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This paper considers methods for forecasting macroeconomic time series in a framework where the number
of predictors, N, is too large to apply traditional regression models but not sufficiently large to resort to
statistical inference based on double asymptotics. Our interest is motivated by a body of empirical research
suggesting that popular data-rich prediction methods perform best when N ranges from 20 to 40. In order to
accomplish our goal, we resort to partial least squares and principal component regression to consistently
estimate a stable dynamic regression model with many predictors as only the number of observations, T,
diverges. We show both by simulations and empirical applications that the considered methods, especially
partial least squares, compare well to models that are widely used in macroeconomic forecasting.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Growing attention has recently been devoted to forecasting
economic time series in a data rich framework (see, inter alia, Forni
et al., 2005; Stock and Watson, 2002a). In principle, the availability of
large data sets in macroeconomics provides the opportunity to use
many more predictors than those that are conventionally used in
typical small-scale time series models. However, exploiting this richer
information set comes at the price of estimating a larger number of
parameters, thus rendering numerically cumbersome or even impos-
sible the application of traditional multiple regression models.

A standard solution to this problem is imposing a factor structure to
the predictors, such that principal component [PC] techniques can be
applied to extract a small number of components from a large set of
variables. Some key results concerning forecasting withmany predictors
through the application of PCs are given in Stock and Watson (2002a,
2002b) and Forni et al. (2003, 2005). Recently, Gröen and Kapetanios
(2008) have proposed partial least squares [PLS] as alternatives to PCs to
extract the common factors. A different methodological framework is
Bayesian regression as recently advocated by De Mol et al. (2008) and
Banbura et al. (2010). Particularly, these authors attempted to solve the
dimensionality problem by shrinking the forecasting model parameters
using ridge regression [RR].

A common feature of the mentioned approaches is that statistical
inference requires a double asymptotics framework, i.e. both the number
of observations T and the number of predictors N need to diverge to
ensure consistency of the estimators. However, an interesting question

to be posed is how large the predictor setmust be to improve forecasting
performances. At the theoretical level, the answer provided by the
double asymptotics method is clear-cut: the larger N, the smaller is the
mean square forecasting error. However, Watson (2003) found that
factor models offer no substantial predictive gain from increasing N
beyond 50, Boivin and Ng (2006) showed that factors extracted from 40
carefully chosen series yield no less satisfactory results than using 147
series, Banbura et al. (2010) found that a vector autoregressive [VAR]
model with 20 key macroeconomic indicators forecasts as well as a
larger model of 131 variables, and Caggiano et al. (2011) documented
that the best forecasts of the 7 largest European GDPs are obtainedwhen
factors are extracted from 12 to 22 variables only.

The above results advocate in favor of a sort of “medium-N” approach
to macroeconomic forecasting. Specifically, we aim at solving prediction
problems in macroeconomics where N is considerably larger than in
typical small-scale forecasting models but not sufficiently large to resort
to statistical inference that is based on double asymptotics methods. In
order to accomplish this goal, we reconsider some previous results in the
PLS literature in a time-series framework. Particularly, we argue that,
under the so-called Helland and Almoy condition (Helland, 1990;
Helland and Almoy, 1994), both principal component regression [PCR]
and the PLS algorithm due to Wold (1985) provide estimates of a stable
dynamic regression model that are consistent as T only diverges.

Since to date little is known on the statistical properties of PLS in
finite samples, a Monte Carlo study is carried out to evaluate the
forecasting performances of this method in a medium-N environment.
To our knowledge, our simulation analysis is unique in thatwe simulate
time series generated by stationary 20-dimensional VAR(2) processes
that satisfy the Helland and Almoy condition. Indeed, several studies
were devoted to compare PCR and PLS with other methods (see, inter
alia, Almoy, 1996) but always in a static framework. Our results suggest
that dynamic regression models estimated by PCR and, especially, PLS
forecast well when compared to both OLS and RR.

Economic Modelling 29 (2012) 1099–1105

⁎ Corresponding author at: Dipartimento SEFEMEQ, Università di Roma “Tor Vergata”,
Via Columbia 2, 00133 Roma, Italy. Tel.: +39 06 72595847; fax: +39 06 2040219.

E-mail addresses: gianluca.cubadda@uniroma2.it (G. Cubadda),
guardabascio@istat.it (B. Guardabascio).

0264-9993/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.econmod.2012.03.027

Contents lists available at SciVerse ScienceDirect

Economic Modelling

j ourna l homepage: www.e lsev ie r .com/ locate /ecmod



Author's personal copy

In the empirical application, we forecast four US macro time series
by a rich variety of methods using similar variables as in the medium
dimension VAR model by Banbura et al. (2010). The empirical
findings indicate that PLS outperforms the competitors. Interestingly,
Lin and Tsay (2006), Gröen and Kapetanios (2008) and Eickmeier and
Ng (2011) reached similar conclusions using PLS as an alternative to
PCs in large-N dynamic factor models.

The remainder of this paper is organized as follows. The main
theoretical features of the suggestedmethods are detailed in Section 2.
The Monte Carlo design and the simulation results are discussed in
Section 3. Section 4 compares various forecasting procedures in
empirical applications to US economic variables. Finally, Section 5
concludes.

2. Dynamic partial least squares and principal
component regression

Let us suppose that the scalar time series to be forecasted, yt, is
generated by the following regression model

ytþ1 ¼ β′Xt þ εtþ1; t ¼ 1;…; T; ð1Þ

where Xt is N-vector of stationary and ergodic time series, possibly
including lags of yt+1, εt is a serially uncorrelated error term with

E εtð Þ ¼ 0, E ε 2
t

� �
¼ σ 2

ε , E ε4t
� �

b∞, and such that E εtþ1
� ��XtÞ ¼ 0.

Moreover, we assume that deterministic elements are absent from
both time series yt and Xt, and that each element of Xt has unit variance.

In order to reduce the number of parameters to be estimated in
model (1), we follow Helland (1990) and Helland and Almoy (1994)
and take the following condition:

Condition 1. (Helland and Almoy) Let E Xtytþ1
� � ¼ Σxy and E XtX ′tð Þ ¼

Σxx ¼ ϒΛϒ′, where ϒ is the eigenvector matrix of Σxx and Λ is the
associated diagonal eigenvalue matrix. We assume that

Σxy ¼ ϒqξ; ð2Þ

where ϒq is a matrix formed by q eigenvectors (not necessarily those
associatedwith the q largest eigenvalues) ofΣxx, and ξ is a q-vectorwith all
the elements different from zero.

The above condition is discussed at length in Helland (1990) and
Næs and Helland (1993). Essentially, it is equivalent to require that
the predictors Xt can be decomposed as

Xt ¼ θRt þ θ⊥Et ;

where Rt=θ′Xt, Et=θ′⊥Xt, θ and θ⊥ are, respectively, orthonormal
matrices of dimension N×q and N×(N−q) such that θθ′= IN−θ⊥θ′⊥,
E RtE′tð Þ ¼ 0, and Σxy ¼ θE Rtytþ1

� �
. Rt and Et are, respectively, called

the relevant and irrelevant components of predictors Xt. The linear
combinations ϒ′qXt that span the space of the relevant components
are then called the relevant principal components.

In principle, Condition 1 is in line with the common view that
macroeconomic time series are mainly led by few aggregate shocks
(e.g. demand and supply shock), which are independent from minor
causes of variability (e.g. errors in variables or sector-specific shocks).
In Section 4 we will tackle this issue from an empirical viewpoint.

Notice that Condition 1 implies

β ¼ ϒqΛ
−1
q ξ; ð3Þ

where Λq is the diagonal eigenvalue matrix associated withϒq. Hence,
model (1) has the following factor structure:

ytþ1 ¼ ξ′Ft þ εtþ1;

where Ft=Λq
−1ϒ′qXt. Hence, sinceE ytþ1

� ��XtÞ is a linear transformation
of Ft, the predictable component of yt+1 is entirely captured by the q
components Ft. This is not necessarily the case in dynamic factor
models, where the idiosyncratic term is generally not an innovation.1

At the population level, PCR computes the prediction for yt+1 as
β′PCRXt where

βPCR ¼ ϒqΛq
−1ϒ′qΣxy: ð4Þ

In view of Eq. (3), it is clear under Condition 1 that we have βPCR=β.
However, in empirical applications the relevant principal components
must be selected and the eigenvalues of the sample covariance matrix
of the predictors offer no guidance on this choice. Indeed, Condition 1
does not impose that the eigenvalues associated to the eigenvectors
ϒq are the q largest ones of matrix Σxx and there is no sound theo-
retical reason why this should occur (see, inter alia, Hadi and Ling,
1998). As shown by Helland (1990), PLS offer an effective way to
overcome this problem.

PLS, introduced by Wold (1985), is an iterative procedure that
aims at maximizing the covariance between a target variable and
linear combinations of its predictors. In order to accomplish this goal,
the first PLS component ω′1Xt is built such that the weights ω1 are
equal to the covariances between the predictors Xt and the target
variable yt+1. The second PLS component ω′2Xt is similarly con-
structed using a new target variable that is obtained by removing the
linear effect of the first component on yt+1. In general, the weights of
the subsequent PLS factors are set equal to the covariances between
Xt and a novel target variable that is obtained by removing the linear
effects of all the previously obtained PLS components on yt+1. Hence,
let β′PLSXt indicate the prediction of yt+1 using the first q PLS com-
ponents, where

βPLS ≡Ωq Ω′qΣxxΩq

� �−1
Ω′qΣxy; ð5Þ

Ωq=(ω1,…,ωq), and

ωiþ1 ¼ Σxy−ΣxxΩi Ω′iΣxxΩið Þ−1Ω′iΣxy; i ¼ 1;…;N−1 ð6Þ

withω1=Σxy. Since it follows by induction from Eq. (6) thatΩq lies in
the space spanned by the eigenvectors ϒq, it is easy to see that ωi=0
for i=q+1,…,N and βPLS=β.

Further features of PLS are better understood by considering the
following equivalent way to obtain the weights Ωq (Helland, 1990).
Let us define V0, t=Xt and

Vi;t ¼ Vi−1;t−ϕi fi;t ¼ Xt−
Xi

j¼1

ϕj fj;t ; i ¼ 1;…; q; ð7Þ

whereωi¼E Vi−1;tytþ1

� �
,ϕi¼E f i;tVi−1;t

� �
=E f ′i;t f i;t

� �
, and fi, t=ω′iVi−1, t

is the i-th PLS factor.
Eq. (7) tells us that the i-th PLS factor fi, t is constructed as a linear

combination of the predictors Xt (with weights equal to elements ofωi)
after having removed the linear effects of the previously constructed
factors f1, t,… fi−1, t. Moreover, by premultiplying each side of Eq. (7) by
ω′i, we see that i-th PLS component can be rewritten as

ω′iXt ¼ f i;t þω′i
Xi−1

j¼1

ϕj fj;t :

1 This property is shared with models obtained through the reduced-rank VAR
methodology, see, inter alia, Centoni et al. (2007). However, reduced-rank regression
requires the specification of the multivariate model for series (yt,X′t) and it is not
appropriate for a medium N framework, see inter alia Cubadda and Hecq (2011).
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Putting these two observations together, we conclude that the PLS
factors (f1, t,… fq, t)′ are uncorrelated with one other and that they are
a non-singular linear transformation of the PLS components Ω′qXt.
Hence, β′PLSXt may be equivalently obtained by a linear regression of
yt+1 on the PLS factors.

The above alternative way of deriving PLS, which essentially is the
population version of the algorithm popularized by Wold (1985),
reveals that the PLS factors are orthogonal linear combinations of
predictors Xt that are obtained by maximizing their covariances with
the target variable yt+1. Hence, differently from the PCs, the PLS
factors take into account of the comovements between the target
series and the predictors.

Since both PCR and PLS are continuous functions of the elements
of the variance–covariance matrix of (yt+1,X′t)′, it follows that under
Condition 1 the sample versions of Eqs. (4) and (5) are consistent
estimators of β as T→∞ by the consistency of the sample variance–
covariance matrix of stationary and ergodic processes and the
continuous mapping theorem. Chun and Keleş (2010) have recently
proved the consistency of Eq. (5) when N/T→0 as T diverges. This
allows for the number of predictors to increase but at a slower rate
than the sample size, which makes PLS well suitable for a medium N
framework.

However, apart from consistency, little is known so far regarding
the statistical properties of PCR and PLS. This seriously limits the use
of formal testing procedures to choose q in empirical applications.
Hence, this choice is usually carried out by cross-validation selection
rules. We will deal with this issue in Section 4.

In comparative terms, Helland and Almoy (1994) analyzed the
expected prediction errors of PCR and PLS and concluded that no
method asymptotically dominates the other. Stoica and Söderström
(1998) proved that, under mild conditions, these methods are
equivalent to within a first-order approximation. In the next sections
we will assess the forecasting performances of PCR, PLS and other
methods both by simulations and empirical examples.

3. Monte Carlo analysis

Several simulation analyses have compared the performances of
PLS, PCR and other methods in a static framework (see, inter alia,
Almoy, 1996). However, there is a lack of an extensive Monte Carlo
study that examines the forecasting performances of PCR and PLS under
the Helland and Almoy condition. In order to fill this gap, we resort to a
sort of reverse engineering approach. First, we generate the relevant
components from r stationary AR(2) processes and the irrelevant ones
from (n–r)white noise processes,which are independent on each other.
Second, we construct an n-dimensional VAR(2) process by taking
orthogonal linear transformations of the previously obtained compo-
nents. By construction, each element of this VAR(2) process follows a
stable dynamic regression model that satisfies the Helland and Almoy
condition.

We start by simulating the following n-vector of stationary time
series

Ht ¼ α þΠ1Ht−1 þΠ2Ht−2 þ �t ;

where Π2 is a diagonal matrix with the first r diagonal elements π2
drawn from a Un[−0.95,0.95] and the remaining elements equal to
zero, Π1 is a diagonal matrix with the first r diagonal elements π1 are
from a Un[π2−1,1−π2] and the remaining elements equal to zero, α
is n-vector of constant terms that are drawn from a Un[0,n], and �t are
i.i.d. Nn(0, In).

Moreover, we take the following linear transformation of the
series Ht

Yt ¼ QHt ¼ Qα þ QΠ1Q′Yt−1 þ QΠ2Q′Yt−2 þ Q�t ; ð8Þ

where Q is an orthogonal matrix that is obtained by the QR
factorization of a n×n-matrix such that its columns are generated
by n i.i.d. Nn(0, In).

We notice from Eq. (8) that each element of Yt is generated by a
stable dynamic regression model with the same form as Eq. (1),
where yt is a generic element of the vector series Yt, εt is the
corresponding element of Q t, and Xt=[Y′t,Y′t−1]′. Since the relevant
and irrelevant components of Xt are respectively given by

Rt ¼ Y ′t−1Q ⋅r ;Y ′t−2Q ⋅r½ �′

and

Et ¼ Y ′t−1Q ⋅n−r ;Y ′t−2Q ⋅n−r½ �′;

where [Q⋅ r,Q⋅n− r]=Q, and Q⋅ r is an n×r-matrix, we conclude that
Condition 1 is satisfied.

Remarkably, Eq. (8) unravels that series Yt are generated from VAR
processes with a reduced-rank structure. Hence, there is a close link
between the Helland and Almoy condition and reduced-rank VAR
models, which are commonly used in macroeconometrics because of
their statistical and economic properties; see, inter alia, Cubadda
(2007) and Cubadda et al. (2009).

We compare four direct forecasting methods. The first one is the
h-step ahead OLS forecast of yτ+h, for τ=T,…,T+T*−h which is
obtained as X ′τβ̂h where β̂h ¼ X ′Xð Þ−1X ′y, X=[X1,…,XT−h]′, and y=
[yh+1,…,yT]′.

The second method is the ridge regression [RR] forecast, as
suggested by De Mol et al. (2008). Particularly, the RR forecast of
yτ+h is obtained as X ′τβ̂h

λ where

β̂h
λ ¼ X ′X þ λInð Þ−1X ′y;

and λ is a shrinkage scalar parameter. Since De Mol et al. (2008)
documented that superior forecasting performances are obtained for
values of λ between half and ten times the number of predictors N,
we use λ/N=0.5,1,2,5,10.

The third method is the h-step ahead PCR forecast of yτ+h, which

is obtained as X ′τβ̂h
PCR where

β̂h
PCR ¼ ϒ̂qΛ̂

−1
q ϒ̂′qX ′y;

and Xϒ̂q are the q sample PCs that are most correlated with y.
Finally, the last method is the h-step ahead PLS forecast of yτ+h,

which is obtained as

X ′τβ̂
h
PLS ¼ F̂ ′τ F̂ ′F̂

� �−1
F̂ ′y;

where F̂ ¼ F̂ 1;…; F̂ T−h

� �
′, and F̂ t ¼ f̂ 1;t ;…f̂q;t

� �
′ are obtained recur-

sively from Eq. (7) having substituted the population covariances
with their sample analogs.

We evaluate the competingmethods bymeans of the mean square
forecast error [MSFE] relative to an AR(2) forecast. To construct these
relative MSFEs, we simulate systems of n=10,20 variables, i.e. N=2n
predictors, with r=1,2,3, i.e. q*=2r relevant components. Having
generated T+170 observations of the vector series Yt, the first 50
points are used as a burn-in period, the last T*=120 observations are
used to compute the h-step ahead forecast errors and the interme-
diate T observations are used to estimate the various models.

When n=10 (20), we set T=80,120 (240,360) corresponding to
20,30 years of quarterly (monthly) observations, and the relative h-step
ahead MSFEs are computed for h=1,2,4,8 (1,3,6,12). Since the
literature is relatively silent on the choice of q, we examine the
performances of PLS and PCR for q=1,2,4,6,8 despite the true number
of relevant component is q*=2,4,6. This will allow us to investigate the
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implications on forecasting of misspecifying the number of factors for
both PCR and PLS. The results, reported in Tables 1–4, are based on 5000
replications of series yt.

The results indicate that OLS is generally outperformed by the
competitors. Indeed, OLS performs similarly as the other methods
only when q*=6 and with the largest T for each n. This finding
suggests that the cost of ignoring restrictions on β given by Eq. (2) is
high in a medium-N framework, even when the sample size is large.

Looking at the alternative methods, PLS is overall the best
performer. However, RR always produces the most accurate 1-step
forecasts and it performs similarly as PLS when T is small, whereas
PCR performs best for the largest forecast horizon when T is large.

Regarding the implications of the choice of the number of factors,
the best results for both PLS and PCR are generally obtained with q
equal or slightly smaller than q* except for h=1, for which a model
with a lesser number of components than q* produces a lowest MSFE
in most cases. However, for both PLS and PCR, the forecasting
performances appear to be reasonably robust to the choice of q. In
contrast, the performance of RR depends crucially on the choice of the
shrinking parameter λ. In general, λ should increase as q* gets smaller
and N gets larger. Finally, the methods that appear to benefit more
from a larger sample size are OLS and PLS.

Overall, PLS appears to be a valid alternative to more well-known
forecasting methods in a medium-N framework, at least when
Condition 1 is satisfied. In the next section, we evaluate the relative
merits of PCR and PLS in an empirical exercise.

4. Empirical application

In order to perform our empirical out-of-sample forecasting
exercise, we use a similar data-set as Banbura et al. (2010) for their
medium dimension VAR model. It consists of 19 US monthly time
series divided in three groups: i) real variables such as Industrial
Production, employment; ii) asset prices such as stock prices and
exchange rates; iii) nominal variables such as consumer and producer
price indices, wages, money aggregates. The variables are listed in
Table 5, along with the transformations that we apply in order to
render them stationary, thus obtaining the vector series Yt.2 The data
are observed at the monthly frequency for the period

Table 1
Simulations, relative MSFE.

N=20, T=80

q*=2 q*=4 q*=6

Models h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PLS(1) 1.035 0.984 0.975 0.980 0.966 1.007 0.977 0.976 0.959 1.074 1.018 0.995
PLS(2) 1.129 0.971 0.978 0.988 1.016 0.966 0.967 0.980 0.944 1.001 0.988 0.988
PLS(4) 1.203 0.988 1.004 1.021 1.091 0.955 0.980 1.008 1.008 0.950 0.976 1.004
PLS(6) 1.213 1.017 1.038 1.059 1.105 0.968 1.005 1.043 1.026 0.952 0.995 1.038
PLS(8) 1.214 1.050 1.070 1.098 1.106 0.991 1.036 1.080 1.029 0.968 1.021 1.073
PCR(1) 1.012 0.986 0.980 0.982 1.002 1.004 0.986 0.979 1.054 1.068 1.028 0.998
PCR(2) 1.050 0.989 0.988 0.997 1.002 0.985 0.978 0.987 0.991 1.000 0.992 0.993
PCR(4) 1.107 1.010 1.015 1.031 1.036 0.990 0.997 1.019 0.990 0.981 0.992 1.016
PCR(6) 1.146 1.038 1.046 1.068 1.059 1.005 1.022 1.055 1.000 0.985 1.011 1.048
PCR(8) 1.172 1.064 1.077 1.104 1.077 1.023 1.050 1.089 1.011 0.997 1.038 1.084
OLS 1.214 1.245 1.283 1.341 1.106 1.157 1.239 1.319 1.029 1.105 1.215 1.318
RR(0.5) 1.105 1.129 1.155 1.190 1.004 1.047 1.108 1.161 0.933 0.998 1.082 1.148
RR(1) 1.055 1.076 1.097 1.123 0.964 1.003 1.054 1.098 0.903 0.962 1.033 1.087
RR(2) 1.007 1.024 1.042 1.060 0.933 0.966 1.007 1.041 0.887 0.938 0.993 1.034
RR(5) 0.972 0.983 0.994 1.005 0.929 0.952 0.976 0.996 0.914 0.950 0.977 0.996
RR(10) 0.978 0.983 0.987 0.991 0.971 0.982 0.988 0.993 0.986 1.005 1.002 0.999

MSFE are relative to an AR(2) forecast. RR(λ/N) indicates RR with a shrinking parameter λ. Bold figures indicate the best forecasting method.

Table 2
Simulations, relative MSFE — VAR(10).

N=20, T=120

q*=2 q*=4 q*=6

Models h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

PLS(1) 1.002 0.983 0.974 0.981 0.947 1.016 0.986 0.984 0.919 1.072 1.013 0.986
PLS(2) 1.058 0.964 0.970 0.981 0.966 0.965 0.966 0.979 0.890 0.992 0.978 0.973
PLS(4) 1.087 0.966 0.982 0.997 0.998 0.940 0.964 0.989 0.909 0.922 0.951 0.972
PLS(6) 1.088 0.982 1.000 1.019 0.999 0.945 0.977 1.008 0.910 0.912 0.953 0.987
PLS(8) 1.088 0.999 1.020 1.039 0.999 0.957 0.992 1.028 0.910 0.916 0.964 1.005
PCR(1) 0.986 0.979 0.975 0.981 0.985 1.001 0.986 0.980 1.031 1.063 1.017 0.985
PCR(2) 1.000 0.974 0.974 0.986 0.961 0.968 0.967 0.978 0.933 0.976 0.968 0.968
PCR(4) 1.031 0.983 0.988 1.004 0.971 0.963 0.973 0.995 0.911 0.945 0.959 0.977
PCR(6) 1.051 0.997 1.006 1.025 0.982 0.969 0.986 1.014 0.909 0.941 0.967 0.994
PCR(8) 1.065 1.011 1.024 1.045 0.988 0.976 1.000 1.034 0.909 0.940 0.977 1.010
OLS 1.088 1.108 1.140 1.173 0.999 1.045 1.103 1.156 0.910 0.978 1.062 1.128
RR(0.5) 1.047 1.066 1.094 1.121 0.959 1.002 1.054 1.099 0.875 0.939 1.014 1.068
RR(1) 1.023 1.040 1.066 1.089 0.940 0.980 1.027 1.068 0.861 0.922 0.991 1.039
RR(2) 0.994 1.010 1.033 1.052 0.921 0.958 0.999 1.033 0.852 0.909 0.968 1.008
RR(5) 0.970 0.982 0.998 1.011 0.917 0.947 0.975 1.000 0.871 0.918 0.958 0.983
RR(10) 0.982 0.987 0.995 1.000 0.947 0.970 0.983 0.995 0.933 0.969 0.984 0.991

See the notes for Table 1.

2 Due to the impossibility of testing for cointegration in a 19-dimensional VAR
model, we remove unit roots from the data by properly differencing each individual
series.
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1959.01–2007.12. Finally, the variables to be forecasted are Industrial
Production (IP), Employment (EMP), Federal Funds Rate (FYFF), and
Consumer Price Index (CPI).

For all the competing methods, the four target series are

yhtþh ¼ 1−Lh
� �

ln IPItþh

� �
;

yhtþh ¼ 1−Lh
� �

ln EMPtþh

� �
;

yhtþh ¼ 1−Lh
� �

FYFFtþh;

yhtþh ¼ 1−Lh
� �

1−L12
� �

ln CPItþh

� �
;

for h=1,3,6,12, and the predictors are Xt=[Y′t,..,Y′t−p+1]′. Along
with PLS, PCR and RR, we consider two additional approaches coming
from the large-N literature. The first one, labeled as SW, is the Stock
and Watson (2002a, 2002b) dynamic factor model, which computes

the h-step ahead forecast of yτ+h
h asW ′τβ̂

h
SW , whereWt ¼ Z ′τΨ̂q;Y

L
t
′

h i
′
,

Yt=[yt,Z′t]′, YtL=[yt,..,yt−p+1]′, Ψ̂q are the eigenvectors associated
with the q largest eigenvalues of Z′Z, and Z=[Z1,…,ZT]′.

Table 4
Simulations, relative MSFE.

N=40, T=360

q*=2 q*=4 q*=6

Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

PLS(1) 0.995 0.973 0.981 0.985 0.953 0.968 0.988 0.993 0.916 0.956 0.976 0.978
PLS(2) 1.031 0.965 0.977 0.984 0.970 0.949 0.971 0.986 0.912 0.928 0.956 0.973
PLS(4) 1.047 0.967 0.980 0.989 0.991 0.944 0.967 0.989 0.936 0.917 0.947 0.971
PLS(6) 1.047 0.972 0.986 0.995 0.991 0.946 0.971 0.995 0.938 0.917 0.950 0.976
PLS(8) 1.047 0.978 0.992 1.002 0.991 0.951 0.976 1.001 0.937 0.920 0.954 0.982
PCR(1) 0.969 0.975 0.979 0.985 0.958 0.974 0.980 0.988 0.952 0.969 0.973 0.976
PCR(2) 0.972 0.971 0.978 0.985 0.941 0.958 0.971 0.986 0.912 0.940 0.954 0.970
PCR(4) 0.987 0.973 0.983 0.991 0.947 0.955 0.972 0.991 0.907 0.932 0.951 0.973
PCR(6) 0.999 0.978 0.989 0.997 0.956 0.958 0.975 0.997 0.912 0.932 0.955 0.979
PCR(8) 1.009 0.983 0.994 1.003 0.963 0.961 0.980 1.003 0.917 0.934 0.958 0.985
OLS 1.047 1.073 1.089 1.104 0.991 1.038 1.069 1.105 0.937 0.999 1.042 1.084
RR(0.5) 1.031 1.056 1.071 1.084 0.975 1.021 1.050 1.083 0.920 0.981 1.021 1.061
RR(1) 1.018 1.043 1.057 1.070 0.964 1.009 1.037 1.068 0.909 0.969 1.008 1.046
RR(2) 1.001 1.025 1.038 1.050 0.949 0.993 1.019 1.048 0.896 0.954 0.990 1.025
RR(5) 0.976 0.997 1.009 1.020 0.931 0.970 0.993 1.018 0.883 0.935 0.966 0.997
RR(10) 0.964 0.982 0.992 1.002 0.926 0.960 0.980 1.000 0.885 0.930 0.956 0.982

See the notes for Table 1.

Table 5
Data description.

Code Variable Transformation

W875RX1 Personal income (1−L)ln
PCECC96 Real consumption (1−L)ln
INDPRO Industrial production index (1−L)ln
TCU Capacity utilization (1−L)
UNRATE Unemployment rate (1−L)
PAYNSA Employees on nonfarm payrolls private (1−L)ln
HOUST Housing starts ln
M1SL Money stock: M1 (1−L12)(1−L)ln
M2SL Money stock: M2 (1−L12)(1−L)ln
TOTADJRES Institutional total adjusted reserves (1−L12)(1−L)ln
BOGNONBR Nonborrowed reserves (1−L12)(1−L)ln
SP500 Standard and poor's common stock price index (1−L)ln
FEDFUNDS Effective federal funds interest rate (1−L)
GS1 U.S. treasury interest rate (1−L)
NEER U.S. effective exchange rate (1−L)ln
PPIFGS Producer price index: finished goods (1−L12)(1−L)ln
CPIAUCNS Consumer price index (1−L12)(1−L)ln
PCECTPI Personal consumption expenditure deflator (1−L12)(1−L)ln
AHETP Average hourly earnings (1−L12)(1−L)ln

Table 3
Simulations, relative MSFE — VAR(20).

N=40, T=240

q*=2 q*=4 q*=6

Models h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12 h=1 h=3 h=6 h=12

PLS(1) 1.019 0.970 0.980 0.984 0.961 0.958 0.975 0.978 0.926 0.955 0.976 0.979
PLS(2) 1.080 0.968 0.978 0.987 1.000 0.944 0.966 0.978 0.941 0.933 0.963 0.976
PLS(4) 1.118 0.975 0.985 0.996 1.046 0.945 0.967 0.984 0.986 0.925 0.957 0.979
PLS(6) 1.120 0.984 0.994 1.006 1.050 0.951 0.974 0.993 0.992 0.929 0.961 0.987
PLS(8) 1.120 0.994 1.004 1.017 1.051 0.959 0.983 1.003 0.992 0.934 0.968 0.996
PCR(1) 0.978 0.974 0.978 0.985 0.959 0.968 0.974 0.980 0.953 0.969 0.973 0.980
PCR(2) 0.991 0.973 0.980 0.988 0.949 0.954 0.967 0.978 0.926 0.946 0.961 0.977
PCR(4) 1.019 0.981 0.989 0.998 0.967 0.956 0.972 0.986 0.931 0.943 0.963 0.982
PCR(6) 1.040 0.990 0.999 1.008 0.984 0.962 0.980 0.996 0.942 0.945 0.969 0.991
PCR(8) 1.056 0.998 1.008 1.019 0.998 0.968 0.988 1.005 0.951 0.950 0.977 1.000
OLS 1.120 1.149 1.167 1.190 1.051 1.100 1.136 1.169 0.992 1.065 1.118 1.161
RR(0.5) 1.079 1.106 1.122 1.140 1.010 1.057 1.090 1.118 0.953 1.022 1.070 1.107
RR(1) 1.052 1.078 1.093 1.109 0.986 1.031 1.062 1.088 0.931 0.998 1.042 1.076
RR(2) 1.020 1.043 1.057 1.070 0.959 1.001 1.029 1.052 0.909 0.970 1.011 1.040
RR(5) 0.982 1.001 1.012 1.023 0.932 0.968 0.991 1.010 0.892 0.943 0.976 1.001
RR(10) 0.967 0.982 0.992 1.001 0.930 0.959 0.978 0.994 0.899 0.939 0.965 0.985

See the notes for Table 1.
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The second approach, labeled as GK, is the variant of SW proposed
by Gröen and Kapetanios (2008), in which PLS is used in place of the
PCs to extract the relevant factors from Zt. In order to estimate the PLS
factors of Zt and the coefficients of YtL, a switching algorithm is used.
First, having fixed the coefficients of Yt

L to an initial estimate, a
conditional estimate of the PLS factors of Zt is computed. Second,
having fixed the PLS factors to their previously obtained estimates, a
conditional estimate of the coefficients of YtL is obtained. These two
steps are iterated till numerical convergence occurs. Notice that PLS
and GK differ only with respect to the treatment of the lags of yt,
which are not included in the factor structure according to the latter
approach.

Finally, for PLS, GK, PCR and SW the regression coefficients βh are
estimated by generalized least squares, allowing for both hetero-
skedasticity and autocorrelation of order (h-1).

Most of factor model literature suggests the use of information
criteria for selecting the number of factors. However, there are no
sound theoretical justifications for the use of information criteria
for PLS and PCR, although these criteria are sometimes used by
practitioners. Hence, we compare the results that we obtain for
models selected with both information criteria and a cross-validation
approach.

More in detail, the number of components q to be considered in PLS,
PCR, SW and GK, the shrinking parameter λ for RR, as well as the
number of lags p to be used in each method, are fixed either using
information criteria on the sample 1959.01–1974.12 or by minimizing
the 3-step ahead MSFE that is computed using the training sample
1959.01–1969.12 and the validation sample 1970.01–1974.12.3 The
maximum values for p and q are, respectively, 13 and 10. Finally,
following De Mol et al. (2008), we choose the shrinking parameter
among λ/N=[0.5,1,2,5,10], where N=19p. The comparison between
the two approaches indicates that cross-validation generally performs
better than information criteria. This finding is in linewith the analytical
result by Hansen (2009), who proved that good in sample fit translates
into poor out of sample fit. Hence, we document the results relative to
the models selected by cross validation only.4

In order to check whether the differences between the MSFEs of
the two best forecasting methods are statistically significant, we
performed the version of the Diebold and Mariano (1995) test by
Harvey et al. (1997). In particular the null hypothesis of equal MSFEs
is tested against the alternative that the second best forecasting
model has a larger MSFE.5

Table 6
IPI, relative MSFE.

Models h=1 h=3 h=6 h=12

Sample: 1975–2007
PLS 0.849 0.824* 0.912* * * 0.931* *

GK 0.952 0.959 1.120 1.199
PCR 0.949 1.048 1.221 1.419
SW 0.904 1.083 1.217 1.406
RR 0.983 1.034 1.185 1.372

Sample: 1975–1984
PLS 0.744 0.731 0.827* * 0.841
GK 0.853 0.871 1.042 1.075
PCR 0.874 0.973 1.130 1.275
SW 0.890 1.072 1.155 1.263
RR 0.880 0.937 1.058 1.161

Sample: 1985–2007
PLS 0.971 0.968 1.031* 1.046* * *

GK 1.068 1.096 1.231 1.357
PCR 1.035 1.165 1.351 1.603
SW 0.921 1.100 1.305 1.587
RR 1.103 1.185 1.364 1.641

PLS forecasts are obtained using p=11, q=2; GK forecasts are obtained using p=8,
q=4; PCR forecasts are obtained using p=2, q=7; SW forecasts are obtained using
p=2, q=1; RR forecasts are obtained using p=13, λ=494. MSFEs are relative to the
random walk forecasts of the cumulated target series. Bold figures indicate the best
forecasting method. * (**) and [***] indicate significance at the 10% (5%) and [1%] levels
for the test of equal MSFEs of the two best methods.

Table 7
EMP, relative MSFE.

Models h=1 h=3 h=6 h=12

Sample: 1975–2007
PLS 0.583 0.503 0.639 0.802
GK 0.623 0.527 0.628 0.776
PCR 0.627 1.097 1.454 1.709
SW 0.741 1.148 1.468 1.712
RR 0.642 1.013 1.434 1.717

Sample: 1975–1984
PLS 0.596 0.504* 0.645 0.771
GK 0.676 0.594 0.708 0.827
PCR 0.601 1.112 1.462 1.687
SW 0.684 1.154 1.468 1.686
RR 0.680 1.034 1.442 1.676

Sample: 1985–2007
PLS 0.560 0.502 0.630 0.838
GK 0.528 0.426* * 0.522* * * 0.721
PCR 0.676 1.074 1.444 1.735
SW 0.843 1.138 1.468 1.742
RR 0.575 0.983 1.423 1.764

PLS forecasts are obtained using p=2, q=4; GK forecasts are obtained using p=6,
q=5; PCR forecasts are obtained using p=2, q=1; SW forecasts are obtained using
p=2, q=1; RR forecasts are obtained using p=3, λ=57. See the notes for Table 6 for
further details.

Table 8
FYFF, relative MSFE.

Models h=1 h=3 h=6 h=12

Sample: 1975–2007
PLS 0.767 0.899 0.884 0.891
GK 0.803 0.986 0.868 1.022
PCR 0.874 0.936 0.920 0.912
SW 0.883 0.909 0.907 0.927
RR 1.181 0.962 1.020 0.941

Sample: 1975–1984
PLS 0.763 0.881 0.845 0.857
GK 0.802 0.957 0.793 0.987
PCR 0.882 0.948 0.936 0.938
SW 0.892 0.912 0.921 0.967
RR 1.061 0.917 1.005 0.966

Sample: 1985–2007
PLS 0.818 1.040 1.020 0.951
GK 0.810 1.215 1.133 1.084
PCR 0.786 0.840* * * 0.863 0.867
SW 0.786 0.890 0.857 0.855* *

RR 2.470 1.320 1.073 0.897

PLS forecasts are obtained using p=1, q=7; GW forecasts are obtained using p=4,
q=8; PCR forecasts are obtained using p=2, q=3; SW forecasts are obtained using
p=2, q=2; RR forecasts are obtained using p=9, λ=85.5. See the notes for Table 6
for further details.

3 Based on the MC results, in the cross-validation approach we use the 3-step ahead
MSFE. Indeed, in simulations the most accurate PCR and PLS forecasts for h=1 are
often obtained for models having a different number of components than the true one.

4 The results relative to models selected by information criteria are available upon
request.

5 Giacomini and White (2006) provided an asymptotic framework that allows for
using the Diebold and Mariano (1995) test with both nested models and the use of
unconventional estimation methods.
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Finally, in order to take into account the effects of the “Great
Moderation”, we consider three forecast evaluation samples:
1975.01–2007.12, 1975.01–1984.12 (pre-Great Moderation), and
1985.01–2007.12 (post-Great Moderation).

Tables 6–9 report the MSFEs relative to the naive random walk
forecasts of the cumulated target series as well as the test results of
equal MSFEs of the two best forecasting methods.

The empirical findings indicate that PLS delivers the most accurate
forecasts in about 58.3% of the cases. It performs best for IPI in any
sample, EMP in pre-Great Moderation period, FYFF in the full sample
and in the pre-Great Moderation period. The second best performer is
GK, which results slightly superior to SW. In particular, the former
method provides the best forecasts of EMP in post-Great Moderation
period whereas the latter is a serious contender to PLS for inflation
forecasting. PCR and, especially, RR perform disappointingly com-
pared with the simulation results.

Turning to the forecasting encompassing test results, we notice
that just one fourth of the differences in MSFEs of the two best
methods are significant. Again, PLS performs significantly better than
its closest competitor in about 58.3% of the cases.

Looking in greater detail at the relative merits of the two best
methods, PLS might be preferred to GK for both forecasting perfor-
mances and computational reasons. Indeed, there are apparently no
clear advantages in resorting to the rather involved iterative scheme
suggested by Gröen and Kapetanios (2008).

5. Conclusions

In this paper we have examined the forecasting performances of
various models in a medium-N environment. Moreover, we have
argued that under the so-called Helland and Almoy condition
(Helland, 1990; Helland and Almoy, 1994), both PCR and PLS provide
estimates of a stable dynamic regression model that are consistent as
T only diverges.

Our Monte Carlo results, obtained by simulating a 20-dimensional
VAR(2) process that satisfy the Helland and Almoy condition, have
revealed that PLS often outperforms the competitors, especiallywhen the
sample size T and the number of the relevant components become larger.

In the empirical application, we have forecasted, by a variety of
competing models, four US monthly time series using similar variables
as in the medium dimension VAR model by Banbura et al. (2010).

Interestingly, PLS has revealed to perform better than other, morewell-
known, forecasting methods. Moreover, we emphasize that the
suggested PLS approach is computationally less demanding than the
switching algorithm proposed by Gröen and Kapetanios (2008).
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CPI, relative MSFE.
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Sample: 1975–2007
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PCR 0.979 0.929 0.778 0.504
SW 0.804 0.820 0.751 0.462
RR 0.812 0.772 0.660 0.410

Sample: 1985–2007
PLS 0.975 0.969 0.834 0.626
GK 0.989 0.996 0.923 0.704
PCR 1.085 1.003 0.870 0.652
SW 0.963 0.984 0.851 0.589*

RR 1.061 1.082 0.890 0.643

PLS forecasts are obtained using p=4, q=2; GW forecasts are obtained using p=4,
q=2; PCR forecasts are obtained using p=4, q=7; SW forecasts are obtained using
p=8, q=1; RR forecasts are obtained using p=10, λ=950. See the notes for Table 6
for further details.
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