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medium vector autoregressive models. It is known that Canonical Correlation Analysis
(CCA) does not perform well in this framework, because inversions of large covariance
matrices are required. We propose a method that combines the richness of reduced-rank
regression with the simplicity of naive univariate forecasting methods. In particular, we
suggest the usage of a proper shrinkage estimator of the autocovariance matrices that are
involved in the computation of CCA, in order to obtain a method that is asymptotically
equivalent to CCA, but numerically more stable in finite samples. Simulations and empirical
applications document the merits of the proposed approach for both forecasting and
structural analysis.
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1. Introduction explanation of this finding is that the existence of common
components among time series leads to simple univariate
In principle, the existence of co-movements among eco- models (Cubadda, Hecq, & Palm, 2009) which can be iden-
nomic time series implies that multivariate forecasting tified and estimated easily, whereas the efficient multivari-
methods should outperform univariate techniques. Indeed, ate modelling of many time series is a hard task.
this is the main theoretical motivation for the develop- In a vector autoregressive (VAR) framework, the pres-
ment of models for large multivariate data sets, such as ence of common components is equivalent to imposing
factor models (Forni, Hallin, Lippi, & Reichlin, 2000, 2005; proper reduced rank structures on the model coefficient
Stock & Watson, 2002a,b) and Bayesian vector autoregres- matrices. At the statistical level, these restrictions can
sions (Banbura, Giannone, & Reichlin, 2010). In practice, be tested for and imposed on the estimation by means
however, univariate forecasting models are hard to beat, of Reduced-Rank Regression (RRR) techniques, see inter
particularly for short horizons. In a recent paper, Carriero, alia Cubadda (2007) and the references therein.
Kapetanios, and Marcellino (2011) explore the merits of We propose a method that combines the richness
the best available technology for forecasting large datasets, of RRR with the simplest univariate forecasting method,

and conclude that, for one- and two-step-ahead forecasts,
there are no multivariate models that are able to beat
the univariate autoregressive benchmark. One possible

i.e., each series is forecast by its unconditional mean. To
this end, we resort to a proper shrinkage estimator of the
autocorrelation matrices for computing RRR, in place of
the natural estimator. The resulting estimator is asymptot-
ically equivalent to the Maximum Likelihood (ML) solution,
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Koop (2013) provide convincing evidence that no sub-
stantial predictive gains are obtained by increasing the
dimension of the VAR beyond 20. Hence, we focus on
reduced-rank VAR models, where the number of predic-
tors is considerably larger than in typical small-scale fore-
casting models, but not large enough to resort to statistical
inference that is based on methods involving double
asymptotics (see for example Cubadda & Guardabascio,
2012). We show, by both simulations and empirical ap-
plications, that the proposed approach performs well with
respect to traditional medium-size macroeconometric
methods, and demonstrate that our new method improves
both the forecasting and estimation of structural parame-
ters.

The paper is organized as follows. Section 2 discusses
the theoretical aspects. Section 3 compares various fore-
casting procedures in an empirical application to US eco-
nomic variables. Section 4 uses simulations to evaluate
the merits of the various methods in terms of model
specifications, forecasting performances, and precision in
estimating structural parameters. Section 5 draws some
conclusions, and the proofs of the theorems are reported
in the Appendix.

2. Theory

We start this section by briefly reviewing the reduced-
rank VAR model for stationary time series (see Reinsel &
Velu, 1998, and the references therein) and the associated
estimation issues.

Consider an n-vector time series y; generated by the
following stable VAR(p) model:

p
Ve=) Pyeite=PBxate, t=1,2,...T,
i=1

where § isa pnxn coefficient matrix, x; = [y;, .. ., y;_pH T,
and & are i.i.d. innovations with E(¢g;) = 0, E(g;&;) = Xy,
(positive definite), and finite fourth moments. For the sake
of simplicity, no deterministic terms are included.

If we assume that the series y, exhibits the serial
correlation common feature (Engle & Kozicki, 1993; Vahid
& Engle, 1993), we can rewrite the VAR as an RRR model

Ve = AY'x_1 + & = AF_q + &,

where A and ' are, respectively, full-rankn x gand np x q
matrices, and F;, = v'x, are ¢ common factors.

One well-known method of obtaining the factor
weights 1 is Canonical Correlation Analysis (CCA). In par-
ticular, the matrix i lies in the space generated by [v4, . . .,
vgl, wherev; (i = 1, 2, ..., q) is the eigenvector associated
with the ith largest eigenvalue of the matrix

DINED >N zij‘ Dy

where X = E(X—1X,_;), Xyy = E(yp), and Xy, =
E(x¢_1y;). Finally, the matrix A is obtained (up to an identi-
fication matrix) by regressing y; on the q canonical factors
[vi, ..., vq]'X:_1, see, inter alia, Anderson (1984) for fur-
ther details.

As a statistical method, CCA has numerous merits, of
which the most important are that it provides the ML

solution under the Gaussianity assumption and is invariant
to non-singular linear transformations of both y, and x;_1.
Moreover, Carriero et al. (2011) have recently extended
consistency results for the case that the number of predic-
tors N = np diverges more slowly than T.

However, CCA suffers from some limitations when the
system dimension is large. First, CCA is unfeasible when
the number of observations T is less than the number
of predictors N. Second, even when T is large, the CCA
solution is numerically unstable and statistical inference
is unreliable in a medium N framework, see Cubadda and
Hecq (2011).

We propose to solve these problems by shrinking the
sample autocorrelation matrix of series y,, which CCA is
based on at the sample level. In particular, CCA is usu-
ally performed by solving the eigenvector equation S, 'Sy,

S,y S0 = AU, where

S — |:5yy 5yx:|

Sxy sxx
is the sample covariance matrix of the series w; = [y;,
x;_;1'. We suggest that a proper shrinkage estimator of the
covariance matrix ¥ = E(w,w;) be used in place of S.

In general, a shrinkage estimator (Stein, 1956) is an
optimally weighted average of two existing estimators,
an asymptotically unbiased estimator that suffers from a
large estimation error, and a target one that is biased, but
with a lower estimation error. We propose a regularized
version of CCA that requires the solution of the eigenvector

equation Z,'ZyZ, ', i = A9, where

Z=oD+ (1—-a)S,

D is a diagonal matrix having the same diagonal as S, and
o € [0,1].

Note that when o = 1, the full-rank regression case co-
incides with n univariate white noises, whereas when o =
0, we go back to the usual CCA solution. Hence, in a way,
we are shrinking RRR towards the simplest forecasting uni-
variate model, i.e., the white noise. When variables are
made stationary by differencing, our target is equivalent to
the so-called Minnesota prior in Bayesian VAR modelling,
where the forecasts of the time series levels are shrunk to-
wards random walks (see, inter alia, Litterman, 1986).

In the choice of the optimal «, we follow the data-
based approach of Ledoit and Wolf (2003), which has
the advantage of providing a closed form solution to
the optimization problem. In particular, Ledoit and Wolf
(2003) propose the minimization of a risk function based
on the Frobenius norm of the difference between the
shrinkage estimator Z and the covariance matrix X, i.e.,

R(@) = E(IZ — Z|*)
N-+n N+n )
= E |:ZZ(O{(1U—|—(1 —(X)Sij—dij) j| N
i

and the solution to this optimization problem is

>~ Var(sy)
. A
D[var(sy) + orl’
i#j
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which has a neat interpretation: the weight on the target
estimator, which is a diagonal matrix having the same
diagonal as S, increases as either the squared covariances
between the series w; decrease or the variances of the
entries of S increase.

Ledoit and Wolf (2003) propose a feasible estimator of
o*, but their solution is only valid for i.i.d. data. Hence, we
need to extend their approach to the case that data are
generated by vector stationary processes. To this end, we
provide the following theorems.

Theorem 1. If y, is generated by a linear process with abso-
lutely summable coefficient matrices and errors g, with finite
fourth cumulants, then

*=0Q1/T).
Proof. See Appendix.

Theorem 2. A consistent estimator of the optimal shrinkage
constant limr To* is obtained using T&*, where

Y IRV (v
. i
G =
© SURVY) + ng]
i#j

v? = Wit Wi, and LRV(v ) isa conszstent kernel estimator of

LRV (v}), the long-run variance of v}.

Proof. See the Appendix.

Remark 3. Sancetta (2008) also provides an extension of
the Ledoit and Wolf (2003) approach to the case of de-
pendent data. However, our results differ from those of
Sancetta (2008) in two ways. First, he assumes that both
N and T diverge, whereas we actually keep N fixed, as it
is appropriated for the medium N framework that we are
considering here. Second, our theorems refer to the whole
autocorrelation matrix S, rather than to the contempora-
neous variance matrix Sy, only.

Note that if we compute CCA using Z* (i.e., Z witha =
a*) in place of S, we obtain estimators of the canonical
coefficients and weights that are more stable numerically
than those obtained by CCA. In what follows, we call
this procedure Regularized Canonical Correlation Analysis
(RCCA).

Remark 4. In light of Theorems 1 and 2, we see that RCCA
is asymptotically equivalent to CCA. Hence, standard infer-
ential results for CCA apply to RCCA as well.

3. Empirical analysis

In order to perform our empirical out-of-sample fore-
casting exercise, we use a data-set similar to those of Ban-
bura et al. (2010) and Cubadda and Guardabascio (2012).
It consists of 20 US monthly time series divided into three
groups: (i) real variables such as industrial production and
employment; (ii) asset prices such as stock prices and ex-
change rates; and (iii) nominal variables such as consumer
and producer price indices, wages, and money aggregates.

The time period is from 1960.01 to 2011.12, leading to
an overall sample size of T* = 624. All of the variables
are transformed in order to achieve stationarity, then de-
meaned and standardized to a unit variance. The series un-
der analysis and the transformations used are reported in
Table 1.!

The forecasting exercise is performed using a rolling
window of 10 years, and hence, T = 120. For five fore-
casting methods, direct forecasts of y, ., are computed us-
ing the predictors X, = [y;,....y,_, 4" fort =T +
p,...,T*—hand h = 1, 3,6, 12. In particular, the com-
peting methods are:

1. The h-step-ahead Ordinary Least Squares (OLS) fore-
casts, obtained as B"x,, where

B = X'X)"XY.

X =[X—r41, - Xeoplhand Y = [Yerpign, -0, Yo
2. The Regularlzed Least Squares (RLS) forecast, obtained
as ﬂRLer, where

_ x—lox
RLS Z ny’

and Z* = o
xy XX

covariance matrix of [y, erh] .
3. The h-step-ahead CCA forecasts, obtained as

Z*
[ i ] is our shrinkage estimator of the

PO
ﬁCCAXr = Y 'Feca(FecaFeea) ™ Fecars

. Feear—n) and Feear =
(fccants - - -focaqe)' are the first q canonical factors
estimated by CCA.

4. The h-step-ahead RCCA forecasts, obtained as

where F = (Fecar-1+1: - --

PO
ﬂRCCAXZ = Y'Freea(FrecaFreea) ™ Freca,os

» Freca,z—n)" and Freear =
(frecants - - -frecag,e)’ are the first g canonical factors
estimated by RCCA.

5. The h-step-ahead Principal Component Regression
(PCR) forecasts, obtained as B x., where

where F = (Freca,r—T41, - - -

K14
Bhx = TyA; ' TIX'Y.

Zq is the diagonal matrix of the g largest eigenvalues of
Y t—r_141 XX, and 7y are the associated eigenvectors.

In order to fix the lag order p, we look at the information
criteria by Akaike (AIC), Schwarz (SIC) and Hannan-Quinn
(HQIC), having estimated the VAR models by both OLS and
RLS. With the former method, AIC suggests p = 2, whereas
both SIC and HQIC indicate p = 1; on the other hand, when
RLS is used in estimation, AIC suggests p = 3, whereas SIC
and HQIC indicate p = 1 and p = 2, respectively. Hence,
we compare the results for the various methods, letting p
vary from 1 to 3, and find no significant gains from using
a lag order longer than 2. We therefore estimate a VAR(2)
model for all of the multivariate forecasting methods.

1 Since the JoC-ECRI Industrial Price Index was not available before
1985, its values for the period 1960.01-1984.12 are reconstructed using
the index of sensitive materials prices.
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equal to T1/32

Table 1
Data description.
Variable Transformation Acronym
Personal Income (1—-D0DIn PI
Real Consumption (1-=LIn RC
Industrial Production Index (1—=1L0L)In P
Total Capacity Utilization 1-10 TCU
Unemployment Rate (1-10D UR
Employees on Nonfarm Payrolls Private (1-L)In EMP
Housing Starts In HS
Money Stock: M1 1-1L(1—-1LIn M1
Money Stock: M2 1-1L(1-1LIn M2
Institutional Total Adjusted Reserves 1-1L"(1—-1DIn TAR
Nonborrowed Reserves 1-1L"(1—=1L)In NBR
Standard and Poor’s Common Stock Price Index (1-1L0L)In SP500
Effective Federal Funds Interest Rate 1-10 FYFF
US Treasury Interest Rate (1-10D TIR
US Effective Exchange Rate (1-1L0L)In EER
Producer Price Index: Finished Goods 1-1L"(1—=L)In PPI
Consumer Price Index 1-L(1—-L)In CPI
Personal Consumption Expenditure Deflator 1-1L(1—-1L)In CED
JoC-ECRI Industrial Price Index 1-1L*(1—=1L)In JEIPI
Average Hourly Earnings 1-L%)(A=1L)In AHE
The application of CCA, RCCA and PCR requires the Table 2
number of factors g to be fixed. For each of these methods, TRMSFE, sample 1960-2011.
q is chosen recursively according to AIC, SIC and HQIC. Method|criterion h=1 h=3 h=6 h=12
The application of RCCA and RLS requires consistent RCCA/AIC 108.30 101.49 112.02 114.80
estimates of the long-run variances of the cross-products RCCA/SIC 118.73 99.35 93.05 87.28
of elements of w;. To this end, we opt for the estimator Iégg%z@c }‘2’;37“3’ ]g‘;-g‘z‘ 1?;2; 133-?3
proposed by Newey and West (1987), with a bandwidth CCAJSIC 106.86 98.48 98.04 10422
' ) . CCA/HQIC 109.19 101.77 105.83 114.93
Finally, the benchmark univariate forecasts are ob- PCR/AIC 104.26 108.82 115.52 106.15
tained through the n univariate AR(p) models that are se- PCR/SIC 119.49 107.33 103.17 90.71
lected recursively by the AICwith0 < p < 6. PCR/HQIC 104.59 105.83 111.45 102.63
" OLS 139.58 166.24 167.86 186.82
In order to take the effects of the “Great Modera- RLS 107.59 119.50 124.74 122.01

tion” into account, we consider three forecast evaluation
samples: 1960.01-2011.12 (full sample), 1960.01-1984.12
(pre-Great Moderation) and 1985.01-2007.12 (Great Mod-
eration).

Tables 2-4 report the sums of the mean square forecast
errors relative to the AR univariate forecasts (TRMSFE) of
all of the series and the three samples.

The empirical findings indicate that RCCA delivers the
most accurate forecasts in 11 cases out 12; the only ex-
ception is in the pre-Great Moderation sample for h = 6,
where CCA with q selected by SIC is the best forecast-
ing method. In particular, the RCCA method performs best
when q is chosen by HQIC. Focusing on the shortest fore-
casting horizon, the performance of RCCA is comparable to
those of the AR benchmark in the full and pre-Great Mod-
eration samples, whereas in the Great Moderation sample,
the univariate forecasts outperform all of the multivariate
ones forh = 1.

In addition to considering the overall forecasting per-
formances of the models, we also focus on four key target
series: the Industrial Production Index (IP), Employees on
non-farm payrolls (EMP), the Effective Federal Funds Inter-
est Rate (FYFF), and the Consumer Price Index (CPI).

2 Alternative choices of the bandwidth do not alter the results
significantly.

Note: TRMSEFE is the sum of the mean square forecast errors relative
to the AR univariate forecast. (R) CCA is (regularized) canonical
correlation analysis. PCR is principal component regression. OLS (RLS)
is ordinary (regularized) least squares. AIC (SIC) (HQIC) is the Akaike
(Schwarz) (Hannan-Quinn) information criterion. The best result for each
forecasting horizon h is in bold.

Table 3

TRMSFE, sample 1960-1984.
Method/criterion h=1 h=3 h=6 h=12
RCCA/AIC 107.49 93.06 92.61 90.60
RCCA/SIC 112.02 91.16 86.57 8249
RCCA/HQIC 100.31 89.44 87.36 84.97
CCA/AIC 117.49 96.57 95.97 93.11
CCA/SIC 110.67 90.60 85.61 82.54
CCA/HQIC 110.76 94.85 89.42 86.98
PCR/AIC 104.50 101.54 104.82 98.27
PCR/SIC 114.66 98.01 92.69 84.99
PCR/HQIC 105.06 99.52 100.58 93.96
OLS 132.60 143.45 145.71 149.52
RLS 108.03 114.61 118.98 120.80

See the notes to Table 2.

In order to check whether the differences between the
MSFEs of the two best forecasting methods are statistically
significant, we performed the version of the Diebold and
Mariano (1995) test introduced by Harvey, Leybourne, and
Newbold (1997). In particular, the null hypothesis of equal
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regression. International Journal of Forecasting (2014), http://dx.doi.org/10.1016/j.ijforecast.2013.10.005




E. Bernardini, G. Cubadda / International Journal of Forecasting I (111N) IIE-11E 5

Table 4 Table 7

TRMSFE, sample 1985-2007. IR, Relative MSFE: sample 1960-2011.
Method/criterion h=1 h=3 h=6 h=12 Method/criterion h=1 h=3 h=6 h=12
RCCA/AIC 120.51 104.02 106.83 106.66 RCCA/AIC 92.93 94.78 93.79 88.29
RCCA/SIC 122.03 105.41 94.50 88.52 RCCA/SIC 91.95 79.77 84.59 80.09**
RCCA/HQIC 109.87 96.68 90.15 89.98 RCCA/HQIC 94.92 85.69 87.96 84.73
CCA/AIC 134.49 109.81 117.14 113.46 CCA/AIC 107.46 98.84 97.93 88.31
CCA/SIC 122.08 104.31 93.66 89.27 CCA/SIC 94.83 80.56 83.98 83.82
CCA/HQIC 125.93 102.47 96.59 96.34 CCA/HQIC 96.51 94.36 88.96 87.74
PCR/AIC 116.51 112.05 110.89 104.62 PCR/AIC 85.19 90.40 97.89 104.07
PCR/SIC 118.97 104.36 98.95 89.16 PCR/SIC 85.70 82.48 86.18 83.31
PCR/HQIC 112.68 104.81 100.89 96.36 PCR/HQIC 84.61 87.99 97.67 102.24
OLS 155.69 181.89 189.62 187.10 OLS 102.41 139.59 167.29 173.45
RLS 123.46 136.60 144.55 134.74 RLS 88.17 112.65 123.73 137.52

See the notes to Table 2.

Table 5

IP, RMSFE: sample 1960-2011.
Method/criterion h=1 h=3 h=6 h=12
RCCA/AIC 106.59 100.63 110.02 138.82
RCCA/SIC 95.12 89.43 86.23" 83.01
RCCA/HQIC 95.46 91.72 90.10 91.95
CCAJAIC 124.58 110.83 117.61 142.62
CCA/SIC 106.81 94.09 95.78 106.75
CCA/HQIC 107.70 99.85 101.99 124.44
PCR/AIC 100.46 100.13 121.42 136.73
PCR/SIC 87.89" 92.32 92.48 94.64
PCR/HQIC 99.23 94.75 111.10 131.32
oLS 143.08 175.59 177.11 263.82
RLS 105.58 120.49 132.42 151.66

Note: RMSFE is the mean square forecast error relative to that of the AR
univariate forecast. See the notes to Table 2 for the meanings of the other
acronyms.
Indicates significance at the 10% level for the test of equal RMSFEs of
the two best methods.
" Indicates significance at the 5% level for the test of equal RMSFEs of
the two best methods.
*** Indicates significance at the 1% level for the test of equal RMSFEs of
the two best methods.

Table 6

EMP, RMSFE: sample 1960-2011.
Method/criterion h=1 h=3 h=6 h=12
RCCA/AIC 115.05 97.17 101.21 124.16
RCCA/SIC 122.16 102.21 86.95** 77.17
RCCA/HQIC 107.18 98.85 88.50 92.10
CCA/AIC 140.12 109.32 107.20 134.44
CCA/SIC 132.47 114.42 98.96 113.12
CCA/HQIC 125.42 109.15 98.70 127.02
PCR/AIC 101.88 100.04 114.99 114.10
PCR/SIC 94.85*** 94.03 96.51 83.69
PCR/HQIC 95.68 100.90 109.28 110.70
OLS 146.52 131.14 165.79 196.44
RLS 111.57 104.13 125.50 130.56

See the notes to Table 5.

MSFEs is tested against the alternative that the second best
forecasting model has a larger MSFE.

Tables 5-8 report the MSFEs relative to AR univariate
forecasts (RMSFE) for the four series, as well as the test
results of equal MSFEs of the two best forecasting methods.
In order to save space, the results refer to the full sample
only.

The empirical findings indicate that RCCA delivers the
most accurate forecasts in about 62.5% of cases. It performs
best for IP and EMP for the longer forecasting horizons,

See the notes to Table 5.

Table 8

CPI, RMSFE: sample 1960-2011.
Method/criterion h=1 h=3 h=6 h=12
RCCA/AIC 100.89 95.92 102.91 109.29
RCCA/SIC 103.55 86.12 83.30 83.59
RCCA/HQIC 92.38 91.06 85.86 101.27
CCA/AIC 121.95 101.82 113.34 106.93
CCA/SIC 101.10 90.54 88.87 103.24
CCA/HQIC 111.77 99.53 99.78 113.09
PCR/AIC 92.66 106.83 110.90 77.65
PCR/SIC 93.93 89.13 98.78 78.50
PCR/HQIC 92.48 99.41 107.49 75.33
OLS 139.15 183.84 161.99 105.06
RLS 98.49 124.22 110.62 81.80

See the notes to Table 5.

and for CPI for short term forecasts. Interestingly, RCCA
outperforms the AR benchmark even for short forecasting
horizons. The second-best performer is PCR, which pro-
duces results superior to those of CCA. For all of the meth-
ods, the most accurate forecasts are often obtained when
the number of factors q is chosen according to the SIC.

4. Monte Carlo analysis

In this section, we perform a Monte Carlo study in order
to evaluate the finite sample performances of CCA, RCCA,
OLS and RLS in a VAR framework. We do this by means of
various criteria: first, the sum of the MSFEs relative to uni-
variate AR(p) forecasts for the forecasting horizon h = 1;
second, the percentage of cases in which the various meth-
ods/criteria detect the true number q of relevant factors;
and third, the Frobenius distance between the estimated
structural parameters and the true ones, relative to the
Frobenius distance of OLS (RFD). The structural parameters
are recovered through the Cholesky factorization of the er-
ror covariance matrix ;.

For each criterion, we check whether the differences
between the two best performers are statistically signifi-
cant. In particular, we compute significance tests for the
mean of the differences between the two smallest TRMS-
FEs and RFDs. In order to evaluate the significance of the
differences between the proportions in which the esti-
mated number of factors q is equal to the true one q, we
use the McNemar test for the null hypothesis that the two
best methods identify the correct number of factors with
the same probability.

Please cite this article in press as: Bernardini, E., & Cubadda, G. Macroeconomic forecasting and structural analysis through regularized reduced-rank
regression. International Journal of Forecasting (2014), http://dx.doi.org/10.1016/j.ijforecast.2013.10.005




6 E. Bernardini, G. Cubadda / International Journal of Forecasting I (11IN) IIE-11N

Table 9
Simulation results.
N =20,T =120
Method/criterion Statistics Full sample Pre-great moderation Great moderation
q=>5 q=2 q=2

RCCA/AIC % in whichq = q 29327 10.96 15.56
% in whichq > q 67.96 89.04 84.44
RFD 7272 70.43 55.72""
TRMSFE 105.85" 100.87 106.01

RCCA/SIC % in whichq = q 0.00 1.56 2.64
% in whichq > q 0.00 0.00 0.00
RFD 71617 71.54 57.12
TRMSFE 133.84 106.79 116.88

RCCA/HQIC % in whichq = q 0.80 89.68 80.36
% in whichq > q 0.00 0.10 0.06
RFD 77.48 7155 56.10
TRMSFE 106.51 9451 10097

CCA/AIC %inwhichq=q 13.86 0.84 0.90
% in whichq > q 85.88 99.16 99.10
RFD 97.01 101.38 87.24
TRMSFE 110.86 105.02 111.07

CCA/SIC % in whichq = q 0.00 470 3.14
% in whichq > q 0.00 0.00 0.00
RFD 90.44 108.79 79.11
TRMSFE 128.84 105.08 113.55

CCA/HQIC % in whichq = q 1.38 95.30 " 86.68"
% in whichq > q 0.00 0.54 0.80
RFD 101.64 106.23 86.54
TRMSFE 109.40 95.41 101.85

RLS RFD 73.35 68.79 " 63.12
TRMSFE 116.66 118.79 125.85

oLS TRMSFE 131.75 135.42 143.52

Note: RFD is the Frobenius distance between the estimated structural parameters and the true ones, relative to the Frobenius distance of OLS. The best

result for each criterion and sample design is in bold. See the notes to Table 2 for the meanings of the other acronyms.
Indicates significance at the 1% level of the tests of equal TRMSFEs and RFDs, and of the McNemar test on the differences between the proportions of

cases in which'q = q for the two best methods.

The Monte Carlo design is as follows. Three different
processes are simulated according to the parameter
estimates in the three samples of the empirical analysis.
In particular, we simulate 20 time series accordingly to the
following stationary VAR(2) process:

Ve = P1Yi—1 + Poye—r + €.

In order to challenge the RCCA estimator, the coefficient
matrices @; and &, are set equal to their estimates,
obtained in the empirical analysis through CCA, using the
SIC; ¢ arei.i.d. N,(0, S;.), and S, is the covariance matrix
of the RRR errors. Hence, the Monte Carlo analysis is
designed explicitly to be unfair with respect to the RCCA
approach.’

We generate systems of 20 variables (i.e., N = 40 pre-
dictors) with a number of observations of vector series y;
equal to T 4+ 150, for T = 120, 240. The first 50 points
are used as a burn-in period, the last 100 observations to
compute the h-step-ahead forecast errors for h = 1, and
the intermediate T observations to estimate the compet-
ing models.

The averages of RFD and TRMSFE and the percentages
in which § = q over 5000 replications are reported in
Tables 9-10 for T = 120, 240.

3 Inan alternative Monte Carlo design, the parameters of the simulated
VAR are those obtained in the empirical application through RCCA using
the HQIC. The results, available upon request, are clearly more favourable
for the RCCA method.

The results indicate that, in terms of RFD, the RCCA es-
timator is the best one, with the exception of the Pre-Great
Moderation design when T = 120, where RLS delivers
the best results. The correct number of factors is obtained
more often by using CCA in combination with the HQIC.
However, there is no strong connection between the ex-
act choice of factors and predictive ability. Indeed, RCCA’s
forecasts outperform those of its multivariate competitors,
although no method can beat the univariate forecasts with
the full-sample and Great Moderation designs and when
T = 120. As T increases, the results in terms of TRMSFE
improve for all of the multivariate methods, but the win-
ner is still RCCA, especially if it is associated with the HQIC
for the choice of q.

5. Conclusions

Based on the work of Ledoit and Wolf (2003), we have
proposed a method that allows for shrinking RRR towards
the simplest univariate models, i.e., the white noise. The
suggested method, named RCCA, can be seen as a small-
sample correction for CCA, since the two methods are
asymptotically equivalent.

Using both simulations and empirical examples, we
have shown that RCCA outperforms well-known methods
for macroeconomic forecasting when applied to medium
VAR models. Moreover, our Monte Carlo study reveals that
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Table 10
Simulation results.
N =20,T =240
Method|/criterion Statistics Full sample Pre-great moderation Great moderation
q=>5 q=2 q=2

RCCA/AIC % in whichq = q 66.12"* 55.22 59.16
% in whichq > q 33.88 44.78 40.84
RFD 81.34 78.98 65.19
TRMSFE 91.24** 92.04 95.77

RCCA/SIC % in whichq = q 0.00 87.90 79.84
%inwhichq > q 0.00 0.00 0.00
RFD 89.21 82.08 67.01
TRMSFE 101.08 91.78 96.82

RCCA/HQIC % in whichq = q 55.86 100.00 100.00
% inwhichq > q 0.00 0.00 0.00
RFD 81.06™** 78.51* 64.31"*
TRMSFE 91.71 90.91** 94.67

CCA/AIC % in whichq = q 59.26 4258 42.68
% in whichq > q 40.74 57.42 57.32
RFD 92.62 95.64 86.47
TRMSFE 91.86 92.43 96.37

CCA/SIC %inwhichq = q 0.00 90.26 80.06
% in whichq > q 0.00 0.00 0.00
RFD 95.51 98.33 86.30
TRMSFE 101.63 91.70 96.86

CCA/HQIC % in whichq = q 54.60 100.00 100.00
%inwhichq > q 0.00 0.00 0.00
RFD 92.09 95.22 85.20
TRMSFE 92.46 91.00 94.84

RLS RFD 85.83 80.97 74.81
TRMSFE 98.69 103.28 107.76

OLS TRMSFE 101.85 107.08 111.71

See the notes to Table 9.

RCCA provides more accurate estimates of the structural
parameters than its competitors.

The above findings leave room for several develop-
ments of potential interest, such as the application of
RCCA to the forecasting and analysis of medium dynamic
systems with more elaborate forms of common autocor-
relation features (see for example Cubadda, 2007) and
cointegration (see for example Ahn, 1997). The latter ex-
tension is theoretically challenging, since it would require
a systematic analysis of the properties of the shrinking
approach when some of the variables are non-stationary.
These issues are on our research agenda.
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Appendix

In this appendix we provide proofs of Theorems 1
and 2 from Section 2. Unlike Sancetta (2008), we derive

our asymptotic results by keeping N fixed and letting T
diverge.

A.1. Asymptotic theory for the regularization term o*

Proof of Theorem 1. Let us first derive the asymptotics for

N+n

> Var(+/T. Sij)

i#]
N+4n :
> [Var(sy) + oif]
i#]

We assume, without loss of generality, that E(w;) = 0. We
can write

10
Sij = T E Wit Wit
r=1

where w” = Wit — ﬁ),‘, and ﬁ),‘ = % Zt Wit, Vi.
Let us define &

. 1g
Oij = f ;_] Wit Wit ,

so that
1< 1<
Oij — Sij = T E Wit Wi — T E witwjt
t=1 t=1

T T
1 Z 1 o
== WitWje — | = E Wit Wjr — Wiwj
T t=1 ' T t=1 ' '

Ta* =
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and
ﬁ(&u — Sij) = «/fz]),t])]

By applying the Law of Large Numbers and the Central
Limit Theorem for stationary time series, we get

1
7!11’20 T XI: wit? XI: Wit

N (0, V)E(wjr) = o0p(1).

lim VT Gy — si)

Given that the asymptotic expression for the covariances
of ¢ also applies to s;, we can study the limit behavior of
VT (G — oy).

Now, let us consider as a natural estimator for the

matrix X' (t) = E(w;w;,) the quantities

. 1<
X(r) = T Zwtw;ﬂ-
=1

When we have T observations, we are able only to form

. 1 T-1
X(r) = ﬁZw[w;H, T > 0.
=1

Since the fourth order cumulants of ; are finite, the fourth
order cumulants of y; and w; are too; then, T~! {wr;
Wr4n—j} CONVErges in mean square to zero, so that all con-

vergence properties of X (t) apply to 3 (t) as well.
We find the following expression for the variance of ¢y

Var[oj] = —Var (Z w,twﬁ>
1 1 & |
= ?Vij(o) + T Z (1 - %) i (T)

T#0,7=—T+1
1 7|
= — 1— — ) yi(7),
> (1-5) o
T=—T+1
where y;i(t) = Cov(wit Wi, Wir—Wj—), T=0,...,T—

1.
Let us denote by ki (t1, t2, t3, t4) the joint cumulants of
Wit1, Wjr2, Wke3, Wiea. Then, we have that

Cov[witletzwkt3wlt4] = E[witletzwl<t3wlt4]
—0ii(ty — t1)owu(ts — t3)
oik(ts — t1)oyi(ts — to)
+oi(ts — t1)oj(ts — t2)
+ ki (b1, b2, B3, ta),

where ojj(t; — t1) = E[wir1wje2]. In this way, we get the
following expression for the covariance between 6;;(7) and
ow(t + k) (Hannan, 1970, p. 209):

Cov[Gi(T)61(t + k)]

1 5 Jul
=7 2 (1—7) [aik(u>cr,~z(u+k>

u=-T+1

1
+oy(u+t +kogu—r1)+
T — |ul

xZKU,<,(v,v+r,v+u,v+u+r+k)}, (M
v

where the index v for the summation Z/ issuchthat1 <
v+u<T.

As T diverges, the covariance in Eq. (1) converges to
zero. Indeed, since the fourth order cumulants of w, are
finite, and, given that w; is a linear process with absolutely
summable autocovariances oy(7), we have that

Z Z Z ki (0, , 1, 8)| < o0,
q r s

and the result follows.

Let us now focus on the limit behavior of v/T&;;. From
Hannan (1970, Theorem 14, p. 228), we know that if w;
is generated by a linear process, with &; having the finite
fourth-cumulant function «;jy, then the quantities

VT (Gi(r) — o3(m));

iaj:13~~'7n9 u:Lqu, QZO,

where 0y(1,) = E(wjtWjt4+,), have an asymptotic Gaus-
sian distribution with a zero mean and variance equal to
the asymptotic variance of

my = LRV(vY) = lim T x Var(Gy),

given that ﬁ(s,j — 65 = o(1), Zi# Var(ﬁsij) - 7
< 0.
Since we have previously shown that Var(sy) is 0 (7),

then ", Var(sy) is O (3) as well, and finally, we get

*_1 z -2
o _T<y)+O(T ),

where )" of =y. ®

A.2. A consistent estimator of limr Ta™*

Proof of Theorem 2. In order to get a consistent estimator
of the optimal shrinkage constant, we need a consistent
estimator of 7 and o7; 2 for Vi, j.

We start by showmg the ergodicity in the second
moments of w;. Given Proposition 10.2(b), (d) of Hamil-
ton (1994), the sample variance in a vector autoregres-
sive model, in a sample of dimension T, is a consistent
estimator of the population variance. Given that s; =
% >, WirWje LS E(w;;wjr) = o, and given that the square
is a continuous transformation, we can safely say that s,-zj is
a consistent estimator of %2-

Now, we need to estimate consistently the sum of the
asymptotic variances of s;, fori #j = 1,...,N +n.To
this end, let us write down the long run variance of v; as
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follows:
i . . 1 .
LRV(v}) = Tlingo VTVar(sy) = Tler;o Var 7 Z Wi Wje

1 -« |
Jim - Ty;(0) + > (1—T)Vu(r)

t=—T4+1,7#0
+o00

= > %@,

T=—00

As a natural estimator for y;(r) (r = 0,1, 2,...), we can
use the sample autocovariance of wj wj;:

. 1 - S
vi(T) = 7 Z[wirwjt = Sijl[Wit—r Wje—r — sj].
t

In order for this estimator to be consistent, we need
P
% Zr Wit Wjt Wit —¢ Wijt—¢ —> E(wj Wit Wit -1 wjt—r)~
Recall that v? = wj;wj¢. Then, we can resort to Theorem
2 of Hannan (1970, p. 203) to show that

T
lim — E vl S E@i] ).
T—oo T =

Indeed, since w; has a finite fourth cumulant function,
Elwirwjnwiiswjral < oo, which implies that the condi-
tions of Hannan’s theorem are satisfied, and

T

(1/T) Z Wit Wjt Wit —¢ Wjt—7 — E(witwjtwit—r wjt—r) — 0.
t=1

Hence,
. 1 .. . )
vi(t) = T Z[(witwjt — $i) (Wi r— Wj,e—r — Sij)]

. . . . 2
— E[wirwjewir—r wjt—r — 0],

where
7i(t) = yi(r) t=0,1,...,T—1.

In order to estimate the long run variance of vij Vi, j con-
sistently, we have to estimate the elements of the whole
matrix I' = Iy + Y oo (I + I')), where

yu(®) - ym()
_ yu(t) o yw(7)
Y@ e Y

For estimating the matrix I", we make the following as-
sumption:

Assumption 5. Let T = IA“O + ZZ;} w(t/M)(f, + IA*T’) and
let f, be the natural estimatorof I'; fort =0, 1, ..., T—1.
The kernel function is a twice continuously differentiable
even function with w(0) = 1,w'(0) = 0,w”(0) =
0, w(]1468|) = 0for § > 0, and either (a) w(x)/(1 — |x|)?
converges to a constant or (b) w(x) = 0(x72), as |x| — 1.
For the bandwidth, it is assumed that M = O(T™), where
m e (0,1/2).

__ Under this assumption, as was shown by Phillips (1995),
I' is a consistent estimator of I", so that
> LRV (v}
_ i
S ITIRV (vf) + s3]
i

T&*

where LRV (v) = ;(0) + 2 Y1 w(j/M)7;(z) is a con-

sistent estimator of limr Ta*. W
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