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Abstract: Ataxia-telangiectasia mutated (ATM) kinase is a one of the main guardian  

of genome stability and plays a central role in the DNA damage response (DDR).  

The deregulation of these pathways is strongly linked to cancer initiation and progression 

as well as to the development of therapeutic approaches. These observations, along with 

reports that identify ATM loss of function as an event that may promote tumor initiation 

and progression, point to ATM as a bona fide tumor suppressor. The identification of ATM 

as a positive modulator of several signalling networks that sustain tumorigenesis, including 

oxidative stress, hypoxia, receptor tyrosine kinase and AKT serine-threonine kinase 

activation, raise the question of whether ATM function in cancer may be more complex. 

This review aims to give a complete overview on the work of several labs that links ATM 

to the control of the balance between cell survival, proliferation and death in cancer. 
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1. Introduction 

Ataxia-telangiectasia mutated (ATM) is a serine threonine kinase originally identified as the 

product of the gene mutated in ataxia telangiectasia (AT). This gene is located on human chromosome  

11q22-23 and codes for a large protein of about 350 kDa characterized by the presence of  

a phosphatidylinositol 3-kinase (PI3K)-like serine/threonine kinase domain flanked by FAT  

(FRAP-ATM-TRRAP) and FATC (FAT-C-terminal) domains which modulate ATM kinase activity 

and function. ATM has been identified as a major player of the DNA damage response (DDR) elicited 

by double strand breaks (DSBs). According to this observation, ATM kinase activity is induced by 

DSBs and participates in the different responses to this stress including cell cycle arrest, DNA repair 

apoptosis and senescence, in order to prevent genomic instability. The molecular mechanisms through 

which ATM exerts its canonical function as a guardian of genomic stability have been largely 

investigated and have been already reported in several excellent reviews [1–8]. However, novel players 

are continuously identified and the signaling cascades that allow the choice between cell cycle arrest 

and DNA repair, or apoptosis or senescence induction, have been only partially elucidated. 

Briefly, a model for canonical ATM activation in response to DNA damage has been proposed [9]. 

According to this model, in response to DNA damage monomeric active ATM in the nucleus is 

released from an inactive dimeric form. Bakkenist and Kastan proposed that this activation relies on 

phosphorylation of Ser1981, which would be required to allow the dimer dissociation [9]. Although 

the occurrence of ATM phosphorylation on Ser1981 is largely used as a marker of activation, in vitro, 

in vivo evidence suggest that this event may be dispensable for the induction of ATM activity [10,11]. 

ATM activation in response to DNA damage relies on the MRN complex (composed by MRE11, 

RAD50 and NBS1 proteins) which ensures ATM recruitment to the DSBs [12,13]. In response to 

DNA damage, ATM triggers the activation of a wide range of substrates that allow the modulation of 

cell cycle arrest, repair, apoptosis or senescence; comprehensive reviews on the molecular mechanisms 

through which ATM may exert this function have been well covered by several laboratories [1–8] and 

this theme is therefore not the focus of this work. According to its essential role in the maintenance of 

genomic stability ATM has been canonically considered a tumor suppressor gene. 

2. Role of Ataxia-Telangiectasia Mutated (ATM) Deficiency in Mouse Models 

Evidence for a role of ATM in tumor initiation and progression comes also from studies aimed at 

the generation of mouse models in which ATM activity has been genetically modulated. To date 

several models of Atm−/− mice have been generated [14–16]. In all cases Atm deficient mice develop 

thymic lymphoma according to the critical role of ATM in V(D)J recombination, where DSBs 

physiologically occur and promote a DDR. 

More recently, evidence for the ability of ATM kinase dead protein to induce genomic instability  

in vivo has been provided [17,18]. Surprisingly, while ATM deficient mice are born and develop 

normally, transgenic mice homozygous for a kinase dead version of ATM are embryonically  

lethal [17,18]. For this reason, the development of conditional knockin mice for ATM kinase dead will 

be required to further elucidate the role of ATM kinase activity in the development of tumorigenesis  

in vivo. Overall, the ATM knockout and the ATM knockin mouse models provide genetic support  
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in vivo for a significant increase in the rate of lymphoid tumor development associated with  

ATM deficiency. 

The central role of ATM in the prevention of genomic instability, as well as the occurrence of the 

activation of the DDR at early stages of tumor initiation, prompted several groups to investigate the 

role of ATM expression in several tumor models in vivo. ATM loss promotes intestinal tumor 

development in APC mouse models [19]. Loss of ATM significantly augments Myc-induced 

tumorigenesis in epithelial tumor (K5-Myc) as well as lymphoma (Eμ-myc) mouse models [20,21].  

In this context ATM promotes Myc-induced apoptosis, while its loss of expression results in increased 

proliferation. Similarly, ATM heterozygosity increases the incidence of breast cancer in TP53 

heterozygous mice [22]. 

3. ATM Expression or Activity and Human Cancer 

The first clear link between ATM and cancer consists of the observation that AT patients,  

among other features, display an increased predisposition to the development of lymphoma and  

leukaemia [23,24]. This feature has been largely explained by the loss of the fundamental role of ATM 

in the management of DSBs, which physiologically occur in the immune system, and if not repaired 

lead to the unbalance between proliferation, cell death and differentiation [23,24]. More recently, ATM 

kinase has been also identified as a modulator of death receptor induced apoptosis, which also plays a 

crucial role in ensuring the maintenance of the equilibrium and of the functionality of the immune 

system during development and during the immune response in adult life [25]. ATM deficiency results 

in the upregulation of the antiapoptotic protein FLIP (FLICE-like inhibitory protein) and confers 

resistance to programmed cell death elicited by Fas and TRAIL (tumor necrosis factor related apotosis 

inducing ligand) death receptors, suggesting a novel possible link between ATM loss of expression and 

the development of leukaemia and lymphomas [26,27]. 

Several reports suggest that germline ATM mutations enhance cancer predisposition not only when 

both alleles are affected but also when a single copy is hit. Indeed, heterozygous ATM mutations are 

associated with up to a fivefold increased risk of breast cancer development, depending on the type of 

mutation [28,29]. In addition to breast cancer, a next-generation sequencing study recently identified 

ATM heterozygous mutations in the germline of patients with familial pancreatic cancer and point to 

ATM as a novel pancreatic ductal adenocarcinoma predisposition gene [30]. 

Moreover, wide scale studies identified selective changes in ATM expression levels in human 

tumors. These changes are dependent on different causes among which are ATM somatic gene 

mutations or deletions. ATM point mutations or deletions are frequently found in chronic lymphocytic 

leukaemia and are associated with poor prognosis [31]. 

Interestingly, the analysis of data from the Catalogue of Somatic Mutations in Cancer (COSMIC) 

identified ATM mutations or deletions in about 5% of about 9000 samples of all types of solid tumors 

included in this catalogue [32]. In addition to breast cancer [33,34], ATM mutations have been 

identified significantly in lung [35] and colon cancer [36]. 
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4. ATM and the DNA Damage Response (DDR) Activation by Oncogene Stress:  

Is This Only a Barrier to Cancer Development? 

The DNA damage response (DDR) has been suggested to be activated and to act as a barrier at early 

stages of tumor initiation to prevent tumor progression beyond their early stages [37,38]. This idea is 

strongly supported by several observations. The first evidence is the identification in human clinical 

specimens of activated forms of a panel of checkpoint kinases and other proteins that are normally 

induced in the DDR including ATM, Chk1 and Chk2, histone H2AX (γH2AX) and p53. Importantly, 

this activation is clearly detectable already at early pre-invasive stages of tumor development. 

Similarly, DDR activation can be identified in several cell culture and xenograft models as a rather 

acute response to activated oncogenes, leading to cell cycle arrest, senescence or cell death. DDR 

markers in this context correlate with the occurrence of markers of senescence and in vitro and in vivo 

experiments support the requirement of the DDR for senescence induction in response to replicative 

stress elicited by oncogenes [39–41]. The mechanisms through which oncogenes may trigger DDR 

activation have been only partially elucidated. It has been proposed that conditional oncogene 

expression triggers DNA replication stress, including replication fork collapse and subsequent 

formation of DSBs and DDR activation. Additional events that occur in cancer, including telomere 

erosion and induction of reactive oxygen species (ROS) levels, may also trigger the DDR and could 

therefore play a role to link oncogene overexpression and DDR activation [42]. 

Several issues still deserve further investigation. For example neither the molecular mechanism that 

allows some, but not all oncogenes to trigger DDR, nor the significance of DDR activation in a subset 

of solid tumors, have been clearly elucidated so far. It has been shown that a large number of 

oncogenes may elicit the DDR, including cMyc, H-ras, cyclin E, Cdc25A, E2F1, cdc6, and  

ERBB2 [20,37,38,40,43–45]. Conversely, overexpression of the proto-oncogenic cyclin D1 and loss of 

the tumor suppressor p16ink4a failed to activate the DDR machinery [46]. Regarding the type of 

tumors where DDR activation has been detected in human specimens, DDR activation has been identified 

in major types of human carcinomas, including breast, lung, urinary bladder, colon and prostate 

tumors, and melanomas, while it is surprisingly absent from testicular germ-cell tumors (TGCTs) [42]. 

The hypothesis of DDR activation as a cancer barrier, fits well with the observation that DDR 

activation precedes genetic alterations and genomic instability, which are detected at later stages of 

cancer progression. In this light, the idea is that an activated DDR would act as a barrier to cancer 

progression, but at the same time would exert a sort of selective pressure for mutations or epigenetic 

silencing of checkpoint kinases that may occur at later stages and rescue proliferation of incipient 

cancer cells, counteract cell death and therefore ultimately promote cancer progression [42]. This 

hypothesis is in agreement with the tumor suppressor role of many factors that participate in DDR and 

with their loss of expression or mutation in human cancer. 

The functional effect of DDR activation as a barrier to tumor progression deserves further 

investigation. So far it is mainly based on: (1) correlative evidence: (a) mutations affecting components 

of the DDR are frequently associated with predisposition to cancer; and (b) co-expression of DDR 

activation and senescent or apoptosis or cell growth arrest markers; (2) functional requirement of DDR 

for senescent phenotype induction. Despite these supportive genetic data, causal demonstration that 

oncogene-induced DDR may suppress tumorigenesis in vivo is indeed very limited [47–49]. A role for 
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the DDR as a barrier to tumorigenesis in somatic mammary cells following ErbB2 activation has been 

proposed using the RCAS/MMTV-TVA mouse model [45]. The authors provide evidence for the 

induction of an ATM-mediated DDR that activates apoptosis and senescence. However they could  

not functionally demonstrate a role for ATM in restraining ErbB2-dependent tumorigenesis as  

ATM-null mice succumb to T cell lymphomas and other diseases rapidly, earlier than mammary tumor 

development in response to active ErbB2 expression, precluding the in vivo functional experiments [45]. 

More recently, to define the tumor-suppressive function of the DDR in mammary tumor mouse model, 

Petrini and colleagues utilized, the same somatic ErbB2-induced mammary tumor mouse model, in 

combination with mutant mouse strains for a panel of genes coding for components of the DDR, such 

as Mre11ATDL/ATDL, Nbs1DB/DB, Chk2−/−, Nbs1DC/DC Chk2−/−, p53515C/515C, p53−/− and p53BP1−/−, each of 

which shows defects in checkpoints activation, apoptosis and/or DNA repair [50]. The authors could 

clearly show that the MRN complex, but not Chk2 and only partially p53, restrains the hyperplastic 

response and it is required for ErbB2 oncogene-dependent DDR activation and in particular for  

G2 arrest. Consistently, the Mre11ATDL/ATDL genetic background promotes NeuT-dependent tumor 

development and Mre11ATDL/ATDL mammary tumors display high-grade histopathology and are highly 

metastatic to lung compared to wild-type (wt) [50]. 

Recently the identification of an unexpected link between the DDR and the ARF (Alternate reading 

frame) tumor suppressor suggest a more complicated role of the DDR, and in particular of the ATM 

kinase, in restraining of tumor progression upon oncogene expression [51]. The authors identify the 

ATM kinase as a central modulator of the ARF tumor suppressor. Surprisingly, they could show that 

ATM expression and activity restrains ARF activation. They suggest that ATM may promote PP1 

(phosphoprotein phosphatase 1)-dependent dephosphorylation of NPM/B23 allowing the release of ARF 

which can be targeted for degradation by the ubiquitin ligase ULF (Ubiquitin Ligase for ARF) [52]. 

Consistently, ARF expression is enhanced at later stages of tumor progression more than activation of 

the DDR, as shown by the analysis several murine and human tumors, including pancreas, skin, head 

and neck and urinary bladder cancers [53]. These data suggest the presence of two barriers to tumor 

progression: (1) the DDR, that would be activated already by a limited replicative stress; and (2) ARF 

that would require the cross of a higher stress threshold usually supported by multiple oncogene 

activation. This mechanism would ensure a fine tuning of the stress response, but would also suggest 

that the expression and the activity of components of the DDR machinery may exert different functions 

in cancer progression, as well as in cancer response to therapy, depending on the specific oncogenic 

context. In human clinical samples, loss of ATM expression correlated with higher ARF protein levels 

and in xenograft experiments inhibition of ATM promotes the tumor-suppressive function of ARF [52]. 

5. ATM Dependent Modulation of Signaling Pathways Outside DDR Implicated in Cancer 

During the last 15 years, work of many laboratories identified a role for ATM in the modulation of 

numerous signalling pathways whose deregulation in cancer may promote tumorigenesis and tumor 

progression. These include death receptor-induced apoptosis oxidative stress, receptor tyrosine kinases, 

metabolic changes, hypoxia and angiogenesis, and the reactivation of pathways involved in stem cell 

maintenance. Support for this comes also from global proteome analysis, which identified about  

1000 ATM targets in response to ionizing radiation (IR), among which are several proteins that exert 
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important functions outside of the DNA damage response [54,55]. Importantly, although ATM was 

originally identified as a nuclear protein, several reports have demonstrated its ability to localize also 

in the cytoplasm [56–59] and more recently to the mitochondria [60], supporting the idea that ATM 

may participate in several signaling cascades. Here we will review evidence for a role of ATM in these 

pathways and discuss their significance in cancer initiation and development. 

5.1. ATM and Death Receptor Induced Apoptosis 

Fas receptor (CD95/APO-1) and TRAIL receptor belong to the death receptor family which plays a 

crucial role in the transduction of the extrinsic apoptotic signal elicited by specific ligands that upon 

binding to their target receptors trigger their activation. These signaling pathways play an essential role 

in the control of the development and homeostasis of the immune system [25], and more in general, 

participate in the modulation of the equilibrium between proliferation and apoptosis that is often 

aberrantly deregulated in cancer [61,62]. Fas and TRAIL receptors require the binding of their 

appropriate ligands (Fas Ligand and TRAIL) to exert downstream death signaling, characterized by the 

recruitment of several cytosolic proteins to form the death inducing signaling complex (DISC). This 

event is strictly necessary to catalyze the activation of Caspase-8 and Caspase-10 that in turn initiate 

and execute the apoptotic cascade. The activation of these initiating caspases is absolutely needed to 

trigger the apoptotic response to extrinsic death signals and is tightly regulated to avoid undesired cell 

death. This fine regulation is ensured by several proteins, including the FLIP proteins that compete with 

procaspases for binding to DISC, preventing their activation and the following apoptotic cascade [63]. 

Our laboratory identified an interplay between Fas and TRAIL death receptors and the ATM 

signaling pathway, showing that lymphoblastoid cells derived from AT patients which lack ATM 

expression are significantly resistant to Fas- and TRAIL- induced apoptosis [26,27]. Loss of 

endogenous ATM kinase activity results in the aberrant up-regulation of FLIP protein levels. 

Conversely, the induction of ATM kinase activity by treatments that trigger DNA damage, induce the 

down-regulation of FLIP protein levels enhancing Fas sensitivity. This finding suggests that ATM 

loss, reported in several lymphomas, may sustain lymphoma development also because of the 

consequent resistance to Fas-induced apoptosis. Interestingly, Hodgkin Lymphoma cell lines, 

characterized by Fas-resistance and by FLIP overexpression, may be sensitized to Fas upon ATM 

kinase expression, which triggers FLIP down-regulation [26]. 

Collectively, these data identify a molecular mechanism through which ATM kinase may contribute 

to the immune system homeostasis and to prevent lymphoma development [26,64]. 

Recently, we identified a molecular mechanism by which ATM kinase triggers FLIP degradation: 

ATM enhances ITCH E3-ubiquitin ligase activity, which in turn promotes FLIP ubiquitination and 

degradation [65]. The observation that ATM is a modulator of FLIP protein levels whose aberrant 

upregulation has been linked to apoptosis deregulation and to cancer therapy resistance in many 

tumors [66], provides a novel link between ATM loss of function and the acquired resistance of cancer 

cells to apoptosis. This issue will be further discussed in the last section of this review. 
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5.2. ATM and Receptor Tyrosine Kinases 

Amplification or upregulation of growth factor receptor tyrosine kinases (RTKs) are responsible  

for human cell transformation, cancer progression and are considered signs of poor prognosis in  

human cancers [67]. 

Early work showed a defect in the binding affinity of insulin receptors to insulin in AT cells that 

expressed low levels of insulin-like growth factor-I receptor (IGF-IR), which could be restored by 

expression of ATM cDNA [68]. 

Following these observations, Yang and Kastan reported a cytosolic role for ATM in insulin 

signaling. They showed that insulin can activate ATM kinase activity and the absence of ATM 

negatively affected insulin signaling. ATM was shown to phosphorylate 4E-BP1 (eIF-4E-binding 

protein 1) on S111 in response to insulin stimulation, therefore modulating translation initiation [69]. 

Furthermore, ATM modulates the translocation of cell surface glucose transporter 4 (GLUT4) that in 

turn is responsible for glucose uptake in muscle cells [70]. Consistent with this, other studies 

demonstrated that ATM deficiency causes insulin-resistance, resembles the metabolic syndrome and 

increase vascular disease [71]. 

Importantly, ATM has been shown to be a major modulator of AKT activation. AKT plays a key 

role in pathways related to survival by inhibition of apoptotic signals and promotion of cell cycle 

progression, with a clear implication in cancer and other pathologies [72]. Moreover, AKT has been 

shown to be activated in response to a wide variety of growth factors, including insulin or insulin-like 

growth factor I, EGFR and ERBBs, PDGF and MET receptor [72]. Interestingly, knockout mouse 

models for AKT and ATM display similarities in terms of phenotypic abnormalities such as growth 

retardation, defects in the maturation of the immune system, infertility, resistance to insulin and 

radiosensitivity [14,73]. Several studies support ATM as a major determinant of full AKT activation, 

through AKT phosphorylation on serine 473 [70,74–76]. Moreover ATM pharmacological inhibition 

has been shown to inhibit AKT-dependent prosurvival signal in cancer cells [77,78]. 

The identification of ATM as a positive regulator of AKT activity strongly supports the idea that 

ATM may play a role downstream a panel of RTKs and more importantly that in certain contexts ATM 

may positively modulate cell survival and proliferation and tumor progression. 

Recently, evidence for a role of the ATM protein, not only downstream of RTKs, but also upstream 

as a modulator of RTK expression on the cell surface has been provided [79]. The authors showed that 

ATM kinase activity sustains the upregulation of MET expression in response to IR, through the 

activation of the transcription factor NF-κB, which in turn leads to overexpression of MET at the cell 

surface. This study suggested that ATM activity may help to sustain MET-dependent tumorigenicity [79]. 

5.3. ATM and Oxidative Stress 

It is well accepted that oxidative stress may play a role in cancer, as several oncogenes induce 

oxidative stress, cancer cells generally display abnormalities in metabolism and mitochondrial 

functionality and are resistant to hypoxia [80]. 

Over the past two decades, evidence has accumulated that links ATM deficiency to increased 

oxidative stress. The first hint that ATM may modulate the response to oxidative stress came from the 
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observation that ATM deficiency leads to increased levels of ROS which may play an active role in 

neurodegeneration linked to AT. Using Atm−/− mice, the authors demonstrated that the absence of 

ATM increased the levels of ROS in vivo and caused signs of oxidative stress in the central nervous 

system, in particular in cells of the cerebellum, the primary site of neurodegeneration in AT patients [81]. 

More recently, regulation of oxidative stress by ATM has been proposed to play a role in several 

cellular functions including haematopoietic and neuronal stem cell self-renewal and survival [82–84], 

RTK activation [85] and hypoxia [86,87], that are often aberrantly regulated in cancer. 

The molecular mechanisms that link the induction of ROS in the absence of ATM on one side and 

the activation of ATM by ROS on the other side have not been fully elucidated. 

Recently, a potential role for ATM in the control of an antioxidant response via the pentose 

phosphate pathway (PPP) has been reported and may explain the increase in oxidative stress shown in 

ATM null tissues [88]. The authors investigated the link between ATM and PPP and showed that 

ATM stimulates the PPP by inducing glucose-6-phosphate dehydrogenase (G6PD) activity,  

which in turn promotes nicotinamide adenine dinucleotide phosphate (NADPH) production and  

nucleotide synthesis [88]. 

Since mitochondria are also the major source of intracellular ROS, several laboratories investigated 

whether ATM may modulate their functionality. Indeed, cells lacking ATM function exhibit alterations 

in both mitochondrial homeostasis (including defects in mitochondrial structure, decreased membrane 

potential and respiratory activity) [89,90], and mitochondrial biogenesis pathway mediated by AMPK 

activity [91,92], that in turn is responsible for elevated ROS production and oxidative stress of  

AT cells. Recently Valentin-Vega and colleagues reported that also in vivo, loss of ATM results in 

mitochondrial dysfunction in thymocytes, including elevated mitochondrial number and increased 

mitochondrial ROS production [60]. 

A milestone in the elucidation of the connection between oxidative stress and ATM has been 

established by the identification of a direct activation of ATM in the cytoplasm in response to 

oxidative stress. The authors could demonstrate that in this context, ATM activity is induced via a 

molecular mechanism entirely different from that which ensures ATM activation by DNA damaging 

agents [93]. ATM can be directly activated by hydrogen peroxide and forms an active dimer,  

cross-linked by several disulfide bonds. They identified a critical cysteine residue, C2991, located  

in the FATC domain of ATM kinase that seems to be essential for activation of ATM by  

hydrogen peroxide [93]. 

Although oxidative stress and DNA damage may independently trigger ATM activation and may 

therefore target different substrates, caution should be taken as oxidative stress and ROS production 

usually induce DNA damage, and therefore ATM is often exposed to both DNA damage and oxidation 

simultaneously [85]. This observation supports the idea that the role of ATM in cancer may be very 

complicated as ATM impinges on several pathways simultaneously that differently modulate tumor 

initiation and progression. 

5.4. ATM, Hypoxia and Angiogenesis 

Hypoxia is a common phenomenon in cancers. Interestingly, low oxygen tension or hypoxia is a 

common feature of all solid tumors, and hypoxia is associated with tumor development, malignant 
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progression, metastatic outgrowth, and resistance to therapy and is considered an independent 

prognostic indicator for poor patient prognosis in various tumor types [94]. A series of complicated 

mechanisms have been developed at the cellular, tissue as well organismal level, to respond to 

hypoxia. For example, glycolysis increases to compensate for energy deficiency resulting from 

compromised oxidative phosphorylation under the hypoxic condition; angiogenesis increases during 

hypoxia to improve the blood vessel density and subsequently elevate the oxygen supply. 

Evidence for a link between ATM and hypoxia has been provided by several laboratories [86,87,95–98]. 

Importantly, hypoxia has been shown to trigger ATM activation which in turn phosphorylates HIF-1α, 

a transcription factor that plays a central role in the cellular response to hypoxia, by activating the 

downstream regulation of metabolism, mitochondrial function and angiogenesis [86]. The authors 

could show that ATM-dependent phosphorylation of HIF-1α on Ser696 stabilizes the protein under 

hypoxic conditions, which in turn ensures mTORC1 inhibition and growth suppression, to 

accommodate the unfavourable hypoxic condition. Interestingly, they suggest that downregulation of 

ATM levels, which frequently occurs in cancer, may be linked to the escape of the repression of 

mTORC1 to allow tumor growth in hypoxia. These data are supported by the observation that ATM 

levels are aberrantly low in the hypoxic regions of pediatric solid tumor xenografts tissues pointing to 

ATM loss of function as an early step in the genesis of childhood solid tumors [86]. Interestingly 

mTORC1 negatively regulates autophagy, a catabolic process in which cells deliver cytoplasmic 

components for degradation to the lysosome. Concomitant with mTORC1 repression by ROS, 

autophagy increased in cells treated with H2O2 [99]. Consistently Alexander and colleagues 

demonstrated that ATM signaling in response to ROS also leads to mTORC1 inhibition and is 

involved in the consequential induction of autophagy [100]. The connection between autophagy and 

ATM deserves further investigation but again, it may contribute to enhance the complexity of the 

ATM role in cancer, as the deregulation of autophagy is considered to contribute to cancer initiation 

and progression and might represent a novel putative target for cancer therapy [101]. 

The comprehension of the molecular mechanism through which hypoxia triggers ATM activation 

deserves further investigation, although it seems independent of the DDR [86]. Interestingly, we have 

reported that ATM may function as an oxygen sensing protein. The disability of ATM-negative cells to 

upregulate HIF-1α would be consequential to the impaired sensing of oxygen variations [87]. 

One of the most important responses to hypoxia is angiogenesis. The expression of HIF-1 correlates 

with hypoxia-induced angiogenesis as a result of the induction of a major HIF-1 target gene, the 

vascular endothelial cell growth factor (VEGF), also in tumor development where novel vessels are 

required to sustain tumor growth [80]. Okuno and colleagues recently reported that Atm in mice is 

activated specifically in immature vessels in response to the accumulation of ROS. Moreover, they 

could show that Atm deficiency lowered tumor angiogenesis and enhanced the antiangiogenic action of 

agents that block VEGF, suggesting that ATM activation in response to ROS may positively impinge 

on tumor growth because of its ability to promote angiogenesis [102]. 

5.5. ATM Activity Modulates Stem Cell Survival and Proliferation 

It has been largely demonstrated that several pathways that are involved in development and in stem 

cell proliferation are aberrantly upregulated in cancer. This observation has driven the hypothesis of 
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cancer initiation and propagation by a limited number of cancer cells, termed cancer stem cells, or 

more correctly, cancer initiating cells [80]. Several studies have been aimed to uncover whether ATM 

activity may play a role in stem cell maintenance and proliferation. Two main issues will be discussed 

here: (1) Evidence that support a role for ATM in stem cell survival; (2) reports that suggest a  

possible role of the DDR in general and specifically of ATM in pathways classically linked to stem  

cell maintenance. 

Regarding the first point, early evidence for a role of ATM in regulation of stem cell survival was 

first described in neuronal stem cells (NSCs) [103]. In particular ATM expression is abundant in 

NSCs, but it is gradually reduced as the cells differentiate, suggesting that ATM may play an essential 

role in NSC survival and function [103]. Recently two groups suggest molecular mechanisms involved 

in ATM dependent regulation of NSC survival. ATM is required to maintain normal self-renewal and 

proliferation of NSCs, due to its role in controlling the redox status. Loss of ATM renders NSCs 

defective for proliferation through oxidative stress-dependent p38 MAPK signalling, suggesting  

that p38 is a central player in the defective proliferation of Atm−/− NSCs induced by oxidative  

stress [84,104]. Moreover, it has been shown that ATM plays a central role in terminal differentiation 

of a human neural stem cell line model through its function in DDR [105]. 

Interestingly, ATM function in the oxidative stress response is also important for homeostasis of 

normal haematopoietic stem cells (HSCs) [82]. Normal haematopoietic stem cells maintain ROS at 

lower levels than their mature progeny to prevent cellular differentiation and sustain long-term  

self-renewal, and the ATM kinase is crucial this process [82]. Recently the Gross Lab suggested that 

the molecular mechanism involved in this regulation requires the interplay between ATM and the BID 

(BH3 interacting-domain death agonist) protein, which would link apoptosis, DNA repair and  

stem-cell quiescence by regulating oxidative stress to enable long-term regenerative capacity [106]. 

In conclusion these papers suggest that the ability of ATM in the control of oxidative stress may 

contribute to the regulation of stem cell survival. 

Evidence for a role of the ATM protein in signalling pathways classically involved in stem cell 

maintenance has been provided. Recently we showed that ATM is a novel positive modulator of ITCH 

E3-ubiquitin ligase activity. A single residue on ITCH protein, S161, which is part of an ATM S/T-Q 

consensus motif, is required for ATM-dependent activation of ITCH. In fact, we provide in vitro  

and in vivo genetic evidence that ATM kinase enhances ITCH enzymatic activity and triggers 

ubiquitination/degradation of ITCH (itchy E3 ubiquitin protein ligase) substrates such as FLIP-L and 

JUN [65]. ITCH is a member of the NEDD4-like family of HECT-E3-ubiquitin ligases, a family of 

proteins that participate in several physiological signaling pathways, including the DNA damage 

response, tumor necrosis factor (TNFα), Notch and Sonic hedgehog signaling [107]. We could 

hypothesize that ATM is involved in regulation of other ITCH substrates, among which is the 

transcription factor GLI-1, a major mediator of the Sonic-Hedgehog (SHH) signalling, which regulates 

tissue patterning and cell proliferation to ensure the correct execution of developmental pathways and 

homeostasis of adult tissues [108]. Interestingly, several lines of evidence suggest a putative crosstalk 

between ATM and the SHH pathway. The first hint comes from the identification of GLI-1 as a 

substrate of ITCH [109,110] and from the observation that ATM modulates ITCH [65]. A second hint 

comes from the observation that WIP1, a Ser/Thr phosphatase aberrantly upregulated in cancer that 

dephosphorylates and modulates, among other targets, also ATM activity [111], is involved in the 



Int. J. Mol. Sci. 2014, 15 5398 

 

 

modulation of the SHH signaling [112]. It has been proposed that during tumorigenesis WIP1  

(wild-type p53-induced phosphatase 1) overexpression might contribute to increase proliferative and 

self-renewing activities of GLI-1, therefore enabling an expansion of cancer stem cells and derived 

progenitors that sustain tumor growth [112]. Finally, a bidirectional connection between the DDR and 

GLI-1 has been suggested. Any inappropriate elevation of GLI-1 would induce the DNA damage 

response, which in turn may decrease GLI-1 activity, ensuring the control of precursors and stem cell 

numbers and preventing tumorigenesis [113,114]. Future experiments will clarify whether, according 

to these reports, ATM kinase may directly modulate SHH signaling therefore contributing to the 

maintenance of stem cell identity. 

6. Modulation of ATM Activity in Cancer Therapy 

Ionizing radiation (IR) and many classical chemotherapeutic drugs trigger ATM kinase activation 

and their outcome is strongly dependent on the functionality of the DDR in general as well as on ATM 

expression and activity. The activation of DDR may promote genomic instability in those tumor 

contexts where its tumor-suppressive function has already been lost, for example following p53 

mutation or loss of expression. Importantly, cells derived from AT patients clearly display a 

significantly augmented sensitivity to IR, pointing to ATM targeting as a valuable tool to modulate the 

sensitivity of tumors to IR or other chemotherapeutic agents [7,32]. The inhibition of ATM function 

has therefore been proposed, similarly to the inhibition of other DDR components, as a valuable 

mechanism to overcome cancer cell resistance to IR or to chemotherapy [32]. So far, four ATM kinase 

inhibitors have been produced: (1) KU-55933 [115]; (2) CP466722 [116]; (3) KU-60019 [77];  

and (4) KU-59403 [117]. Evidence for their ability to sensitise cancer cells to IR has been provided. 

Moreover, KU-59403 has been shown to be able to inhibit in vivo xenograft tumor growth in mice  

by increasing their responsiveness to chemotherapeutic treatment with etoposide and irinotecan  

treatment [117], while KU-60019 may radiosensitize glioma in mouse xenograft experiments [118]. 

Although various ATM inhibitors have been effective in some situations, evidence for off-target 

effects caused by the currently available inhibitors has also been provided. As an example, KU-55933 

has been identified in a screening for compounds that may efficiently inhibit autophagy by targeting 

Vps34 independently of ATM kinase activity [119]. 

One major problem behind the idea of targeting ATM activity for cancer therapy comes from the 

observation that the output of the inhibition of ATM activity does not fully mimic the effect of ATM 

loss of expression. It has been show that when ATM kinase activity is inhibited, but not when ATM 

expression is lost, Sister Chromatin Exchange (SCE) and subsequently HR and DSB repair, are 

impaired [120,121]. Consistently, mouse models genetically modified to express physiological levels 

of catalytically inactive (kinase dead) ATM protein, display higher levels of genomic instability than 

that observed in Atm−/− models. In addition, mice expressing the kinase dead allele are embryonically 

lethal, in contrast to the viable KO mice. While further experiments will clarify this issue, it has been 

suggested that during development inactive Atm may impair the function of the DDR to a higher 

degree than Atm deficiency, particularly affecting DNA repair and resulting in higher levels of 

chromosome instability [122]. 
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Overall, these findings provide support, but at the same time raise some concerns about the 

pharmacological targeting of ATM in cancer therapy. The support is linked to the possible utility of 

ATM kinase inhibitors in the treatment of cancer cells upon establishment of the genetic context.  

For example it has been well documented that, while ATM inhibition sensitizes p53 deficient/mutated 

tumor cells to chemotherapy, it induces chemoresistance in p53 wt backgrounds [123]. The concern 

comes from the idea that the enzymatic inactivation of ATM in normal cells, which for example 

express p53 wt, may substantially enhance genomic instability and therefore generate a boomerang 

effect that ultimately would promote the development of new tumor growth. 

Another possible exploitation of ATM inhibition in cancer therapy is linked to the idea that ATM 

kinase inhibition may be synthetically lethal with the inhibition of other components of the DDR. For 

example, since ATM is involved in the homologous recombination, its inhibition may be convenient to 

sensitize cells to PARP-inhibitors [124,125]. 

Interestingly, a role for the DDR and ATM activation in the regulation of cancer stem cell survival 

has been proposed. Cancer stem cells are a small fraction of cells in the tumor, with the abilities of 

self-renewal and multipotent differentiation that seems to have crucial roles in tumor initiation, 

metastasis and resistance to anti-cancer therapies [126]. In particular, slow proliferation and elongated 

cell cycle may allow cancer stem cells to increase time to repair therapy-induced DNA damage before 

replisome arrival, triggering resistance. Inhibiting the DNA damage checkpoint response may thus 

release the cell cycle brake of cancer stem cells, pushing them into proliferation and specifically 

sensitizing them to radiotherapy. In this context, targeting ATM seems very useful for killing cancer 

stem cells in the tumor. Recent studies have shown that CSCs may promote radioresistance by 

constitutive activation of a DDR started by the ATM protein. This idea was pioneered by Bao and 

collaborators in glioblastoma multiform (GBM) where cells expressing CD133 (Prominin-1), a marker 

for both neural stem cells and brain cancer stem cells, preferentially activate the DNA damage 

checkpoint in response to radiation. In vitro and in vivo experiments showed higher expression of 

activating phosphorylation of ATM, RAD17, CHK1 and CHK2 checkpoint proteins in these cells after  

IR treatment [127]. Indeed, CD133+ cells are characterized by preferential survival after irradiation, 

which may be overcome by treatment with CHK2 inhibitor. Consistent with these studies, two grade 

IV glioma cell lines displaying pronounced and poor stem phenotypes respectively, were pre-incubated 

with a non toxic concentration of the ATM inhibitors KU-55933 and KU-60019 and then irradiated,  

in order to improve the therapeutic efficacy of radiation on glioma stem cells (GSCs). GSCs were 

sensitized to radiation and radio-mimetic chemicals by ATM inhibitors, showing significantly reduced 

survival. No sensitization was observed after cell differentiation, indicating that ATM inhibitors 

specifically sensitize GSCs [128]. Very similar results have been obtained in breast cancer. In these 

studies, the subpopulation of CD44+/CD24−/low cells, enriched for CSCs, of two breast cancer cell  

lines and the primary culture of patient breast cancer cells, demonstrated enhanced expression of 

phosphorylated ATM after radiation, which correlates with increased radioresistance. Using the ATM 

inhibitor KU-55933 they obtained significantly decreased radiation resistance of the CD44+/CD24−/low 

subset isolated both from cell lines and from primary culture [129]. All together, these findings suggest 

a crucial role for ATM signalling in the regulation of survival of CSCs in response to DNA damage, 

suggesting that its inhibition may be exploited for the development of novel therapeutic strategies to 

extinguish CSCs. 
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Importantly, according to the wide range of functions exerted by ATM kinase activity, ATM 

inhibition may be useful to sensitize tumor cells also to other therapeutic approaches that do not target 

the DDR. In particular a positive role of ATM inhibition has been described in combined approaches 

with MET inhibitors [79] and ATM inhibition suppresses cell proliferation and induces apoptosis in 

cancer cells with overactivated AKT [78]. Conversely, ATM activation may promote cancer cell 

sensitivity to TRAIL [24]. TRAIL is an attractive therapeutic tool as it exerts a potent activity on 

cancer cells while it does not significantly affect normal cells [61,62]. As 60% of tumor cell lines  

and most primary cancer are resistant to TRAIL dependent apoptosis, several combined therapy 

approaches aimed to sensitize cells to TRAIL have been developed. One of the main features of 

TRAIL resistance is the aberrantly high level of c-FLIP proteins expression, as described in HCC and 

in other many tumors [61,62] and indeed their targeting enhances TRAIL sensitivity [66]. Evidence for 

the ability of several DNA damaging agents to dampen FLIP protein levels and sensitize cells to 

TRAIL have been provided by several laboratories [66]. We could show that ATM activity is required 

in HCC cells for c-FLIP proteins downregulation [27] suggesting the requirement of ATM activation 

to enable the DDR-dependent enhancement of TRAIL sensitivity at least in some contexts [130]. 

7. Concluding Remarks 

Several pathways link ATM kinase expression and activity to the modulation of the balance 

between cell proliferation and cell death. Although several lines of evidence support a tumor 

suppressor function of ATM, in agreement with its canonical function as safeguard of genomic 

stability, the identification of ATM as a modulator of several additional cellular responses aberrantly 

activated in cancer has provided evidence for new and unexpected roles of ATM as a promoter of 

tumorigenic signals in particular contexts. This duality might be explained by the plethora of functions 

that ATM may exert, and could also be dependent on the specific genetic background. Future 

experiments will clarify the underlying molecular basis and more importantly will uncover its 

significance for cancer therapy. 
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