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ABSTRACT: Dystroglycan (DG) is an adhesion molecule playing a crucial role for tissue stability during
both early embriogenesis and adulthood and is composed by two tightly interacting sulsHbi(s;
membrane-associated and highly glycosylated, and the transmenff2@e Recently, by solid-phase
binding assays and NMR experiments, we have shown that the C-terminal domaiD@finteracts

with a recombinant extracellular fragment®»DG (positions 654-750) independently from glycosylation

and that the linear binding epitope is located between residues 550 and &d3®f In order to elucidate
which moieties of3-DG are specifically involved in the complex wit-DG, the ectodomain has been
recombinantly expressed and purified in a labelé@ {°N) form and studied by multidimensional NMR.
Although it represents a natively unfolded protein domain, we obtained an almost complete backbone
assignment. Chemical shift indéx]—'5N heteronuclear single-quantum coherence and nuclear Overhauser
effect (HSQC-NOESY) spectra anélun 1o coupling constant values confirm that this protein is highly
disordered, butH—1°N steady-state NOE experiments indicate that the protein presents two regions of
different mobility. The first one, between residues 659 and 722, is characterized by a limited degree of
mobility, whereas the C-terminal portion, containing about 30 amino acids, is highly flexible. The binding
of f-DG(654-750) to the C-terminal region of the subunit,a-DG(485-620), has been investigated,
showing that the region gi-DG(654-750) between residues 691 and 719 is involved in the interaction.

Dystroglycan (DG) is an adhesion molecule composed which is likely to represent, together with integrins, a major
of two subunits that interact tightly in a noncovalent fashion. molecular bridge connecting the cytoskeleton to the sur-
o-DG, extracellular and highly glycosylated, binds with high rounding basement membrane in skeletal muscle and in a
affinity a number of basement membrane proteins such aswide variety of tissues2( 6), including the central and
laminins, agrin, perlecan, neurexin, and biglycdn 2), peripheral nervous system and several epithélja (
whereas the transmembrafi®G interacts with dystrophin, DG plays an important role in muscle stability. It was
utrophin, and other cytosolic proteins, such as rapsyn, gpon that in some muscular dystrophies the integrity of
caveolin-3, anc_j Grbx-5). DG IS an important component o complex is largely altered and a frequent event can
of the dystrophin-glycoprotein complex (DGC), formed also be the absence of both DG subunits or onlDG (8)
by sarcoglycans, dystrobrevins, syntrophins, and S‘WCOSp"’mMoreover, the disruption of the DG gene results in IetHaIity

during mouse early embryogenes®.(The importance of
T The financial support of CNR, target project “Biotechnology” and DG biological function is further stressed by recent studies
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o-DG binding site. It has been shown that LG/LNS domains  Preparation of Recombinant LabeledN,3C]-5-DG-

are characterized by a series of antiparglistrands forming (654—750). The labeled recombinant fragme#tN,*3C]-3-
af-sandwich, showing a structure similar to the one of lectins DG(654-750) was expressed ik. coli BL21(DE3) as
(15, 16). The molecular details of the interaction widthDG thioredoxin fusion protein that also contains an N-terminal
have not yet been clarified, and although a series of positively Hiss tag and a thrombin cleavage site. Bacterial cells were
charged residues are likely to be involved in the recognition grown at 37°C in 1.2 L of normal LB medium until an OD
of negatively charged carbohydrate moieties protruding from at 600 nm of 0.5-0.6. After centrifugation, the cellular pellet
theo-DG molecule, a direct contribution of protetprotein was collected and resuspended in 400 mL of MQ 1
interactions could not be ruled o4, 18). As far as3-DG (containing 48 mM NgHPQ,-7H,0, 22 mM KHPQO,, 8.5

is concerned, it was shown that the WW domain, the DG- mM NacCl, and 18 mMNH,CI) for two times. Cells were
binding domain of dystrophin, containing two Trp residues, then resuspended in 300 mL of minimal medium containing
needs its EF-hands to interact witkDG (19). Furthermore, M9 1x, 2 mM MgSQ, 0.1 mM CaC}, 0.4% (w/v)

a synthetic peptide spanning the last 15 C-terminal amino b-glucose!®Ce, and an appropriate amount of BME vitamins
acids of3-DG (881-895) has been cocrystallized with the 100x solution purchased by ICN Biomedicals. After an hour
WW DG-binding domain of dystrophin and the structure of of growth at 37°C in this medium, cells were induced with

the complex was obtained at the atomic lexad)( IPTG and harvested aft8 h (27). Cell lysis and protein
DG is expressed as a single precursor protein and its twopurification were carried out as already described. The yield
subunits are formed by a posttranslational cleav2ggl). of the recombinant labeled protein was approximately 1 mg/L

Itis likely that the direct interaction betweenDG andj-DG of LB medium.

is one of the major factors affecting the stability of the DG =~ NMR Sampleg*N,*C]-3-DG(654-750) and Trxe.-DG-
complex @2). The C-terminal region ofx-DG has been  (485-620) were dialyzed in sample buffer containing 20 mM
demonstrated to interact withDG (23, 24). By an approach ~ NaH,PQ,, 0.15 M NaCl, 1.25 mM CaG) and 1 mM MgC}
based on solid-phase binding assays with a series ofat pH 6.5 and then concentrated with Centricon 10000 to a
recombinant fragments harboring progressive deletions, it hasfinal concentration of 306400 uM; 5% D,O was added.
been shown that the binding epitope f8+DG resides We used 0.15 M NaCl to increase the protein solubility,
between amino acids 550 and 585 of the C-terminal domainwhereas 1.25 mM Cagand 1 mM MgC} are essential for

of a-DG (23). A further analysis carried out with NMR  the binding betweefi-DG(654—-750) and Trxe--DG(485-
allowed us to map with higher detail the binding epitope 620) and showed no influence on the chemical shifts of
and indicated that a linear sequence between positions 550*°N,**C]-3-DG(654-750) (data not shown).

and 565 represents the major binding epitopg G (654 NMR ExperimentsThe NMR data were recorded on
750), a recombinant polypeptide corresponding to the N- Bruker Avance 400 and 700 MHz spectrometers equipped
terminal extracellular region g8-DG (24). with pulsed field gradient triple-resonance probes. The

Previous studies have shown ti#fabG(654-750) can be temperature was held constant at 298 K. Chemical shifts for
classified as a natively unfolded protein, showing few H and!3C are referred to DSS, whereas #8X calibration
elements of classical secondary structug. (In this paper, NH4CI was used as standard.
an extensive NMR study @f-DG(654—750) is reported. In The following triple resonance experiments were recorded
particular, we investigated the propensity3eDG(654—750) on [**N,=C]-3-DG(654-750) at 400 MHz: the HNCAZS)
to form secondary structures and the mobility of the entire and HN(CO)CA 9) spectra were acquired as 34N) x
polypeptide chain. Moreover, an analysis of the interaction 24 (3C) x 2048 {H) complex points data set; the acquisition
betweens-DG(654-750) ando-DG(485-620) has shown  times were 38.5, 10.8, and 319.5 ms respectively. The HNCO
that a region between residues 691 and 719 is directly (28) spectrum was acquired as 34N) x 30 (°C) x 2048
involved in the binding with the C-terminal domain@DG. (*H) complex points data set; the acquisition times were 38.5,

24.8, and 319.5 ms respectively. At 700 MHz the CBCANH
MATERIALS AND METHODS and CBCA(CO)NH 80) spectra were acquired as 36N)

Preparation of Recombinant Fragmentall the DNA x 50 (BC) x 1024 {H) complex points data set; the
manipulations required for the production of the recombinant acquisition times were 23.0, 5.1, and 90.9 ms respectively.
proteins under analysis have been already described elseThe 3D HNN spectrum3l, 32) was recorded with the
where @3). Murine DG recombinant fragments were ex- following parameters: 48 complex poinf8N and*®N) and
pressed irEscherichia colBL21(DE3) as thioredoxin (Trx) 1024 complex pointst), 24 scans for each fid, acquisition
fusion proteins, which also contain a N-terminal ¢iag times of 30.7 ms N and *N) and 86.9 ms ). The
and a thrombin cleavage sit®6). Bacterial cells were  relaxation delay was sebt2 s and the total experimental
cultured at 37°C in 1.2 L of normal LB medium until an  time was 38 h. A water flip-back version was used.

OD at 600 nm of 0.8; cells were induced with IPTG and  The H—'N HSQG-TOCSY experiments 33) were
harvested after 3 h. The cellular pellets were resuspended irrecorded as 804d) x 32 (*N) x 512 (H) complex points

a lysis buffer containing 5 mM imidazole, 0.5 M NaCl, 20 dataset with acquisition times of 9.5, 20.5, and 45.1 ms,
mM Tris-HCI and 1 mM PMSF at pH 7.9. Cell lysis was respectively, and with mixing times ranging from 40 to 60
achieved by sonication. The fusion proteins were purified ms; the'H—N HSQC-NOESY (34) spectra were recorded
by nickel nitrilotriacetate affinity chromatography. Tox- as 60 {H) x 42 (*°N) x 1024 {H) complex points data set
DG(485-620) was used as it is, wheregG(654-750), with acquisition times of 12.5, 36.3, and 160 ms, respectively,
with the foreign residues Gly-Ser at the N-terminus, was and with mixing times ranging from 100 to 250 ms. Two-
obtained upon thrombin cleavage. The yield of the recom- dimensional (2D) HSQC spectra were recorded with a water
binant protein was approximately 5 mg/L of bacterial culture. flip-back version 85) as 100 {*N) x 1024 {H) complex
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m.musculus 485 SGVPRGGEPNQRPELKNHIDRVDAWVGTYFEVKIPSDTFYDNEDTTTDKLKLTLKLREQQ 544
h.sapiens SGVPRGGEPNQRPELKNHIDRVDAWVGTYFEVKIPSDTFYDHEDTTTDKLKLTLKLREQQ
x.laevis SGVP----- NTDPELKNHIDKVVAWVGTYFEVKIPPDTFYDREDGTTDNLQLTLVPRIKA
d.rerio = o—-------- NIKPELRNPIDQVNAYVGTYFEVKVPSDTFFDKEDGTTDKLRLTLRKG-ND
Kk kkk ok kkok kokkkkkkkk ok kkkok kk kkk ok kkxk
m.musculus 545 LVGEKSWVQFNSNSQLMYGLPDSSHVGKHEYFMHATDKGGLSAVDAFETHVHKRPQGDKA 604
h.sapiens LVGEKSWVQFNSNSQLMYGLPDSSHVGKHEYFMHATDKGGLSAVDAFETIHVHRRPQGDRA
x.laevis SAGEKMWVMLNSTSQVMYGMPDYIHIGDHEYYLKAADKAGRTAVDALEIQVRNLFQKQPS
d.rerio VVADDSWIQFNSTSQLLYGLPDQEHAGKHEYFMQATDKGGLYAMDAFEVRVSMWGNSVKP
ko okk kksokkokk Kk Kk _kkkoookokk k  kokkoko ok

m.musculus 605 PARFKARLAGDPAPVVNDIHKKIALVKKLAFAFGDRNCSSVTLONITRGSIVVEWTNNTL 664
h.sapiens PARFKAKFVGDPALVLNDIHKKIALVKKLAFAFGDRNCSTITLONITRGSIVVEWTNNTL
x.laevis PVKFHAKFHGDHNAVINDINKKILLVKKLAFAFGDRNSSSITLHNITKGSVVVDWTINNTF
d.rerio PVLFTAVFDGDARTVTNDIHKKILLVKKLSQSFGDRNSSTITLKSITKGSIIVEWTNNSL

* ok ok . kx d okkk o kkk kkkkk, .okkkkk ko .kk, kk.kk. okokkkk. .
m.musculus 665 PLEPCPKEQIIGLSRRIADENGKPRPAFSNALEPDFKALSIAVTGSGSCRH--LQFIPVA 722
h.sapiens PLEPCPKEQIAGLSRRIAEDDGKPRPAFSNALEPDFKATSITVTGSGSCRH--LQFIPVV
x.laevis PTEPCPVEQVESVGKKIYDERGSPRQHFVNSVEPEYKLLNISLSFTGSCKHKNFRYIPMR
d.rerio QQSPCPKDQIQQLSKKISDPEGKPSSIFKFTMEPDFRPSNITVRGTASCRN- -YMFVPLG

M R I * HER A SR I R
m.musculus 723 PPSPGSSAAPATEVPDRDPEKSSEDDVY 750
h.sapiens PPRRVPSEAPPTEVPDRDPEKSSEDDVY
x.laevis PEEPIPTAVAPTVAADRNPEKSSEDDVY
d.rerio -EIPDPTPSPGTPAVG—AGRQSTDDVY
* Lk kkkk

Ficure 1: Multiple alignment ofM. musculusand other DG sequences. The presence of an identical residue in all the sequences analyzed
is indicated by an asterisk; of conserved substitutions, by two dots; of semiconserved substitutions, by a sidgleRtizifjons 485653

and 654-750 correspond to the C-terminal regionceDG and to the ectodomain @FDG, respectively. The post-translational cleavage
carried out by a still unknown protease occurs between residues 653 and®54 (

points data set, with eight scans for each free induction decayfragment [°N]-3-DG(654-750) at pH 6.5 and 23C is
(fid) and with acquisition times of 64 m3°\) and 163 ms  shown in Figure 2. The low chemical shift dispersiortdf
(*H). The delay time between scans was 2 s, and the between 8.7 and 7.7 ppm is indicative of a largely unfolded
measuring time was 2 h. The (3D) HNHA spectru)( polypeptide. Despite the small chemical shift dispersion of
was recorded as 40°N) x 52 (tH) x 1024 (H) complex IH, 13C2, and3C’ nuclei, it was possible to obtain an almost
points data set, with acquisition times of 25.6, 9.3, and 90.1 complete assignment of the backbonele®G(654—750),
ms, respectively3g). The'H—°N steady-state NOE spectra by a combination of classical 3D NMR experiments on the
(35), as 100 ¥N) x 2048 {H) complex points data set, with  double-labeled®N/*3C protein 80), i.e., HNCO, HNCA, HN-
acquisition times of 64.1 and 163.4 ms, respectively and 100(CO)CA, HNCBCA, HN(CO)CBCA, 'H—15N HSQC-
scans for each fid, were recorded with and without proton TOCSY, and a recently published sequence, HNN, particu-
saturation during relaxation delay, wia 5 srecycle delay.  larly useful for partially folded proteins3(, 32). In fact,
The total experimental time was 62 h. Data were processedthis experiment provides interresidue-N connectivities
with NMRPipe @7) and analyzed with the NMRView 5.0  exploiting the larger chemical shift dispersion of tHel

software package3g). resonances. All the NH groups were assigned with the
exception of the following amino acids: the two N-terminal
RESULTS foreign residues Gly-Ser, plus S654, 1655, C669, Q673, and

Backbone NMR Resonances Assignmenf-BiG (654 two stretches 701704 and 713715. The lack of their
750).The primary structure, including the C-terminal region relative peaks in all the 3D spectra is probably due to the
of a-DG and the ectodomain @DG (positions 485-750), fast exchange of their amide protons with the solvent and/
is reported in Figure 1. A high degree of identity and OF conformational exchange in the millisecond time scale
similarity among different species is evident, particularly in that broadened the peaks. Chemical shift values of backbone
higher vertebrates (e.g., human and mouse) but also wherf€sonances were deposited in the BioMagResBank (http:/
fish (Danio rerio) and amphibians)(enopus |aa's) are WWW.me’b.WiSC.edu) under accession number 5743.
considered. All our recombinant fragments refer to the mouse The possible occurrence of elements of secondary structure
sequence. was investigated by means of the chemical shift index (CSI)

A selected region of théH—1°N heteronuclear single- protocol for3C* and'3CO (41), and the measurement of
guantum coherence (HSQC) spectrum of the recombinant3Jyy ., Obtained by a 3D HNHA spectrundg). Chemical
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[15N]-5-DG(654-750) at 25°C in 20 mM sodium phosphate buffer ~ assignments.
at pH 6.5, and (B) its enlarged central region.
B-DG(654-750), a'H—'N steady-state NOE experiment

shift values oft3C* and 3CO are highly sensitive to their  was carried out. This experiment measures the NOE between
local conformation and their deviation from known values the amide nitrogen and its attached proton. Structured regions
for a random coil conformation are typically indicative of of a protein show typically &H—N NOE on the order of
classical secondary structudly. In our case, no stretch with ~ 0.7—0.9, depending on the magnetic field and the global
a defined CSI tendency was observed (Figure 3A,B). The correlation time of the molecule. Figure 4 represents the
same result was obtained through the analysis ofdfer. intensity of the NOE effect between the amide nitrogen and
couplings, which are related to titedihedral angle. Figure its proton versus the amino acidic sequencg-&fG(654—
3C reports the coupling constant values measured for well- 750). The analysis of the measured effects reveal GHiab-
resolved peaks of the HSQC spectrum. Values around 4 and(654—750) shows no peaks with NOEs exceeding 0.5, which
9 Hz are characteristic af-helices ang3-strands, respec- is again indicative of a highly mobile conformation.
tively (42). Most of the coupling constants are within the Nevertheless, the trend of the NOEs suggests the presence
interval 5.5-7.5 Hz, representing typical average values for of two distinct regions i3-DG(654—750). The first one is
flexible portions of a protein42). between positions 659 and 722 in the primary sequence and
H—15N Steady-State NOE Experimenfs.obtain further is characterized by positive NOEs. The second one, which
information about the flexibility of the polypeptide chain of approximately corresponds to the last 30 amino acids of the
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FIGURE 5: H—15N HSQC spectra (700 MHz) of 320M [15N]-5-DG(654-750) (A) alone, (B) with 45Q«:M Trx, and (C) with 400uM
Trx-0-DG(485-620).

recombinant fragmer-DG(654-750), is characterized by
the presence of negative NOEs. These results indicate that 1199
the C-terminal region of the protein displays a higher degree
of internal motion then its N-terminal region.

Titration of [*°N]-3-DG(654~750) with Trxe.-DG(485~
620) Fusion Protein.As shown by solid-phase binding
assays, soluble biotinylat¢gdDG(654—750) was able to bind
the C-terminal region oé-DG immobilized on microtiter
plates 43). We have monitored by a series of 2D HSQC
spectra the interaction ofN]-3-DG(654—-750) with the
unlabeled C-terminal domain ofDG, in its fused form with
thioredoxin, Trxe-DG(485-620), which had better solubil- 119.9
ity than o-DG(485-620) alone in the experimental condi- '
tions used. Trx alone does not interact withN]-3-DG(654—
750) as it does not induce any changes irhts-°N HSQC 120.7

120.7

121.5

>N (ppm)

119.9

1120.7

spectrum (Figure 5A,B). The addition of ToxDG(485-

620) to ['°N]-5-DG(654—-750) produces a line broadening

and a strong reduction in the peak intensities of some residues 101.5/N6%4 - ‘@N 1215

located in the A69%1719 region, which therefore could 7840 832 824 816 840 832 824 8.16
represent the-DG binding epitope (Figure 5C). The most

influenced residues are A691, F692, S693, N694, D699, 'H (ppm)

F700, V707, L716, Q717, F718, and I719. One representativeFigure 6: Two different regions ofH—5N HSQC spectrum (700
region of the HSQC spectrum of5N]-5-DG(654—-750) MHz) of 320 uM [*5N]-B-DG(654-750) (A) alone, (B) with 160

alone (Figure 6A) and in the presence of increasing amountsl(44'\g5U_néaé%§|ed Lr?giDGt(t?i%_(El%/lo%" © WDitGh(i%%t_“ngf)X-X-DG-
H H , an Wi X-o- . AIrows
of Trx-0-DG(485-620) (Figure 6B-D) is reported. indicate the most influenced residues.

DISCUSSION C-terminal region ofx-DG and resides in a region between
Structural Analysis gf-DG(654—750).DG is an adhesion  residues 550 and 5623, 24). In this study, we carried out
molecule that plays an important biological role since it a series of NMR experiments in order to collect further
ensures the formation of a stable molecular bridge betweenstructural information on a recombinant fragment corre-

the cytoskeleton and the basement membrane in skeletasponding to the extracellular N-terminal region of the
muscle and in a wide variety of tissue®).(DG is formed subunit,5-DG(654-750), which we had previously analyzed
by two subunits,oc and 3, interacting tightly but in a by fluorescence, circular dichroism, and solid-phase binding
noncovalent fashion. The interaction between DG’s subunits assays 45, 44).

is crucial for the formation of the DG complex and the Using a set of multinuclear and multidimensional NMR
intersubunit binding surface is likely to represent one experiments, we were able to obtain an almost complete
important “hot spot”, whose perturbation might influence the assignment of the backbone nuclejlebG(654-750). Both
diverse functional activities of DG. We have already shown the CSI analysis offC* and'3CO chemical shifts antlin qa

that the binding epitope fof-DG is located within the  coupling constant values indicate a very flexible and
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disordered conformation for the protein in solution. More- drive the conformationansembléoward a unique extended
over, the reduced number of sequential connectivities in the conformation. The mechanism of interaction would involve
IH—15N HSQC-NOESY spectrum confirms the absence of a strong reduction of entropy that could result in a low
stable elements of secondary structure. All these data provideassociation rate for the complex betweerands-DG. This
compelling evidence thgt-DG(654-750) molecules rep-  hypothesis is supported by kinetic analysis of our data.
resent anensembleof different populations of disordered Typically, in NMR experiments three different time
polypeptide chains. Interestinglii—*N steady-state NOE  regimes of exchange can be distinguished: fast, intermediate,
experiments (Figure 4) show that the region between residuesgng slow 44). Namely, if the exchange between free and
659 and 722 presents weakly positive NOEs, which are hound forms of B-DG(654-750) is fast, a progressive
indicative of some degree of motional restriction, whereas difference in the chemical shifts of the protein residues
the C-terminus A722-750) appear to be highly flexible,  sensitive to the binding emerges during the titration: if the
as supported by the presence of negative NOEs. exchange is intermediate a line shape broadening of the peaks

Toward the Identification of the Epitope forDG Binding. occurs upon ligand addition, whereas if the exchange is slow
Although the ectodomain ofi-DG displays an unfolded two distinct peaks of different heights at different chemical
conformation, it has been previously shown that it is able to shifts appear. However, it should be noted that the line
bind recombinant fragments belonging to the C-terminal broadening could be due to the complexation of a small
domain ofa-DG in solid-phase binding assay43}. The molecular weight compoun@{DG) with a large molecular
binding epitope fo3-DG has been identified to be located weight compound (Tne-DG), which naturally leads to
between amino acids 550 and 5650DG (23, 24) (Figure broader lines, regardless of the exchange rate.

1). Furthermore, it was shown that a complex between a |n our system, a line shape broadening of some peaks and
synthetic peptide corresponding to the 5&B5 sequence 3 strong reduction of their intensity induced by To®G-
of a-DG and the recombinant ectodomain gfDG is (485—-620) occur in the spectra. This allows us to rule out
established also in solutior24). Similar to the C-terminal that the binding is in a fast exchange (Figure 6). The
region of a-DG, the extreme conservation of the primary differences in chemical shift between bound and @G
sequence of thg-DG ectodomain makes it very difficultto  are unknown and we could not discriminate whether the
identify abona fidespecific sequence that would represent interaction is in a regime of intermediate or slow exchange.
a unique conserved binding epitope farDG (23) (see Nevertheless, we could expecka in the range of 15 at
Figure 1). In the case of the C-terminal regionwDG, 700 MHz. Previous studies provided an appakenif about
after the identification of the 550565 binding epitope for 1075 M for the a/B-DG complex 23). From these data we
B-DG, it was observed that some residues were conservedcan figure out &, that would be lower than the association
also in the DG-like proteins of invertebrate species such asrate expected for a process limited by diffusion. It can be
Drosophila melanogasteor Caenorhabditis elegang3). assumed that the recognition betweerand-DG requires
This does not emerge when the sequences corresponding tevercoming a high activation barrier, but that the complex
the -DG ectodomain from different species are analyzed formed would be quite stable and it would dissociate slowly.
(data not shown). To identify the binding epitope t6DG, This implies that3-DG binds a-DG with high selectivity
further NMR experiments on tHéN-labeleds-DG ectodomain  but with moderate affinity. This is in line with the data
in the presence of the recombinant C-terminal domain of suggesting that DG might play a role in signal transduction,
o-DG were carried out. as the high selectivity would correctly address the signal to
The titration of [5N]-5-DG(654-750) with Trx-a-DG- a specific target molecule, whereas the moderate affinity
(485-620) shows that Trx-DG(485-620) does not induce ~ Would favor the interaction with different partne5( 46).
any increase of the chemical shift dispersion that would be  Model for the3-DG Ectodomainj-DG(654-750) is able
indicative of a significant conformational rearrangement of to bind the recombinant C-terminus @fDG, alone and as
B-DG(654-750). Nevertheless, the addition of TaxDG- fusion protein with thioredoxin, as well as the natiweDG
(485-620) results in a line broadening and a reduction of in sitro (23, 43), demonstrating that the glycosylation is not
the intensity of the peaks located between residues A691essential for the interaction between the two DG subunits.
and 1719. In particular, the most influenced residues are This important point must be taken into account in order to
A691, F692, S693, N694, D699, F700, V707, L716, Q717, support a model for the structural organization HDG
F718, and 1719. Differential effects on these residues canectodomain that would be valid also in living cells or tissues.
be interpreted either as a direct involvement in the interaction - \ye propose a model in which the N-terminus of DG
with Trx-a-DG(485-620) or as a consequence of a local gctodomain, characterized by a restricted mobility and
conformational change induced by the binding. Further coniaining the binding epitope far-DG, is bridged to its
experiments will be necessary to identify the amino acids {ansmembrane peptide by a highly flexible linker domain
directly interacting witho-DG. (Figure 7) that allows it to move and to bind more
The region A69%*1719, although basically unfolded, components46). The ectodomain off-DG maintains its
shows a minor degree of mobility when compared with the extended conformation also when bound to ¢heubunit,
C-terminus. Accordingly, it was observed that the highest similarly to what is observed in the complex between a short
heteronuclear NOEs belong to the region (A6%119) peptide spanning the C-terminal intracellular regiop- G
influenced by Trxe-DG(485-620). This indeed suggests and dystrophinZ0). This is in line with the observation that
that the N-terminal portion g8-DG ectodomain is prone to  many intrinsically unstructured proteins preserve their ex-
form contacts with Tna-DG(485-620). In other words, the  tended conformation also in the presence of their target
interaction with the C-terminal domain ofDG is likely to proteins 47).
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Ficure 7: Model for 5-DG(654-750). The region of reduced
mobility and the putative binding epitope forDG are marked in
panel A. The proposed simplified model f8rDG with a short
flexible link between the transmembrane region and the more
compact N-terminal domain, containing the binding epitope for
o-DG, is shown in panel B.

11.

The importance of the biological role of natively unfolded
proteins or protein domains is becoming increasingly evident
(45, 47). It has been estimated that a large proportion of the
proteins in living cells are natively disordered (up to 33%
in bacterial and up to 66% in eukaryotic cellg)8). This
fact raises the important question of why evolution has
selected such a large fraction of proteins in a disordered
conformation. It has been proposed that if the disordered 14
proteins were more structured, cell crowding would be a
severe problem leading to a dangerous increase in cell size
of 15-30% @8). Structural characterization of natively

unfolded proteins are thus of central importance in order to 15

enlarge our understanding about the relationship between
protein folding and functiom vivo, andj-DG represents a
significant example. The structural plasticity gfDG is
likely to increase the overall conformational freedom of the

DG complex, helping to sustain the high mechanical forces 17.

developed upon muscle activity, and also to favor the
interaction ofa-DG with its multiple binding partners26).

The identification of the region of-DG in which the

a-DG binding epitope is located represents a remarkable
advancement in the knowledge of the molecular interface

between DG subunits and it could be a crucial step to achieve 19.

a rational design either for efficient therapies for muscular
dystrophies or to prevent those infections depending on DG
targeting 49, 50).
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