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1 Introduction

Supersymmetry has many remarkable properties. One of them is that in
general supersymmetric theories are less divergent than non-supersymmetric
ones [1, 2, 3, 4] (for a review see [5, 6]). This property, however, is not always
easy to use, since typically one has to express the finite super Feynman
diagrams in terms of ordinary (coordinate or momentum space) integrals
which require regularization.

In this paper we show that it is possible to considerably simplify the ex-
pression of the supersymmetric massless ladder 4-point diagrams at arbitrary
loop order, and rewrite them as 4-point conformal integrals. Interestingly we
are able to carry out the whole calculation without introducing any regulator,
despite the fact that individual component diagrams are divergent. Before
going into details, let us briefly sketch our approach.

Consider a certain N = 1 superdiagram, which by super power-counting
is finite, for example the irreducible massless 4-point ladder diagram with
four external scalar legs 1 depicted in Figure 1. Although the expression
for the non supersymmetric massless ϕ3 ladder with an arbitrary number of
rungs was found long ago in [7], its generalization to the supersymmetric case
is still not known.

To compute the ladder diagram in Figure 1 at a given order in perturba-
tion theory, in coordinate space, one has to evaluate a multiple superspace
integral of the form

G ≡ G(x1, x2, x3, x4) =

=
∫ ∏

k

d4yk d
2θk d

2θ̄k W(x1, x2, x3, x4, {yk}, {θk}, {θ̄k}) , (1)

where W(x1, x2, x3, x4, {yk}, {θk}, {θ̄k}) denotes the product of super propa-
gators, deriving from Wick contractions. Performing θ and θ̄ integrations in
general gives as a result a linear combination of several component Feynman
diagrams, so we can write eq. (1) in the form

G =
∫ ∏

k

d4yk
∑

i

Wi(x1, x2, x3, x4, {yk}) , (2)

where Wi(x1, x2, x3, x4, {yk}) denote all allowed products of component field
propagators (diagrams). The standard procedure for computing G is to ex-
change in eq. (2) the order in which the sum over i and the integration over

1 In this paper we shall concentrate mostly on this case, but similar considerations hold
also for other finite superdiagrams.
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{yk} are performed, obtaining

G̃ =
∑

i

∫ ∏

k

d4ykWi(x1, x2, x3, x4, {yk}) . (3)

Note, however, that although by assumption the function G is finite, some
of the terms in G̃ may diverge, so one has to introduce a regularization
prescription to compute them. The regulator can be removed only after
summing up all the terms.

This suggests that the necessity of regularization is not an intrinsic fea-
ture of finite correlation functions, but an artefact of our way of representing
them in terms of ordinary component Feynman diagrams. Comparing eq. (2)
and eq. (3) it is evident that the problem arises from exchanging the order
of the integrations over {yk} and the summation over i. As we shall show, at
least for the class of massless ladder 4-point superdiagrams, one can follow
a different approach, which does not require any regulator at intermediate
steps. To be explicit, we allow ourselves to exchange the order in which the
integrations and the sum are performed in eq. (2) only as far as the result
for each individual contribution to the sum remains finite. We then compute
the integrals under the sum, perform the summation and then evaluate the
remaining integrals. In formulae this corresponds to the following represen-
tation

G =
∫ ∏

k1

d4yk1
∑

i

∫ ∏

k2

d4yk2Wi(x1, x2, x3, x4, {yk}) , (4)

where each of the integrals

∫ ∏

k2

d4yk2Wi(x1, x2, x3, x4, {yk})

is finite. The splitting of the integration points {yk} into two sets {yk1} and
{yk2} depends on the diagram under consideration and, as we will show, in
general is not unique. Different choices may give rise to apparently very
different representations for the same correlation function G.

The paper is organized as follows. In Section 2 we set up the problem and
provide a simplified expression of the 3-loop supersymmetric ladder diagram.
In Section 3 we extend this result to all loop orders and express the massless
supersymmetric ladder diagram with L rungs in terms of conformal integrals.
In Section 4 we derive two different diagrammatic representations for these
conformal integrals. In Section 5, as a first step towards the evaluation of
these integrals, we obtain an explicit expression for the 3-loop amplitude in
the special case when all the points lie on a straight line and compute the
singularities of the function. Finally, in Section 6 we give some conclusions.
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2 The ladder super diagram

We consider the massless Wess–Zumino model [1] with (Euclidean space)
action

S =
∫
d4x

{∫
d2θd2θ̄ Φ†(x, θ, θ̄) Φ(x, θ, θ̄)

−
g

3!

∫
d2θ (Φ(x, θ, 0))3 −

g

3!

∫
d2θ̄

(
Φ†(x, 0, θ̄)

)3
}
. (5)

The chiral N = 1 superfield Φ(x, θ, θ̄) contains a scalar ϕ, a Weyl fermion
ψ and an auxiliary filed F . The 〈Φ† Φ〉 propagator can be written in the
compact form

〈Φ†(xi, θi, θ̄i) Φ(xj , θj, θ̄j)〉 =
1

4π2
e(ξii+ξjj−2ξji).∂j

1

x2
ij

, (6)

where xij = xi − xj , ∂j = ∂/∂xj and ξµij = θαi σ
µ

αβ̇
θ̄β̇j . In this model only

the 2-point function is divergent, while all higher point functions are finite.
We remind that in the massless case the 3-point function may receive finite
corrections [8, 9].

In this paper we shall concentrate on the irreducible massless ladder su-
perdiagram with four external scalar legs ϕ and L rungs, which is depicted
in Figure 1, namely

GL(x1, x2, x3, x4) = 〈ϕ(x1)ϕ
†(x2)ϕ

†(x3)ϕ(x4)〉|g2L, ladder . (7)

GL is proportional to g2L, so in the standard loop-order counting it is a L
loop diagram. Let us stress that with our choice for the external fields, the

LL–1L–2...321

3(x  )
+

ϕ
2(x  )

+
ϕ

4(x  )ϕ
1(x  )ϕ

Figure 1: The ladder diagram with L rungs.

ladder in Figure 1 is planar for odd values of L, while for even values of L
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it is twisted. In Figure 1 all the internal lines represent superpropagators,
hence effectively this single picture corresponds to a set of component field
diagrams. In Figure 2 we present as an example the 6 component diagrams
corresponding to the L = 3 superdiagram.

3D2D1D

6D5D4D

Figure 2: The six component diagrams for L = 3.

Here and later in the paper for simplicity we shall suppress systematically
all the factors 4π2 in the propagators. Indeed, since GL involves 3L + 2
propagators, the overall factor 1/(4π2)3L+2 can be reinstated at the end of
the calculation. We use the following graphical notation for the component
field propagators. We denote the ϕ propagator, 1/x2, by a thin continuous
line, the fermion ψ propagator, x̂/x4 = xµσ

µ/x4, by a thin continuous line
with an arrow, and we represent by a fat line the δ-function, corresponding to
the propagator of the auxiliary field F . From the superpropagator of eq. (6)
one can compute the relative sign factors weighting the different component
diagrams in a superdiagram. It turns out that there is a (−1) for each closed
fermionic loop. Note also that with our graphical conventions there is a (−1)
sign for each F propagator, since in Euclidean space the F propagator is

✷
1

x2
= −4π2 δ(x) . (8)

With this conventions one finds that the expansion of the superdiagram in
Figure 1, for L = 3, in terms of the diagrams in Figure 2 is

G3(x1, x2, x3, x4) = −D1 +D2 +D3 −D4 −D5 −D6 . (9)
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Note that while the superdiagram in Figure 1 is finite by N = 1 super power
counting, the integrals corresponding to the component diagrams in Figure 2
diverge. As we said, the standard procedure at this point is to introduce a
regulator in order to make finite each of the component diagrams. We shall,
instead, proceed differently and show that it is indeed possible to have all
integrals finite at each step of the calculation, so that no regularization is
actually necessary. We shall first illustrate the method on the example of
L = 3. In the next Section we shall extend it iteratively to general L.

Each of the diagrams in Figure 2 represents a 6-fold integral over the
internal integration points y1, . . . , y6 (see Figure 3). Instead of trying to
compute the 6-fold integral for each diagram and then summing the results,
we split the integration into two 3-fold integrals: one set over integration
variables with odd indices {yodd}, and a second set over integration variables
with even indices {yeven} according to the chess-board like scheme of Figure 3.
As a result we can represent the 4-point function G3 in the form

6y5y4y

3y2y1y

Figure 3: The two possible sets of integration points for L = 3.

G3(x1, x2, x3, x4) =
∫
d4{yeven}W3(x1, x2, x3, x4, {yeven}) , (10)

where W3 is given by an expression similar to eq. (9) where only integrations
over {yodd} appear. We now show that all the integrations over {yodd} can
be explicitly carried out in each of the diagrams D1, . . . , D6 of Figure 2 and
that they are all finite. Putting all the resulting terms together one obtains
an expression for W3, which can be integrated also over {yeven} giving a finite
result.

Note that one can exchange the order of the integrations over {yeven} and
over {yodd}. This leads to two apparently very different representations for
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the same 4-point correlation function GL (see bellow). Their equivalence is
a manifestation of the conformal invariance of GL.

As can be noted by inspection, in each of the integration points in the
diagrams of Figure 2 there is either a δ-function coming from the propagator
of the auxiliary field F , or two fermion propagators and a scalar propagator.
The integration in the first case is trivial. To perform the integration in the
second case we use the identity

∂̂1 ∂̂2

∫
d4x0

1

x2
10x

2
20x

2
30

= −4
∫
d4x0

x̂10 x̂02

x4
10x

4
20x

2
30

= −4π2 x̂13 x̂32

x2
13x

2
23x

2
12

, (11)

where x̂ij = σµx
µ
ij . This identity follows by applying the operator ∂̂1∂̂2 to the

explicit expression of the integral in the l.h.s. whose evaluation can be found
in [11]. Eq. (11) is valid only in 4 space-time dimensions.

Due to the chess-board choice of {yeven} and {yodd}, the application of
eq. (11) in any of the integration points does not alter the expressions in-
volving the other integration points from the same set. The same is also
true when a δ-function from the F propagator is involved. Hence, one can
always perform the integrations over all the points belonging to one of the
two sets. Choosing, for example, to integrate first over {yodd}, we reduce the
expression of G3 to the form in eq. (10), where the function W3 is a linear
combination of products of propagators with numerators containing traces
of products of (up to 6) x̂ij factors. Each term in W3 separately contains
high powers of x2 in the denominator and diverges if integrated over {yeven}.
However, after factoring out a common denominator and simplifying the nu-
merator, it turns out that in the whole function, due to cancellations, there
are only simple 1/x2 poles and the remaining {yeven} integrations display no
divergencies. The final expression is

G3 = − x2
14

∫
d4y2d

4y4d
4y6 W

e
3 (x1, x2, x3, x4; y2, y4, y6)

= − x2
23

∫
d4y1d

4y3d
4y5 W

o
3 (x1, x2, x3, x4; y1, y3, y5) , (12)

where the second identity follows by interchanging the order of the integra-
tions over {yeven} and {yodd}. The functions W e

3 and W o
3 are given by the

effective diagrammatic representation of Figure 4, where all the lines repre-
sent massless scalar propagators.

Since in each internal vertex in Figure 4 enter exactly 4 propagators, the
integrals in eq. (12) are conformal, with conformal weights of the external
legs equal to one. This means that the correlator can be expressed as a
function of the two cross-ratio variables

r =
x2

13x
2
24

x2
12x

2
34

, s =
x2

14x
2
23

x2
12x

2
34

, (13)
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3
oW    = 3

eW    = 

3x
5y

2x

4x
3y1y

1x

3x
6y

2x
4y

4x
2y

1x

Figure 4: The two functions entering eq. (12) for the L = 3 case.

in the form

G3(x1, x2, x3, x4) =
1

x2
12x

2
34

F3(r, s) . (14)

The integral in eq. (12) has been considered, in a particular kinematical
regime appropriate for taking the on-shell limit, in [10] where also a Mellin–
Barnes representation has been derived.

Before proceeding to the proof in the case of general L, we list the ex-
pressions for the simpler cases of L = 1

G1(x1, x2, x3, x4) = −
∫

d4x5

x2
15x

2
25x

2
35x

2
45

= −
π2

x2
12x

2
34

Φ(1)(r, s) , (15)

and L = 2,

G2(x1, x2, x3, x4) = x2
14

∫ d4x5d
4x6

x2
15x

2
16x

2
26x

2
35x

2
45x

2
46x

2
56

= x2
23

∫
d4x5d

4x6

x2
15x

2
25x

2
26x

2
35x

2
36x

2
46x

2
56

=
π4

x2
14x

2
23

Φ(2)
(
r

s
,
1

s

)
. (16)

Interestingly, they both reduce to the massless ϕ3 ladder, extensively studied
in the literature [11, 7, 12]. The functions Φ(1) and Φ(2) are the first two
members of an infinite family of conformal integrals introduced in [7]. The
equivalence of the two representations for the L = 2 case has been empha-
sized in [13] and used to prove the equality of apparently different conformal
integrals.
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3 All order result

In principle one can proceed as discussed in the previous section also in the
case of higher L ladder diagrams. However, both the number of component
diagrams as well as the complexity of each diagram grow very fast. Here we
shall use a different approach, namely we shall derive recursively the general
expression for the massless ladder superdiagram with four external scalar legs
ϕ and L rungs. Expanding in component fields only the superpropagator in
the leftmost rung one obtains a Bethe–Salpeter (BS) like recursive equation
relating the scalar ladder with L + 1 rungs GL+1 to ladders with L rungs,
with 4 scalars (GL), 2 fermions and 2 scalars (Gψ

L), 2 auxiliary fields F and
2 scalars (GF

L), as external legs. Precisely we get the relation

GL+1(x1, x2, x3, x4) = −
∫
d4x5d

4x6

tr
[
x̂65 G

ψ
L(x5, x6, x3, x4)

]

x4
56x

2
16x

2
25

−
∫
d4x5d

4x6
δ(x56)

x2
16x

2
25

GL(x5, x6, x3, x4)

+
∫
d4x5d

4x6
1

x2
16x

2
25x

2
56

GF
L(x5, x6, x3, x4) , (17)

where the ordering of the points corresponds to the convention of Figure 1.
The external fields in x3 and x4 are always scalars, the external fields in x5

and x6 are scalars in GL, fermions in Gψ
L and auxiliary fields in GF

L . The
minus sign in the first term is due to the presence of an extra closed fermion
loop, while the minus sign in the second term is due to the (−1) sign in
the F propagator. After integrating the δ-function in the second term and
simplifying GF

L , one obtains

GL+1(x1, x2, x3, x4) = −
∫
d4x5d

4x6

tr
[
x̂65 G

ψ
L(x5, x6, x3, x4)

]

x4
56x

2
16x

2
25

−
∫
d4x5

1

x2
15x

2
25

GL(x5, x5, x3, x4)

+
∫
d4x5d

4x6
1

x2
16x

2
25x

4
56

GL−1(x6, x5, x3, x4) . (18)

In this form the relation contains both L and L − 1 four scalar ladders, as
well as the L-rung ladder diagram with two fermion and two scalar external
lines. For the latter correlator, by expanding the leftmost rung, we derive
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the BS equation

Gψ
L+1(x1, x2, x3, x4) =

∫
d4x5d

4x6
x̂16 x̂65 x̂52

x4
16x

4
56x

4
25

GL(x5, x6, x3, x4)

+
∫
d4x5d

4x6
x̂16G̃

ψ
L(x5, x6, x3, x4)x̂52

x4
16x

2
56x

4
25

, (19)

where G̃ψ
L is obtained from Gψ

L by inverting the direction of the fermion line,
which amounts to the substitution x̂ij → x̂ji, x̂ij x̂jk x̂kl → x̂lk x̂kj x̂ji etc.

We shall first present the solutions of these equations, then we shall derive
them. As already mentioned, the ladder superdiagram with L rungs is planar
for odd L, and twisted for even L. In order to work with only planar drawings
we shall treat separately the two cases of even and odd L.

For the four scalars ladder and even values of L we find

GL even(x1, x2, x3, x4) = x2
23 S

e
1(L; x1, x2, x3, x4)

= x2
14 S

e
2(L; x1, x2, x3, x4) . (20)

The functions Se1 and Se2 are diagrammatically depicted in Figure 5, where
all the lines represent massless scalar propagators, and the circles denote the
L integration points.

e
2S  = ...

4x 2x 

3x 1x 

e
1S  = ...

4x 2x 

3x 1x 

Figure 5: The case of even L.

For the four scalars ladder and odd values of L we find

GL odd(x1, x2, x3, x4) = − x2
23 S

o
1(L; x1, x2, x3, x4)

= − x2
14 S

o
2(L; x1, x2, x3, x4) , (21)

where So1 and So2 are depicted in Figure 6.

9



o
2S  = ...

3x 2x 

4x 1x 

o
1S  = ...

3x 2x 

4x 1x 

Figure 6: The case of odd L.

In the case of two fermions and two scalars in the external lines one finds
for L even

Gψ
L even(x1, x2, x3, x4) = −

∫
d4x5

x̂14 x̂45 x̂52

x2
15x

4
25

So1(L− 1; x1, x5, x4, x3) , (22)

while for L odd

Gψ
L odd(x1, x2, x3, x4) =

∫
d4x5

x̂14 x̂45 x̂52

x2
15x

4
25

Se1(L− 1; x1, x5, x4, x3) . (23)

By a direct calculation one can check that the results for the L = 1,
L = 2 and L = 3 ladders are given by the expressions in eqs. (20) to (23).
We now prove the general formulae by induction, using the BS equations (18)
and (19). Assume that eqs. (20) to (23) hold up to a given L and substitute
them in the r.h.s of eq. (18) (we take for definiteness L to be odd). With the
help of eq. (11) we can perform one of the integrations in the term coming
from Gψ

L, simplify the trace of four σ matrices in the numerator and use the
identity

(xij .xkl) =
1

2
(x2

il + x2
jk − x2

ik − x2
jl) (24)

to express the resulting scalar products as squares of coordinate differences.
Putting together all the terms, the potentially dangerous 1/x4

56 behaviour in
the last line of eq. (18) disappears, and we get the result in eq. (20). The
other equations (21) to (23) are proven in a similar way.

The equality of the two different representations for GL in eq. (20) and
eq. (21) is again a manifestation of the conformal invariance of these expres-
sions. Actually, for any L, one can write

GL(x1, x2, x3, x4) =
1

x2
12x

2
34

FL(r, s) , (25)
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where r and s are the cross-ratios defined in eq. (13). This representation
makes also manifest the invariance of the ladder diagram under the simulta-
neous exchanges (x1 ↔ x4 and x2 ↔ x3); (x1 ↔ x3 and x2 ↔ x4); (x1 ↔ x2

and x3 ↔ x4).

4 Alternative representations of GL

One can use the conformal invariance of the function GL eq. (25) to simplify
the integral which has to be computed. In particular, without loss of gener-
ality one can perform a special conformal transformation to send one of the
points (say x4) to infinity. Setting

fL(x1, x2, x3) ≡ lim
x4→∞

x2
4 GL(x1, x2, x3, x4) =

1

x2
12

FL

(
x2

13

x2
12

,
x2

23

x2
12

)
, (26)

the calculation is reduced to that of an effective 3-point function. Indeed the
x4 dependence of GL can be reconstructed unambiguously from the knowl-
edge of fL(x1, x2, x3).

Taking the limit x4 → ∞ has a simple graphical representation, namely
it corresponds to erasing from the diagram all lines connecting x4 with the
other points. This explains how, combining the x4 → ∞ limit with repeated
application of the equality of the two rows of eqs. (20) and (21) (with the
purpose of connecting as many as possible lines with the point x4), we can
reduce significantly the number of propagators in the diagram. Applying
this procedure one can derive for fL(x1, x2, x3) the representation depicted
in Figure 7, where the left picture corresponds to L even, and the right one to
L odd. The diagrams in Figure 7 are obtained by systematically replacing the
representation involving Se1 with the one involving Se2 and the representation
involving So1 with the one involving So2 , for all subfunctions GK(x1, x2, y, x4)
for K = L− 1, L− 2, . . . , 2, thus at each step increasing by one the number
of propagators ending in x4. Finally one sends x4 to infinity.

Other expressions of the same function can be obtained either by using
a different sequence of identities, or by sending some other point to infinity.
The one we have singled out has two remarkable properties. On the one hand
it involves the minimal possible number of propagators i.e. 2L+ 1, with an
integrand having a numerator equal to one. On the other hand it has a
form where exactly 3 propagators are attached to each integration point.
Hence, the functions in Figure 7 are nothing but particular 3-point functions
of composite operators in the massless ϕ3 theory. Our analysis shows that
these 3-point functions are finite.

11



3x 

2x 

1x 

3x 

2x 

1x 

Figure 7: Representation for the 3-point function fL(x1, x2, x3). The left
picture corresponds to L even, and the right one to L odd. For L odd there
is an overall minus sign which is not shown in the picture.

In Figure 7 it is manifest that the functions fL(x1, x2, x3) defined in
eq. (26) satisfy a recursive relation, namely

fL(x1, x2, x3) = −
∫ d4x0

x2
10x

2
30

fL−1(x2, x1, x0) , (27)

and the differential equation

✷x3
fL(x1, x2, x3) =

4π2

x2
13

fL−1(x2, x1, x3) , (28)

which in turn implies a differential recursive relation for the functions FL(r, s).
One can also rewrite the integrals for fL as dual L-loop “momentum space

like” integrals as shown in Figure 8. If one takes all the “momenta” to be
incoming, then the one in the left vertex is x12, the one in the right vertex is
x23, the one in the upper vertex is x31, while those in the intermediate lines
are constrained by “momentum” conservation holding in each vertex. Again
the left picture corresponds to L even, and the right one to L odd. Similar
representations can be derived also for the 4-point functions, (see e.g. [10]
for the case L = 3). Let us stress that, although all the propagators are
massless, since in general x2

ij 6= 0, one has to compute these “momentum
space like” integrals with off-shell external legs.

Finally, we have to put back the overall power of 4π2 which we suppressed
for simplicity during the calculation. As already mentioned, the ladder dia-
gram with L rungs contains 3L+ 2 propagators, each proportional to 1/4π2.
On the other hand, in deriving eqs. (20) and (21) we have applied L times
the relation in eq. (11), producing a factor (4π2)L. Hence, the overall multi-
plicative factor in GL and fL will be 1/(4π2)2L+2.
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Figure 8: Dual representation for the 3-point function fL(x1, x2, x3). The left
picture corresponds to L even, and the right one to L odd.

5 The 3-loop integral

Note that the cross ratios r and s defined in eq. (13) cannot take arbitrary
values. In particular, in the Euclidean regime they satisfy the constraints

r ≥ 0 , s ≥ 0 , 1 + r2 + s2 − 4r − 4s− 4rs ≤ 0 . (29)

The last inequality is saturated when the 4 points x1, . . . , x4 can be mapped
by a conformal transformation to lie on a straight line, which, after sending
by a special conformal transformation x4 to infinity, reduces to the condition
that x1, x2 and x3 lie on a straight line. In this Section we shall compute the
3-loop integral

I3(x1, x2, x3) =
∫ d4x5d

4x6d
4x7

x2
15x

2
25x

2
26x

2
17x

2
37x

2
56x

2
67

(30)

in this special kinematical regime 2. The precise relation between the integral
I3 and the function f3 is

I3(x1, x2, x3) = −(4π2)8f3(x1, x2, x3) . (31)

Note that, since I3(x1, x2, x3) has singularities only at coinciding argu-
ments, xi = xj , the knowledge of I3 in this special configuration is sufficient
to completely determine its singular behaviour. We use translation invari-
ance to set x2 = 0 and dilatation invariance to set x3 = 1, with 1 a fixed
unit vector. Since we have chosen the three points to lie on a line, the point
x1 can be parameterized as x1 = u1. One has to treat separately the three
cases, u < 0, 0 < u < 1 and u > 1. We first consider 0 < u < 1. In this
representation the limit u→ 0 corresponds to x12 → 0, while the limit u→ 1
corresponds to x13 → 0. We shall analyze the limit x23 → 0, which is related
to u→ ∞, later.

2The result for the general case will be reported in a separate paper [14].
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In order to compute I3(u1, 0, 1), we use eq. (27) to relate f3 to f2, eqs. (26)
and (16) to express f2 in terms of Φ(2) and the parametric integral represen-
tation [11]

Φ(2) (x, y) = −
1

2

∫ 1

0
dt

ln(t)
(
ln(t) + ln( y

x
)
) (

2 ln(t) + ln( y
x
)
)

yt2 + (1 − x− y)t+ x
. (32)

Putting everything together, one gets

I3(u1, 0, 1) =

= −
π4

2

∫ 1

0
dt
∫
d4x0

ln(t) (ln(t) + ln(u2/x2
0)) (2 ln(t) + ln(u2/x2

0))

(x0 − 1)2(x0 − u1)2(x0 − tu1)2
. (33)

In the integral over x0 one can pass to spherical coordinates, such that
(x0.1) = R cos(θ) and perform first the integral over θ and then the ra-
dial integral in R. Taking into account also the trivial integration over the
remaining two angles, the result is

I3(u1, 0, 1) =
π6

u(1 − u)
×

(
2
∫ 1

0

dt ln(t)Li3(tu)

(1 − t)
− 3

∫ 1

0

dt ln(t)2Li2(tu)

(1 − t)

−2
∫ 1

0

dt ln(t)3 ln(1 − tu)

(1 − t)
− 2 ln(u)

∫ 1

0

dt ln(t)Li2(tu)

(1 − t)

−3 ln(u)
∫ 1

0

dt ln(t)2 ln(1 − tu)

(1 − t)
− 2 ln(u)2

∫ 1

0

dt ln(t) ln(1 − tu)

(1 − t)

+12 Li4(u) (ln(1 − u) − ln(u))

−2 Li3(u) (Li2(u) + 3 ln(u)(ln(1 − u) − ln(u)))

+ Li2(u) ln(u)
(
2 Li2(u) − 4/3 ln(u)2 + 2 ln(u) ln(1 − u)

)

+π2/3
(
Li3(u) − Li2(u) ln(u) − ln(u)2 ln(1 − u)

)

+2 ζ(3) (Li2(u) + 3 ln(u) ln(1 − u)) − 2 π4/15 ln(1 − u)
)
, (34)

where Lin(z) =
∑∞
k=1 z

k/kn are the index n polylogarithms. One can rewrite
eq. (34) in terms of harmonic polylogarithms [15] of weights up to 5. How-
ever, the supersymmetric massless ladder for L ≥ 3, unlike the massless ϕ3

ladder [7], cannot be expressed in a closed form in terms of usual polyloga-
rithms Lin.
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From eq. (34) one can compute the leading singular behaviour of the
function in the limit u→ 0 (corresponding to x12 → 0)

lim
u→0

I3(u1, 0, 1) =
(
−

4

3
ln(u)3 + 8 ln(u)2 − 20 ln(u) + 20 − 4 ζ(3)

)
π6 ,

(35)
and in the limit u→ 1 (corresponding to x13 → 0)

lim
u→1

I3(u1, 0, 1) = 12 ζ(3) (1 − ln(1 − u)) π6 . (36)

To compute the limit x23 → 0, we find it more convenient to use a different
parametrization, namely to choose x1 = 1, with 1 a fixed unit vector and x3 =
ũ1. For non-vanishing u and ũ the two parametrizations can be related by
a scale transformation and the substitution ũ = 1/u. Using again eqs. (27),
(26), (16) and (32) we get

I3(1, 0, ũ1) =

= −
π4

2

∫ 1

0
dt
∫
d4x0

ln(t) (ln(t) − ln(x2
0)) (2 ln(t) − ln(x2

0))

(x0 − 1)2(x0 − t1)2(x0 − ũ1)2
. (37)

In this expression one can take the limit ũ→ 0 under the integral, obtaining
the finite value

lim
ũ→0

I3(1, 0, ũ1) = 20 ζ(5) π6 . (38)

This is not a surprise, since in this limit the 4-point function G3 reduces to a
finite 3-point function. Actually this is true to all orders, hence all functions
GL will be finite in the limit x23 → 0. The finite 3-loop 3-point function gives
rise to a logarithmic divergence in the 4-loop propagator. Our result, eq. (38),
is in perfect agreement with the calculation of this propagator correction [16].

To summarize, the 3-loop integral I3(x1, x2, x3) has a cubic logarithmic
divergence for x12 → 0, a linear logarithmic divergence for x13 → 0 and has
a finite limit for x23 → 0.

6 Conclusions and outlook

In this paper we have worked out a method to substantially simplify the
computation of the supersymmetric massless ladder 4-point diagrams with
four external scalar legs at arbitrary loop order. The main result of our
paper are eqs. (20) and (21) which express the ladder 4-point diagram with
L rungs, GL, in terms of conformal integrals. For L ≥ 3 the integrals in the
supersymmetric case are different from the ones in the non supersymmetric
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case. We obtained two different representations for the conformal integrals in
the supersymmetric case as 3-point functions and as dual momentum space
like integrals. We derived the expression for the 3-loop integral I3(x1, x2, x3)
in the special case when the three points x1, x2 and x3 lie on a straight line
and we computed the singularities of the function. The resulting expression
(see eq. (34)) turns out to be rather involved. For a generic configuration of
x1, x2 and x3 it is, not unexpectedly, even more complicated [14].

In principle, following the same steps as in Section 5 one can iterate the
procedure and derive f4 from f3 etc.. However the complexity of the corre-
sponding formulae grows very fast. Thus effectively such a direct approach
seems very difficult, if not impossible, to pursue. We believe that a better
understanding of the structure and the properties of the relevant conformal
integrals is necessary at this point. Another interesting open problem is how
to extend our construction to diagrams involving also vector superfields.
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