2k

]

− ξ

3(ϕ1 − ϕ2)

[

N̂1
∑

i

p3i + ı

N̂2
∑

k

q3k

]}

. (4.15)

Since in the resulting action the qk’s were displaying an effective negative mass squared,

we suitably deformed the contour to make the integral convergent, by a sort of Wick rota-

tion, as is usual in the Dijkgraaf–Vafa approach. Besides, we do not include the contribution

coming from the
∏

i product in (the first term of the second line of) eq. (4.10), as it does not

lead to relevant terms in the large-N̂ limit, as shown in appendix A. The expression (4.15)

will be the starting point of the analysis presented in the following sections.

4.1 Matrix model perturbative expansion

The lowest order term is produced by a straight Gaussian integration in eq. (4.15), yielding

Z(0)
m = e−πıτ0N̂2/Nc

[

M2
0

h2
− ϕ2

1(e
ıβ/2 − e−ıβ/2)2

]−
N̂2
1
2
[

M2
0

h2
− ϕ2

2(e
ıβ/2 − e−ıβ/2)2

]−
N̂2
2
2

[

g2(ϕ1 − ϕ2)
2

M2
0 + h2(eıβ/2 ϕ1 − e−ıβ/2 ϕ2)(e−ıβ/2 ϕ1 − eıβ/2 ϕ2)

]N̂1N̂2
(

g2

h2

)

N̂2
1+N̂2

2
2

(ξ)N̂
2
1 (−ξ)N̂

2
2

∫ N̂1
∏

i=1

dpi

N̂2
∏

k=1

dqk

N̂1
∏

i<j

(pi − pj)
2

N̂2
∏

k<l

(qk − ql)
2 exp

{

− 1

2

[

N̂1
∑

i

p2i +

N̂2
∑

k

q2k

]}

= e−πıτ0N̂2/Nc

[

M2
0

h2
− ϕ2

1(e
ıβ/2 − e−ıβ/2)2

]−
N̂2
1
2
[

M2
0

h2
− ϕ2

2(e
ıβ/2 − e−ıβ/2)2

]−
N̂2
2
2

(ξ)N̂
2
1 (−ξ)N̂

2
2

[

g2(ϕ1 − ϕ2)
2

M2
0 + h2(eıβ/2 ϕ1 − e−ıβ/2 ϕ2)(e−ıβ/2 ϕ1 − eıβ/2 ϕ2)

]N̂1N̂2
(

g2N̂1

h2 e3/2

)

N̂2
1
2
(

g2N̂2

h2 e3/2

)

N̂2
2
2

,

implying for the leading (tree-level + one-loop) contribution to the free-energy the formula

F (0)
m =

πıτ0
Nc

(S1 + S2)
2 −

2
∑

i=1

S2
i

2
log

[

g2Si

h2Ki(ϕ1 − ϕ2) e3/2

]

− S1S2 log
g2∆2(0)

h2∆(β)∆(−β) +M2
0

.

(4.16)
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In eq. (4.16) we have introduced the definitions

Ki ≡ (−)iγ

[

M2
0

h2
− ϕ2

i (e
ıβ/2 − e−ıβ/2)2

]

and ∆(x) ≡ eıx/2 ϕ1 − e−ıx/2 ϕ2. (4.17)

Following the Dijkgraaf–Vafa prescription we can derive from eq. (4.16) the coupling con-

stant matrix for the two massless abelian fields corresponding to the two U(1) subgroups

of the unbroken U(N1)×U(N2) gauge symmetry. From the formula (see eq. (4.5)) [4]

τ̂ = τ

(

−N2

N1
1

1 −N2

N1

)

, τ =
∂2Fm(Si)

∂S1∂S2
= τ1-loop + τ (1) + τ (2) + . . . , (4.18)

we get from eq. (4.16) the 1-loop expression

τ1-loop = − log

[

g2(ϕ1 − ϕ2)
2

M2
0 + h2(eıβ/2 ϕ1 − e−ıβ/2 ϕ2)(e−ıβ/2 ϕ1 − eıβ/2 ϕ2)

]

, (4.19)

which in the M0 → 0 limit correctly reproduces the known results of [34, 35].

The constraint
∑

iNiτ̂ij = 0, which is automatically satisfied by the definition (4.5),

is nothing but the condition ensuring the complete decoupling of the overall diagonal U(1)

factor contained in the original U(Nc) gauge group.

4.2 Next order(s)

We can carry on our perturbative treatment expanding eq. (4.15) to higher orders in the

small parameter ξ (eq. (4.13)). One can get in this way the contribution to the coupling

constants matrix up to n instantons.

Stopping at second order in the MM formulation (i.e. to order ξ4), the complete

expression of τ , upon elimination of S1 and S2 via the standard effective superpotential

extremization, is given by the quite complicated formula

τ1-loop + τ (1) + τ (2) = − log
g2(ϕ1 − ϕ2)

2

h2(eıβ/2 ϕ1 − e−ıβ/2 ϕ2)(e−ıβ/2 ϕ1 − eıβ/2 ϕ2)

+
8h4A2 sin2 β/2

g4∆4(0)∆(β)∆(−β)

[

(−3 + 4 cos β − cos 2β)ϕ6
1 + 2(−5 + 6 cos β − cos 2β)ϕ5

1ϕ2

+ (−13 + 16 cos β − 3 cos 2β)ϕ4
1ϕ

2
2 + 8(−1 + 2 cos β − cos 2β)ϕ3

1ϕ
3
2

+ (−13 + 16 cos β − 3 cos 2β)ϕ2
1ϕ

4
2 + 2(−5 + 6 cos β − cos 2β)ϕ1ϕ

5
2

+ (−3 + 4 cos β − cos 2β)ϕ6
2

]

+
16h8A4 sin4 β/2

g8∆8(0)∆2(β)∆2(−β)

[

(−139 + 166 cos β − 6 cos 2β − 26 cos 3β + 5cos 4β)ϕ12
1

+ 2(−258 + 368 cos β − 125 cos 2β + 30 cos 3β + 3cos 4β)ϕ11
1 ϕ2

− 2(446 − 767 cos β + 464 cos 2β − 89 cos 3β + 36 cos 4β)ϕ10
1 ϕ2

2

+ 2(−606 + 1116 cos β − 709 cos 2β + 250 cos 3β + 39 cos 4β)ϕ9
1ϕ

3
2

+ (−2513 + 3650 cos β − 870 cos 2β + 578 cos 3β − 125 cos 4β)ϕ8
1ϕ

4
2
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− 4(876 − 1220 cos β + 871 cos 2β + 6cos 3β + 97 cos 4β)ϕ7
1ϕ

5
2

+ 2(−827 + 1745 cos β − 694 cos 2β + 559 cos 3β + 99 cos 4β)ϕ6
1ϕ

6
2

+ (ϕ1 ↔ ϕ2)
]

(4.20)

As expected, eq. (4.20) is organized as a power series expansion in the instanton action,

A2 ≡ exp[2πıτ0] ∝ exp[−8π2/g2]. (4.21)

Remebering that the N = 4 SYM theory is recovered in the h2 → g2 and β → 0 limit, we

can easily check that

lim
β→0

τ = 0, (4.22)

leaving only the overall diagonal contribution, τ0 (see eq. (2.17)). We stress that, as ex-

pected, the matrix τij does not depend on the strength of the symmetry-breaking potential,

γ. This is a quite satisfactory result which confirms our interpretation of the physics de-

scribed by the formalism as a spontaneous symmetry breaking phenomenon.

5. Conclusions

In this paper, we have explored some aspects of the deep connection between matrix models

and N = 1 supersymmetric gauge field theories.

We have started considering the massive Leigh–Strassler model, in two of its most

commonly studied formulations, and computed its low-energy effective superpotential as

a function of the glueball superfield, for arbitrary (real) values of mass and β parameters,

exploiting the Dijkgraaf–Vafa conjecture.

We successfully made contact with known results when our formulae are restricted to

special points of the parameter space, thus providing new evidence for the existence of a

useful correspondence between supersymmetric gauge theories and matrix models. Along

the way in this study we have been able to identify the complicated web of relations between

the different formulations of the Leigh–Strassler model in various limiting situations.

Then we turned to the study of the spontaneously broken phase of the Leigh–Strassler

model, introducing an auxiliary potential term to give a non-vanishing vev to one of the

chiral fields. The MM formalism allowed a detailed and general study of the phenomenon of

spontaneous breaking of the gauge symmetry. For the sake of simplicity, we displayed the

expression of the coupling constant matrix governing the dynamics of the left-over massless

degrees of freedom in the simple case of the U(Nc) 7→ U(N1)×U(N2) symmetry-breaking

pattern. We went up to two instantons in the calculation (but there is no problem of

principles to go higher in the instanton number), finding agreement with the leading order

(tree-level + 1-loop) expression known in the literature [34, 35]. Reassuringly our final

formulae do not depend on the “strength” of the auxiliary potential employed to induce

the phenomenon of gauge symmetry breaking, confirming in this way Dijkgraaf and Vafa

expectations.

A challenging open problem which we leave for a future investigation is the extension

the MM approach to more general deformations of N = 4 SYM, such as Tr Φ̂3
1 and the like.
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A. Large-N̂ leading and subleading terms

In this appendix, we would like to clarify in which sense, in eq. (3.3), in the large-N̂ limit

we are allowed to forget the term

∏

i

[

1 + 4ǫλ2
i sin

2 β/2
]− 1

2
. (A.1)

Loosely speaking, this is related to the fact that this factor corresponds to a product of only

N̂ terms, while it is the contribution from the remaining (much more numerous) N̂2 − N̂

ones that matters. The two terms come from separating the originally unconstrained

product
∏

i,j into an (irrelevant) i = j piece and the set of i 6= j terms.

The starting point of the argument is the MM formulation of the massive Leigh–

Strassler model in its confining phase, whose action in the (2,3)-formulation is given in

eq. (3.1). The discussion below is limited to the case where Waux is quadratic, but it could

be extended to a general potential of the form

W (x) =

n
∑

k=2

ckx
k. (A.2)

Starting from eq. (3.2), we integrate out two of the three matrices and diagonalize the

remaining one. After rescaling the eigenvalues by putting

λi →
√

gm

N̂M0

λi, (A.3)

we get

Z(β,M0) = CN̂JN̂

[

(2π)2g3m

N̂3M3
0

] N̂2

2 ∫
∏

i

dλi

∏

i<j

(λi − λj)
2 e−

1
2

∑
i λ

2
i

∏

i

[

1 + 4ǫλ2
i sin

2 β/2
]− 1

2

∏

i 6=j

[

1 + ǫ(λ2
i + λ2

j − 2λiλj cos β)
]− 1

2

≡CN̂JN̂

[

(2π)2g3m

N̂3M3
0

]
N̂2

2
〈〈

∏

i

·
∏

i 6=j

〉〉

, ǫ ≡ gmh2

N̂M3
0

, (A.4)
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where the symbols
∏

i and
∏

i 6=j in the last line stand for the two factors in the second

line of eq. (A.4) and to shorten future formulae we have introduced the “mean value”-like

notation
〈〈

⋆
〉〉

≡
∫

∏

i

dλi

∏

i<j

(λi − λj)
2 e−

1
2

∑
i λ

2
i ⋆. (A.5)

Our purpose is to compute the logarithm of Z (free-energy) as a power expansion in ǫ,

according to the formula

Fm = − lim
N̂→∞

g2m

N̂2
log(1 + ǫX + ǫ2Y + . . . ) = − lim

N̂→∞

g2m

N̂2

[

ǫX + ǫ2
(

Y − X2

2

)

+ . . .

]

,

(A.6)

where X and Y come from appropriately collecting terms stemming the various factors in

the “mean value” (A.4).

Dropping an overall constant, which anyway “drops out” when taking the logarithm

of Z, up to second order in ǫ we find the following contribution to the “mean-value” (A.4)

〈〈

∏

i

·
∏

i 6=j

〉〉

=
〈〈

∏

i

[

1− 2ǫs2λ2
i + 6ǫ2s4λ4

i +O(ǫ3)
]

∏

i 6=j

[

1− ǫ

2
Aij +

3

8
ǫ2A2

ij +O(ǫ3)

]

〉〉

=
〈〈

[

1− 2ǫs2
∑

i

λ2
i + 6ǫ2s4

∑

i

λ4
i + 2ǫ2s4

∑

i

λ2
i

∑

k,k 6=i

λ2
k +O(ǫ3)

]

×
[

1− ǫ

2

∑

i 6=j

Aij +
3

8
ǫ2
∑

i 6=j

A2
ij +

ǫ2

8

∑

i 6=j

Aij

∑

k 6=l
(k,l)6=(i,j)

Akl +O(ǫ3)
]

〉〉

=
〈〈

1 + ǫ
[

− 2s2
∑

i

λ2
i −

1

2

∑

i 6=j

Aij

]

+ ǫ2
[

6s4
∑

i

λ4
i + 2s4

∑

i

λ2
i

∑

k,k 6=i

λ2
k

+
3

8

∑

i 6=j

A2
ij +

1

8

∑

i 6=j

Aij

∑

k 6=l
(k,l)6=(i,j)

Akl + s2
∑

i

λ2
i

∑

i 6=j

Aij

]

+O(ǫ3)
〉〉

, (A.7)

where we have set Aij = (λ2
i + λ2

j − 2λiλj cos β) and introduced the symbol s in place of

sin β/2. In the rest of the appendix we will also sometime use C in place of cos β, so that

C = 1− 2s2.

To proceed we need to make use of eigenvalues relabeling invariance in order to make

use of eigenvalues relabeling invariance to get rid of the various sums in the previous

equation [42]. Defining

〈〈n1, . . . , nk〉〉 ≡ 〈〈λn1

1 . . . λnk
k 〉〉, (A.8)

we can write

〈〈
∑

i

λ2
i 〉〉 = N〈〈λ2

1〉〉 ≡ N〈〈2〉〉, (A.9)

〈〈
∑

i 6=j

Aij〉〉 = N(N − 1)〈〈λ2
1 + λ2

2 − 2λ1λ2C〉〉

= 2N(N − 1)
(

〈〈2〉〉 − 〈〈1, 1〉〉C), (A.10)
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so that the coefficient of the first order in ǫ (i.e. X in eq. (A.6)) is given by the expression

−2s2N〈〈2〉〉 −N(N − 1)
(

〈〈2〉〉 − 〈〈1, 1〉〉C
)

. (A.11)

At the next order we have

〈〈
∑

i

λ4
i 〉〉 = N〈〈4〉〉, (A.12)

〈〈
∑

i

λ2
i

∑

j

′
λ2
j〉〉 = N〈〈λ2

1

∑

j

′
λ2
j 〉〉 = N(N − 1)〈〈λ2

1λ
2
2〉〉

= N(N − 1)〈〈2, 2〉〉, (A.13)

and
∑

i 6=j

Aij

∑

k 6=l

′
Akl = N(N − 1)A12

∑′
Aij = N(N − 1)A12

[

A21 + (N − 2)A13

+ (N − 2)A31 + (N − 2)A23 + (N − 2)A32 + (N − 2)(N − 3)A34

]

= N(N − 1)
[

λ4
1 + λ4

2 + 2λ2
1λ

2
2 + 4λ2

1λ
2
2C

2 − 4λ3
1λ2C − 4λ1λ

3
2C

+ 4(N − 2)(λ4
1 + λ2

1λ
2
3 − 2λ3

1λ3C + λ2
1λ

2
2 + λ2

2λ
2
3 − 2λ1λ

2
2λ3C − 2λ3

1λ3C

− 2λ1λ2λ
2
3C + 4λ2

1λ2λ3C
2) + (N − 2)(N − 3)(λ2

1λ
2
3 + λ2

2λ
2
3 − 2λ1λ2λ

2
3C

+ λ2
1λ

2
4 + λ2

2λ
2
4 − 2λ1λ2λ

2
4C − 2λ2

1λ3λ4C − 2λ2
2λ3λ4C + 4λ1λ2λ3λ4C

2)
]

= 2N(N − 1)
{

〈〈4〉〉 + 〈〈2, 2〉〉(1 + 2C2)− 4〈〈3, 1〉〉C + 2(N − 2)
[

〈〈4〉〉

+ 3〈〈2, 2〉〉 − 4〈〈3, 1〉〉C + 4〈〈2, 1, 1〉〉C(C − 1)
]

+ (N − 2)(N − 3)
[

2〈〈2, 2〉〉
− 4〈〈2, 1, 1〉〉C + 2〈〈1, 1, 1, 1〉〉C2

]

}

. (A.14)

In the last expressions, we have introduced the shorthand notation

∑

i

λ2
i

∑

j

′
λ2
j ≡

N̂
∑

i=1

λ2
i

N̂
∑

j=1
j 6=i

λ2
j and

∑

i 6=j

Aij

∑

k 6=l

′
Akl ≡

N̂
∑

i 6=j

Aij

N̂
∑

k 6=l
(k,l)6=(i,j)

Akl. (A.15)

Lastly we need the formula
∑

λ2

i

∑

Aij = N(N − 1)A12

∑

λ2

i = N(N − 1)A12[λ
2

1 + λ2

2 + (N − 2)λ2

3]

= N(N − 1)
[

λ4

1
+ λ2

1
λ2

2
+ (N − 2)λ2

1
λ2

3
+ λ2

1
λ2

2
+ λ4

2
+ (N − 2)λ2

2
λ2

3

− 2λ3

1λ2C − 2λ1λ
3

2C − 2(N − 2)λ1λ2λ
2

3C
]

= 2N(N − 1)
[

〈〈4〉〉+ (N − 1)〈〈2, 2〉〉 − 2〈〈3, 1〉〉C − (N − 2)〈〈2, 1, 1〉〉C
]

. (A.16)

The “mean values” above are, among many others, available in ref. [42] where also details

about their derivation are given. Below we list the ones we need here

〈〈4〉〉 = 1 + 2N2 〈〈3, 1〉〉 = 1− 2N

〈〈2, 2〉〉 = 1−N +N2 〈〈2, 1, 1〉〉 = 2−N

〈〈1, 1, 1, 1〉〉 = 3

〈〈2〉〉 = N 〈〈1, 1〉〉 = − 1
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Using these results, eq. (A.6) becomes

F (2)
m = − lim

N̂→∞

g2m

N̂2

[

− 2ǫs2N̂2 − ǫN(N − 1)(N + C) + ǫ2
N̂4

2
(5 + 2C2)

+ ǫ2N̂3(8s4 + 4s2 − 2C2 + 6C − 4)

+ ǫ2
N̂2

2
[8s4 + 8s2(C − 1) + 8C2 − 20C + 5]

+ ǫ2N̂(4s4 − 4Cs2 − 3C2 + 4C − 1)
]

, (A.17)

where, in order to make clear where each term comes from, use was not made of any

trigonometric relation. In particular, terms coming from the “diagonal”
∏

i-product are

all proportional to powers of s2. Looking at eq. (A.17), and recalling that ǫ is inversely

proportional to N̂ , it is possible to appreciate that among the leading terms in N̂ there are

no contributions coming from the expansion of the
∏

i term. Moreover, if we now enforce

the obvious trigonometrical relations, we see that all odd powers of N̂ drop out in the ǫ2

term. The same is true for the even powers in the terms linear in ǫ.

The contribution to the free-energy can thus be written in the form (see eq. (3.7))

Fm = S2
[h2S
M3

0

− h4S2

M6
0

5 + 2 cos2 β

2
+O(S3)

]

. (A.18)

Consideration of higher order contributions does not change the conclusion that, in the

large-N̂ limit, we can neglect the contribution coming from expanding the
∏

i-term in the

expression for the MM partition function.

B. (±)- vs. (2, 3)-formulation

In this appendix we want to show that (the MM formulations of) the massive Leigh–

Strassler deformations of the N = 4 theory, in terms of Φ̂2,3 or Φ̂± are equivalent in both

the M0 → ∞ and M0 → 0 limit.

With respect to the main body of the paper, we will delve in greater detail into

computations. Our starting points are the following two formulations of the massive βd

SYM theories in the MM setup

Z(2,3)(β,M0) = CN̂

∫

dΦ̂1 dΦ̂2 dΦ̂3 exp−
N̂

gm
tr
{

hΦ̂1[Φ̂2, Φ̂3]β (B.1)

+
3
∑

I=2

M0

2
Φ̂2
I +Waux(Φ̂1)

}

,

Z(±)(β,M0) = CN̂

∫

dΦ̂1 dΦ̂+ dΦ̂− exp− N̂

gm
tr
{

ıhΦ̂1[Φ̂+, Φ̂−]β (B.2)

+M0Φ̂+Φ̂− +Waux(Φ̂1)
}

.

We can explicitly verify that these two partition functions indeed correspond to different

models for generic values of β and M0, by looking at what happens if we perform the

– 19 –



substitution

Φ̂(±) =
Φ̂2 ± ıΦ̂3√

2
⇒ Φ̂2 =

Φ̂+ + Φ̂−√
2

, Φ̂3 =
Φ̂+ − Φ̂−√

2ı
(B.3)

in eq. (B.1). The action, S(2,3) in (B.1) becomes

S(2,3)(Φ̂1, Φ̂±) =
N̂

gm
tr{M0Φ̂+Φ̂− + ıhΦ̂1[Φ̂+, Φ̂−] cos β/2

+ hΦ̂1(Φ̂
2
+ − Φ̂2

−) sin β/2 +Waux(Φ̂1)}, (B.4)

showing that generically the two models are different because

S(2,3)(Φ̂1, Φ̂±) 6= S(±)(Φ̂1, Φ̂±). (B.5)

However, in the limits M0 → 0 and M0 → ∞, they coincide. To prove this we start by

computing the partition function of the (2, 3)-formulation. Since the action in (B.1) is

quadratic in any of the three matrices, one can immediately integrate out one of them, say

Φ̂2. Writing the action in the form [25]

S
(2,3)
β (Φ̂1, Φ̂2, Φ̂3) =

N̂

gm
tr
{M0

2

(

Φ̂2 +
h

M0
[Φ̂3, Φ̂1]β

)2

− h2

2M0
[Φ̂1, Φ̂3]

2
β +

M0

2
Φ̂2
3 +Waux(Φ̂1)

}

, (B.6)

we get

Z(2,3)(β,M0) = CN̂

[2πgm

N̂M0

]
N̂2

2

∫

dΦ̂1 dΦ̂3 exp−
N̂

gm
tr
{M0

2
Φ̂2
3 (B.7)

− h2

2M0
[Φ̂1, Φ̂3]

2
β +Waux(Φ̂1)

}

.

At this point, as usual, we diagonalize Φ̂1, putting (owing to the “gauge” freedom of the

MM)

Φ̂1 = U







λ1 0
. . .

0 λN̂






U−1 λi ∈ R, U unitary. (B.8)

With the definition (U−1Φ̂3U)ij = µij = µ∗
ji = (U−1Φ̂†

3U)ij we have

tr[Φ̂1, Φ̂3]
2
β = (λiδijµjk e

ıβ/2 −µijλjδjk e
−ıβ/2)(λkδklµli e

ıβ/2 −µklλlδli e
−ıβ/2)

= −
∑

i,k

|µik|2
(

λ2
i + λ2

k − 2λiλk cos β
)

. (B.9)

Integration over µik gives

Z(2,3)(β,M0) = CN̂JN̂

[

2πgm

N̂M0

]N̂2
∫

∏

i

dλi

∏

i

[

1 +
4h2

M2
0

λ2
i sin

2 β/2

]− 1
2

(B.10)

∏

i<j

(λi − λj)
2
∏

i 6=j

{

1 +
h2

M2
0

[

λ2
i + λ2

j − 2λiλj cos β
]

}− 1
2

e−
N̂
gm

∑
i Waux(λi),
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where JN̂ has already been defined, while the factor
∏

i<j(λi − λj)
2 is the usual Jacobian

associated with the change of variables (B.8).

Despite the presence of the M−N̂2

0 factor in front of the integral, Z(2,3) has a finite

M0 → 0 limit, as can be seen by suitably distributing the powers of M0 among the various

terms. Actually, keeping only the leading contribution (as N̂ → ∞, see appendix A), in

the M0 → 0 limit Z(2,3) becomes

Z(2,3)(β, 0) = CN̂J

[

2πgm

N̂h

]N̂2
∫

∏

i

dλi

∏

i<j

(λi − λj)
2

λ2
i + λ2

j − 2λiλj cos β

exp{− N̂

gm

∑

i

Waux(λi)}. (B.11)

If we instead start from eq. (B.2), we can rewrite S
(±)
β (Φ̂1, Φ̂±) in the form

S
(±)
β (Φ̂1, Φ̂±) =

N̂

gm
tr

{

Waux(Φ̂1) +M0Φ̂+

[

1l⊗ 1l +
ıh

M0

(

eıβ/2 Φ̂1 ⊗ 1l− 1l⊗ Φ̂1 e
−ıβ/2

)

]

Φ̂−

}

.

After integrating out simultaneously the two conjugate matrices Φ±, the resulting partition

function is

Z(±)(β,M0) = CN̂

[

2πgm

N̂M0

]N̂2
∫

dΦ̂1
e
− N̂

gm
trWaux(Φ)

det
[

1l⊗ 1l + ıh
M0

(

eıβ/2 Φ̂1 ⊗ 1l− 1l⊗ Φ̂1 e−ıβ/2
)

] ,

which, diagonalising Φ̂1, can be rewritten as

Z(±)(β,M0) = CN̂JN̂

[

2πgm

N̂M0

]N̂2
∫

∏

i

dλi

∏

i<j

(λi − λj)
2 e

− N̂
gm

∑
Waux(λi)

∏

i,j

1

1 + ıh
M0

(λi eıβ/2 −λj e−ıβ/2)

= CN̂JN̂

[

2πgm

N̂M0

]N̂2
∫

∏

i

dλi

∏

i<j

(λi − λj)
2
∏

i

1

1 + ıh
M0

λi(eıβ/2 − e−ıβ/2)

∏

i 6=j

1
M0

h + ı(λi eıβ/2 −λj e−ıβ/2)
e−

N̂
gm

∑
Waux(λi) .

Again, redistributing the M0 dependence, we may arrange the last expression in the form

Z(±)(β,M0) = CN̂JN̂

[

2πgm

N̂h

]N̂2
∫

∏

i

dλi

∏

i<j

(λi − λj)
2 (B.12)

∏

i

1
M0

h + ıλi(eıβ/2 − e−ıβ/2)

∏

i 6=j

1
M0

h + ı(λi eıβ/2 −λj e−ıβ/2)
e−

N̂
gm

∑
Waux(λi) .
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Repeating the arguments given in appendix A, and already exploited to deal with the (2,3)-

formulation, one can show that the diagonal product in the second line does not contribute

to the large-N̂ limit. Then, in the M0 → 0 limit one gets

Z(±)(β,M0) = CN̂JN̂

[

2πgm

N̂h

]N̂2
∫

∏

i

dλi

∏

i<j

(λi − λj)
2

λ2
i + λ2

j − 2λiλj cosβ

exp

{

− N̂

gm

∑

Waux(λi)

}

, (B.13)

which coincides with eq. (B.11), as announced.

We now move to the M0 → ∞ case. In this limit obviously only the mass terms need to

be kept in the potential. It is then clear that the two zero-dimensional functional integrals

are just gaussian and identical.

Actually, the latter is quite an expected result, since, in the dual gauge theory descrip-

tion, it is known that in the M0 → ∞ limit we decouple completely the Φ2,3 degrees of

freedom in one case and the Φ± degrees of freedom in the other. What is left is simply an

integral over the last chiral field that is not affected by the rotation. In other words, there

is no difference between the two possible forms of Z(β,M0) in the M0 → ∞ limit.
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