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In psychophysics, researchers usually apply a two-level model for the analysis of the behavior of the single subject and the
population. This classical model has two main disadvantages. First, the second level of the analysis discards information on
trial repetitions and subject-specific variability. Second, the model does not easily allow assessing the goodness of fit. As an
alternative to this classical approach, here we propose the Generalized Linear Mixed Model (GLMM). The GLMM separately
estimates the variability of fixed and random effects, it has a higher statistical power, and it allows an easier assessment of
the goodness of fit compared with the classical two-level model. GLMMs have been frequently used in many disciplines
since the 1990s; however, they have been rarely applied in psychophysics. Furthermore, to our knowledge, the issue of
estimating the point-of-subjective-equivalence (PSE) within the GLMM framework has never been addressed. Therefore the
article has two purposes: It provides a brief introduction to the usage of the GLMM in psychophysics, and it evaluates two
different methods to estimate the PSE and its variability within the GLMM framework. We compare the performance of the
GLMM and the classical two-level model on published experimental data and simulated data. We report that the estimated
values of the parameters were similar between the two models and Type I errors were below the confidence level in both
models. However, the GLMM has a higher statistical power than the two-level model. Moreover, one can easily compare the
fit of different GLMMs according to different criteria. In conclusion, we argue that the GLMM can be a useful method in
psychophysics.
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Introduction

The psychometric function relates the response of
a subject to the magnitude of a physical stimulus. A
Generalized Linear Model (GLM; Agresti, 2002) is
usually applied to these data sets; in its simple form
the model has two parameters, typically the intercept
and the slope of the linear predictor. More sophis-
ticated models have been proposed to take into

account lapses and guesses by the participant
(Wichmann & Hill, 2001a; Yssaad-Fesselier &

Knoblauch, 2006), and a priori hypotheses of the

experimenter (Kuss, Jäkel, & Wichmann, 2005).

Ordinary GLMs, as well as other models of the kind

mentioned above, assume that the responses are
independent and conditionally identically distributed.

While the responses of a single subject may

approximately satisfy these assumptions, the repeated
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responses collected from more than one subject
generally do not. Actually, nonstationarities due to
learning or fatigue, for example, may result in
violations of these assumptions even in the case of
a single subject: In this context, notice that a beta-
binomial model has been proposed to deal with
nonstationary responses (Fründ, Haenel, & Wich-
mann, 2011). In the case of repeated responses from
more than one subject, ordinary GLMs treat the
errors within subject in the same manner as the
errors between subjects, and tend to produce invalid
standard errors of the estimated parameters. A
typical approach to overcome this problem consists
in applying a two-level analysis (e.g., Morrone, Ross,
& Burr, 2005; Pariyadath & Eagleman, 2007;
Johnston et al., 2008). First, the parameters of the
psychometric function are estimated for each subject.
Next, the individual estimates are pooled to perform
the second-level analysis, and inference is carried out,
for example, by means of t test or ANOVA statistics.

As an alternative to this two-level approach, here we
propose the application of Generalized Linear Mixed
Models (GLMM; Cox, 1958; Rasch, 1961; Breslow &
Clayton, 1993; Agresti, 2002; Bolker et al., 2009;
Knoblauch & Maloney, 2012). The GLMM is an
extension of the GLM that allows the analysis of
clustered categorical data, as in the case of repeated
responses from different subjects. In the GLMM, the
first and second levels of the analysis are implemented
simultaneously. Some of the advantages of the GLMM
with respect to the two-level analysis are: (a) the
GLMM takes the whole ensemble of the responses as
input data, (b) it separately estimates the variability of
fixed and random effects, and (c) it allows an easier
assessment of the goodness of fit.

GLMMs and related models have been frequently
used in many disciplines since the 1990s, but they have
been rarely used in psychophysics. The pertinent
literature on related topics includes the following
references. Baayen, Davidson, and Bates (2008) and
Quené & van den Bergh (2008) introduced Linear and
Generalized Linear Mixed Models in psycholinguis-
tics. DeCarlo (1998, 2010) and Rouder et al. (2007)
introduced it in Signal Detection Theory. Yssaad-
Fesselier and Knoblauch (2006) and Williams, Ram-
aswamy and Oulhaj (2006) applied Generalized Non
Linear Mixed Models (accounting for lapses and
guesses) to psychophysical data. Moscatelli and
Lacquaniti (2011) and Moscatelli, Polito, and Lac-
quaniti (2011) applied GLMMs to the psychophysics
of time perception. Knoblauch and Maloney recently
wrote a book on the analysis of psychophysical data
with R, chapter nine of this book focuses on the usage
of GLMMs in psychophysics (Knoblauch & Maloney,
2012).

There may be several reasons why GLMMs found
limited use in psychophysics so far. In the past, few
subjects were tested in psychophysical experiments, and
the analysis of single subjects had a prominent role for
illustrating the results. Furthermore, GLMMs come
with more pitfalls than traditional models, such as
GLMs or ANOVA. For example, the likelihood
function does not have a closed form solution, and
different methods are necessary for testing random and
fixed effects. Finally, GLMMs provide inference in
terms of intercept and slope parameters, whereas
psychophysical research tends to focus on the point-
of-subjective-equivalence (PSE).1 To our knowledge,
the issue of estimating the PSE has never been
addressed within the GLMM framework.

Based on the above considerations, we wrote this
article: (a) to provide a tutorial introduction to
GLMMs in psychophysics, and (b) to assess two
different methods of estimating the PSE and its
variability within the GLMM framework. The article
is organized as follows. First, we summarize the model
for the analysis of single subjects (the GLM) and the
analysis of second level. Following Hoffman and
Rovine (2007), we denote this two-level approach as
the Parameter-As-Outcome Model (PAOM). Since the
GLM is closely related to the GLMM, we introduce
some general concepts of the GLM, and then we extend
these concepts to the GLMM. Mathematical details on
the GLM and the GLMM are provided in the
Appendix. Next, we introduce our algorithm for the
estimate of the PSE within the GLMM framework.
Finally, we compare the performance of the GLMM
and the two-level approach on two different sets of
published experimental data (Johnston et al., 2008;
Moscatelli & Lacquaniti, 2011), and on simulated data.

While the experimental data presented here pertain
to the field of time perception, our approach can be
easily extended to other psychophysical domains,
provided that the response variable is categorical and
that, within each subject or cluster of data, the
responses are independent and conditionally identically
distributed. As noticed above, further corrections may
be necessary in the presence of nonstationary behavior
(Fründ et al., 2011).

We limit our discussion to yes-or-no discrimination
paradigms (Klein, 2001), that is, experimental para-
digms for which the corresponding psychometric
function has a range (0, 1). In our prototypical
experiment of time perception, participants are pre-
sented with two stimuli, a reference stimulus of
constant duration and a test stimulus of variable
duration, and they are asked to judge whether the
duration of the test is longer or shorter than that of the
reference. The duration of the test stimulus is randomly
chosen from a given set (method of the constant
stimulus; Treutwein, 1995).
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Methods

Two-level approach: Parameter as outcome
model

Generalized Linear Models (Treutwein, 1995; Agres-
ti, 2002) have been largely used in psychophysics to
model the behavior of single subjects. As the name
suggests, GLMs are a generalization of Linear Models
(LMs) to response variables that are not normally
distributed. A GLM has three components: the
response variable, the linear predictor, and the link
function. The response variable Y consists of multiple
independent observations from a distribution of the
exponential family (e.g., Normal distribution for a
continuous response variable, Poisson distribution for
counts, Binomial distribution for proportion). The
predictor is a linear function of one or more
explanatory variables. Let xjk denote k experimental
variables (each one repeated over a number j of trials),
and bk the parameters of the model, then the linear
predictor is

P
kbkxjk. The link function g relates the

response variable to the linear predictor, so that the
range of the latter (�‘ to þ‘) is the same as that of
g(Y). For example, in the psychophysics of the time
perception, let xij be the duration of the test stimulus
and Yij the response variable for subject i and trial j; Yij

¼ 0 if the test trial has been judged shorter than the
reference, and Yij¼ 1 if judged longer. We can link the
probability of a longer response P(Yij ¼ 1) with the
linear predictor by means of the probit link function
U�1:

U�1 PðYij ¼ 1Þ
� �

¼ b0i þ b1ixij ð1Þ

The parameter b0i is the intercept and b1i is the slope
of the linear function. If b1i . 0, the probit function is
the inverse of the standard Normal cumulative
distribution (otherwise, if b1i , 0, the curve is the
complement of the cdf). The two parameters b0i and b1i
extend the model to the entire class of Normal
cumulative distributions: the parameter b0i shifts the
curve to the left or to the right, while the parameter b1i
affects the rate of increase of the curve. The subscript i
in Equation 1 indicates that, at this first level of the
analysis, a separate model is fit for each single subject.
The point-of-subjective-equivalence (PSEi) is a func-
tion of the parameters b0i and b1i:

PSEi ¼ �
b0i

b1i

ð2Þ

The PSEi estimates the accuracy of the response,
while the slope of the linear function b1i estimates its
precision. The noise of the response is an inverse

function of the slope, commonly referenced as the Just-
Noticeable-Difference (JND).

A latent dependent variable Y*
ij, with normally

distributed errors, often justifies a probit regression
model. In the psychophysics of time perception, the
latent variable Y*

ij may be the perceived difference
between the test and the reference stimulus. It would be
possible to apply other link functions to this type of
data, such as, for example, logit or cloglog (Agresti,
2002). The setup of the logit and probit models is
essentially the same; empirically we cannot easily decide
which model fits the data best. Logit is generally
numerically simpler, while probit has the advantage of
the latent variable approach introduced above. Fur-
thermore, the use of a probit link function allows
creating a link between the psychometric function and
Signal Detection Theory (Klein, 2001).

In order to produce valid standard errors of the
parameters, the GLM has to fulfill the assumptions
about the distribution of the errors of the responses.
Linear Models assume that errors are independent and
identically distributed, and that the expected value of
the error is zero. This implies that the distribution of
the errors is independent of the predictor variables. In
probit and logit GLMs, the response variable follows a
Binomial distribution, and therefore the variance is a
function of the probability of the response. However, it
is possible to make the same assumptions as in linear
models with respect to the latent variable Y*

ij (details on
the probit model and error terms are illustrated in the
Appendix). Now, let us consider a dataset consisting of
repeated measures from several subjects: the distribu-
tion of the responses produced by a given subject is
usually different from that of the other subjects. Using
the latent variable Y*

ij, for a given stimulus xij
the response from subject 1 is Y*

1jjx1j ; N(l1j, r2
1j), the

response from subject 2 is Y*
2jjx2j ; N(lj2, r2

j2), and the
response from subject m is Y*

mjjxmj ; N(lmj, r2
mj).

Therefore, the responses are not identically distributed
between different subjects. Fitting such dataset with an
ordinary GLM, the resulting errors might be correlated.

To overcome these problems, most experimental
work deals with these clustered data with a two-level
analysis, here denoted as the Parameter-As-Outcome
Model (PAOM). Psychometric functions are fitted
separately for each participant in the first level
(Equation 1), and the individual estimates are then
used as input data for the group analysis. The group
analysis usually relies on standard t- or F-statistics.

However, in our view, the group analysis disregards
an important source of information provided by the
data. At the first-level analysis, inference procedures
allow (a) estimating the parameters of interest, (b)
quantifying their variability, and (c) measuring the
goodness of fit of the model. Because the second-level
analysis uses the estimates of the parameters as input
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data, it does not take into account the subject-specific
standard error.2 Moreover, the PAOM does not retain
the information about the number of repetitions per
subject. The number of repetitions has only an indirect
effect on the power of the analysis (it will reduce the
subject-specific standard error and the estimates of the
parameters will be more reliable). As an additional
point, the PAOM implicitly assumes that different
subjects have the same weight in the second-level
analysis, which is an incorrect assumption when, for
example, the number of trials is different from subject
to subject. Finally, the selection of the best statistical
model may be difficult. We may have to decide whether
to include a given parameter or we may have to choose
between different link functions. While several criteria
of model comparison can be applied to each subject,
they may not easily extend to the whole population.

The generalized linear mixed model

Generalized linear mixed models (GLMM; Cox,
1958; Rasch, 1961; Breslow & Clayton, 1993; Agresti,
2002; Bolker et al., 2009) are a viable alternative to
PAOMs for the analysis of clustered categorical data.
In GLMMs the overall variability is separated into a
fixed and a random component. The fixed component
usually estimates the effect of interest, such as the
experimental effect, whereas the random component
estimates the heterogeneity between clusters (i.e.,
between subjects). In this way, we estimate a single
model across all subjects, but we allow each subject to
have a different variability and a different sample size.
The expected value of the response is the following:

U�1 PðYij ¼ 1Þ
� �

¼ b0 þ b1xij ð3Þ

The parameters b0 and b1 are the fixed-effect
parameters. Note that, unlike in Equation 1, they are
not indexed by the i subscript, being the same for all
subjects. The other difference with ordinary GLM is in
the error terms. By introducing the latent variable Y*

ij,
we define the model as:

Y*
ij ¼ b0 þ b1xij þ mij ð4Þ

The error term mij is the sum of two components ui
and eij, such that:

vij ¼ ui þ eij
ui ;Nð0;r2

uÞ
eij ;Nð0; r2

e Þ
ð5Þ

The error-term eij represents the variability within
subjects and the error-term ui the variability between
subjects; the error-term ui is also known as random-
effects parameter.3 In GLMMs, the errors eij are

independent only conditional on the random parameter
ui (see the Appendix for further information).

The model in Equations 4-5 has a single between-
subjects error term. This single error term accounts for
the variability on the location in the x-axis; therefore it
is also called random location parameter. Within the
GLMM framework, we can model multiple sources of
between-subjects variability. In examples 1 and 2 (see
Results section), we show how to model between-
subjects variability in both the accuracy and the
precision of the response: This accounts for the more
general case, in which the psychometric function of
each subject may have a different value of PSE and/or
slope (or equivalently, JND).

As shown in Equation 5, the GLMM represents the
variability between subjects by means of one or more
normally distributed random variables, the random-
effects parameters. Each of these random variables has a
zero mean, and its variance is estimated from the data.
By using random parameters, it is possible to refer the
estimates of the model to the whole population, rather
than to a specific sample. Notably, the number of
parameters of the model does not increase with the
number of subjects, as it would happen if m psychomet-
ric functions were fitted to m subjects.

Model fitting is rather complex for GLMM, and a
detailed discussion on the topic is beyond the purpose of
this article. A concise and clear introduction is in Bolker
et al., 2009; a more complete discussion can be found in
Agresti (2002), paragraph 12.6. The estimation of the
parameters is based on the maximum likelihood (ML),
which does not have a closed form solution. Different
solutions have been proposed to approximate the
likelihood function (Agresti, 2002). Here, we use either
the Gauss-Hermite quadrature or the Laplace approx-
imation, by means of the R package lme4 (Bates,
Maechler, & Bolker, 2011). Several packages are
available in the R environment to estimate the GLMM
parameters by means of different methods; some of
these are referenced in the Discussion.

Statistical inference also requires special attention
within GLMM. Hypotheses on fixed and random
effects are necessarily tested separately. In psychophys-
ics, the experimenter will usually focus on fixed effects,
because, as noted above, they estimate the effect of the
experimental variables.

There are three different options for statistical
inference: model comparison (i.e., the Likelihood-Ratio
test or Akaike Information Criterion), hypothesis
testing via Wald statistics, and Bayesian inference. In
this article, we derive our conclusions based on
frequentist statistics (Wald statistics and model com-
parison); however, Bayesian inference is also suitable
for the analysis of psychophysical data (Kuss et al.,
2005).

Journal of Vision (2012) 12(11):26, 1–17 Moscatelli, Mezzetti, & Lacquaniti 4



The Likelihood Ratio test (LR) compares the fit of
two nested models. The test statistics are the following:

LR ¼ �2ðL0 � L1Þ; ð6Þ
where L0 and L1 are the maximized log-likelihood
functions of the two models. Under the null hypothesis
that the simpler model, M0, is better than M1, the LR
has a large-sample v2ð1Þ distribution. The likelihood
ratio test is adequate for testing fixed-effect parameters
if the sample size is relatively large (Bolker et al., 2009;
Austin, 2010). On the other hand, the LR may not have
a standard v2ð1Þ distribution when testing for the
variance of random-effect parameter ui. In this case,
the null hypothesis that the variance of the random
component is zero places the true value of the variance
on the boundary of the parameter space defined by the
alternative hypothesis. The limiting distribution of LR
does not fully approach a v2 random variable, and
therefore this statistics tends to be conservative when
testing for the variance of a random effect. The LR test
can be used with these caveats in mind; as shown in the
examples, we compared the test with other criteria in
order to draw inferences on random effects. In a similar
fashion to the LR test, it is possible to ‘‘profile’’ the
change of the likelihood versus each parameter of the
model. This approach is not available in the current
version of lme4, but will be available in a future release
of the package.

As an alternative to statistical testing, the Akaike
Information criterion (AIC; Akaike, 1973) allows the
comparison of multiple, nonnested models. The AIC is:

AIC ¼ 2k� 2L; ð7Þ
where L is the maximized log-likelihood function and
k is the number of parameters of the model. Therefore,
the AIC balances the fitting and the complexity of the
models. We can compare the AIC of two models in
order to take a decision on a given parameter; the
preferred model is the one with the minimum AIC
value. The AIC provides a criterion for model
selection, but it is not a statistical test on model’s
parameters.

The Wald statistic (z) tests the hypothesis by scaling
the estimated parameter (b̂) against its asymptotic
standard error (ASE):

z ¼ b̂
ASE

ð8Þ

The test statistics has an approximate standard normal
distribution for b ¼ 0. We refer the variable z to the
standard normal distribution Z to get one-sided or two
sided p-values. Equivalently, for the two-sided alterna-
tive, the random variable z2 has a v2ð1Þ distribution. There
are three caveats about the Wald statistics. First, it may
not provide a reliable inference for small sample sizes.
Second, the Z and v2ð1Þ approximations are only

appropriate for a GLMM without overdispersion (over-
dispersion means that the variance in the data is higher
than the variance predicted by the statistical model, see
for example Agresti, 2002; Bolker et al., 2009; Durán
Pacheco, Hattendorf, Colford, Mäusezahl, & Smith,
2009). Third, theWald statistics are not a good choice for
testing random-effect parameters, since the distribution
of the estimated variance scaled against its asymptotic
standard error does not converge to a normal distribu-
tion. We therefore recommend using a criterion for
model comparison (such as the AIC discussed above) in
order to evaluate whether the inclusion of a random-
effect parameter is justified.

Fitting a GLMM is not equivalent to estimating a
psychometric function for each subject. One of the
advantages of the psychometric function is to provide
an intuitive graphical representation of the responses.
How can we represent the experimental effect and the
variability between subjects within GLMM? The R
function glmer (package lme4) provides, for each
subject, adjustments to the fixed effects of the model.
Formally, they are not parameters of the model, but are
considered as conditional modes. The algebraic sums of
these conditional modes and the fixed parameters,
adjust the intercept and slope of the model to the
responses of each subject. In Figure S1 and S2 we used
fixed parameters and conditional modes for a graphical
representation of the model.

The methods described above allow drawing con-
clusions on the intercept and slope of the model. In the
following paragraph, we propose two methods to
estimate the mean and the variability of the PSE.

The estimate of the variability of the PSE
within the GLMM framework

We estimate the PSE in the same manner as we did in
Equation 2:

PSE ¼ � b0

b1

ð9Þ

In order to perform the statistical inference on the
parameter, an estimate of its variance is necessary.
Here, we estimate its variance by means of the Delta
method and the bootstrap method.

The Delta method is based on a Taylor series
approximation of the variance of a function of random
variables (Casella & Berger, 2002). The variance of PSE
(as the ratio of two variables) is approximated by the
following equation (Faraggi, Izikson, & Reiser, 2003):

VarðPSEÞ’ 1

b2
1

�
Varðb0Þ þ PSE2sVarðb1Þ

þ 2sPSEsCovðb0; b1Þ
�

ð10Þ
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In Equation 10, b0, b1 are the fixed-effect parameters
of the model. Within the Delta method, the (1- a)
confidence interval is equal to:

PSE 6 z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðPSEÞ

p
ð11Þ

This provides a confidence interval for the parameter
of interest. It approximates the parameter with a
Gaussian distribution.

Several papers have proposed to use a bootstrap
approach to estimate the distribution of PSE within
traditional GLM (Maloney, 1990; Efron & Tibshirani,
1993; Foster & Bischof, 1997; Kelly, 2001; Wichmann,
& Hill, 2001b; Faraggi et al., 2003). However, to our
knowledge, the bootstrap method has never been
applied to the estimate of PSE and its confidence
interval within GLMM. A full discussion of all
bootstrap techniques is beyond the scope of this
paper—for a detailed comparison, see for instance,
Efron and Tibshirani, (1993), Stine (1990), Mooney
and Duval (1993). Here we illustrate the approach
using the simple percentile method.

Let us consider a dataset of m subjects, d possible
values of a continuous, independent variable (such as
the stimulus duration xij), and n repetitions for each
value. First, we fit the GLMM to the original data in
order to estimate the fixed effects, as well as the
variance and covariance matrix of the random effects.
Consider for example a GLMM with random intercept
and slope. Then, we simulate m pairs of random
predictors from a multivariate normal distribution (R
package mnormt) with a mean equal to zero, and with
variance and covariance equal to the values estimated
by the model. For each subject i, we adjust the fixed
effects with the respective simulated values of random
predictors. Thus, we get m values of intercept and slope
(b0i and b1i for i ¼ 1. . .m). Using the estimates b0i and
b1i responses Yij are randomly generated from a
binomial (nij, p̂ij), where j ¼ 1, . . ., d; i ¼ 1, . . ., m and
pij ¼ U(b0i þ b1ixij).We use the R function rbinom to
generate random numbers from the binomial distribu-
tion. Then we fit again the simulated responses with
GLMM and we determine the fixed effects estimates
bsim
0 , bsim

1 , PSEsim ¼ �(bsim
0 /bsim

1 ) for these data. This
simulation of data is repeated a large number B of
times, providing bootstrap estimates PSEsim

1 , PSEsim
2 ,

. . ., PSEsim
B . These values are ranked from the smallest

to the largest. Many methods are available for
identifying a 100(1 - a)% confidence interval from this
rank-ordered distribution (as described in Efron, 1987).
According to the percentile method, the inferior and
superior confidence interval are the bootstrap esti-
mates, whose rank is respectively (a /2) * B and (1� a/
2) * B. This is denoted as the bootstrap interval.

The GLMM assumes that responses are from a
mixture (binomial-normal) distribution. The effect due
to a given subject is a random sample from a zero-

mean, normal distribution. The model estimates the
variance of this distribution, and not the effect due to
the specific subject (as a fixed-effects model would do).
Therefore, in our algorithm we sampled each time new
subjects from a zero-mean normal distribution, whose
variance and covariance are those estimated from the
model. In summary, we assumed in the algorithm two
levels of randomness: the effect of subject, and the
binomial response (conditional to the effect of the
subject and to the linear predictor).

R program

We performed statistical analyses and data simu-
lations in R environment (R Development Core
Team, 2012). We used the R package lme4 (package
version 0.999375-42; Bates et al., 2011) in order to fit
the GLMM. We used our own R-program to simulate
data, to plot the curves in Figure S1 and to estimate
the PSE and its variability. The scripts of the R-based
program have been tested on Linux Ubuntu 12.04
(32-bit) and Mac OS X 10.7.4 (64-bit) using R version
2.15.0. Our R-program together with detailed com-
ments can be obtained from the corresponding author
or f rom the fo l lowing web s i t e : h t tp : / /
mixedpsychophysics.wordpress.com.

Results

We applied GLMMs and PAOMs to real and
simulated data sets. In all cases we modeled binomial
responses (the proportion of yes responses over the
total number of trials).

Example 1: Moscatelli and Lacquaniti, 2011

We briefly summarize the experimental procedure
(for details, see Moscatelli & Lacquaniti, 2011,
experiment 1, pp. 3–6). Participants were asked to
judge the duration of motion of a visual target,
accelerating in one of four cardinal directions. They
indicated whether each test stimulus was longer or
shorter in duration than the standard stimuli (800-ms
duration). The experiment consisted of four blocks; in
each block there were 360 test trials. Seven subjects
were tested. Here we will only consider the results for
downward and upward motion directions, while the full
results are reported in the original article.

We performed the PAOM analysis as follows. First,
we estimated the psychometric function in each subject.
In the original article, the authors applied the log-log
link function, because the distribution of the responses
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was skewed. Here, for clarity reasons, we used the probit
link function (Equation 1 in Methods) that may be more
familiar to the reader. Table 1 shows the fitted model for
a single subject (downward direction of motion).

We estimated the slope and PSEi for each subject
and condition according to Equations 1 and 2. In the
second-level analysis, we tested (with paired t-test) the
effect of motion conditions on PSEi and slope
separately. The difference in slope was highly signifi-
cant (t¼ 5.16, df¼ 6, p¼ 0.002), whereas the difference
in PSEi was not significant (t¼�0.78, df¼ 6, p¼ 0.46).
Table 2 and Table 3 show the mean and standard
deviation of these two parameters. It is worth noting
that, in step two, this model discards the subject-
specific standard error (i.e., Column 3 of Table 1).
Thus, the SD in Table 2 and 3 estimates only the
variability between-subjects.

We then modeled the same dataset with a GLMM
(probit link function). We included three random-
effects parameters (the random intercept, the random
slope and their correlation) and four fixed-effects
parameters. The model is the following:

Y*
ij ¼ h0 þ u0i þ xijðh1 þ u1i Þ þ dijh2 þ ðxijdijÞh3; ð12Þ

where Y*
ij is the latent variable as defined in Equation 4,

xij is the stimulus duration, dij is the dummy variable for
the experimental condition (0 for Downward and 1 for
Upward), xijdij is the interaction between the stimulus
duration and the dummy variable, h0, . . ., h3 are the
fixed-effects coefficients, u0i , u1i are the random-effect
coefficients. The fixed-effect parameter corresponding to
the slope h1 estimates the precision of the response in the
Downward condition; the higher the slope, the higher
the precision. The parameter of the interaction between
the stimulus duration and the dummy variable, h3, tests
whether the slope is significantly different in the two
experimental conditions.

Table 4 shows the estimate and standard error of the
fixed-effect parameters. The significance of each pa-
rameter was assessed by means of the Wald statistics.

The model provides also the estimated standard
deviations and correlations for the random effects (that

is, the between-subjects error term). The random effects
have a multivariate normal distribution with mean
equal to 0. The estimated standard deviations for this
multivariate distribution were respectively 2.076 (ran-
dom intercept) and 0.002 (random slope), and the
correlation between the two random parameters was
�0.998. This high correlation suggests that the inclu-
sion of two random parameters in the model might be
redundant. Accordingly, we evaluated if a model with
one random parameter would be better then the model
with two parameters. We therefore fitted another
GLMM with a single random effect (random location
factor) and compared the two models. The AIC was
smaller in the former model (with two random effects
and correlation), the AIC being respectively 319 and
380. We also compared the two models with the LR
test; the difference was highly significant (v2ð2Þ ¼ 65; p ,
0.001). The large differences in AIC and LR test are
both in favor of the model with two random effects. We
next examined the behavior of each subject by means of
a model-fit plot (Figure S2). The model with a single
random effect (green in Fig. S2) provides a poor fitting
mainly due to the responses of Subject 2, a possible
outlier. We removed this subject from the dataset and
compared again the two models. The difference in AIC
between the two models was now much smaller, being
respectively 286 for the random-slope model and 291
for the single random effect model.

Thereafter, we focused our attention on the fixed
effects. In following analyses, we applied the model in
Equation 12 to the data set of all seven subjects, because
there was no obvious experimental reason to remove
Subject 2. Notice, however, that the fixed effects
changed little if we used one or the other model, and if
we included or excluded Subject 2. As shown in Table 4,
the difference in slope between the two motion
conditions (h3) was highly significant (z Wald statistics).
In order to confirm the results, we fitted the data again
with a simpler model, excluding the parameter of interest
h3. This simpler model assumes the same slope for the
two motion conditions. We then compared the two
models with the LR test; according to the test the second

Parameter Estimate Standard Error z value Pr(. jzj)

Intercept �5.5896 0.5502 �10.16 , 0.0001

Slope 0.0067 0.0007 10.02 , 0.0001

Table 1. Fitted psychometric function (probit model) in a single

subject (S5, downward direction of motion).

Condition Mean SD

1 Down 0.00789 0.00233

2 Up 0.00648 0.00266

Table 2. Estimate of beta in the two motion conditions (PAOM).

Condition Mean SD

1 Down 825.11 44.79

2 Up 837.64 48.60

Table 3. Estimate of PSE in the two motion conditions (PAOM).

Parameter Estimate Std. Error z value Pr(. jzj)

h0(intercept) �5.35950 0.81099 �6.60859 , 0.0001

h1(Motion Duration) 0.00632 0.00084 7.53519 , 0.0001

h2(Downward) �1.13510 0.28860 �3.93308 , 0.0001

h3(Interaction) 0.00147 0.00035 4.19224 , 0.0001

Table 4. Fixed effects parameters of the GLMM (Example 1).
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models fits poorly compared to the former (v2ð1Þ ¼ 18.3; p
, 0.001). Coherently, the first model including the
parameter h3 has a smaller AIC compared with the
other. In summary, the two methods of model
comparison (LR test and AIC) and the Wald statistics
led us to a similar conclusion on the parameter h3; the
difference between the upward and downward motion
condition was statistically significant, the responses
being significantly more precise in the downward
condition.

Finally, we focused on the PSE. We first applied the
Delta method and estimated the parameter and its
standard deviation in the two motion conditions. The
PSE was 833 6 17 ms (mean 6 SD) in the downward
condition, and 848 6 20 ms in the upward condition.
We also evaluated the PSE with the bootstrap method
(sampled datasets B¼ 600). The PSE was 833 ms (95%
confidence interval: 792-866 ms) in the downward
condition and 847 ms (95% confidence interval: 798-
880 ms) in the upward condition. In both experimental
conditions, the distribution of the PSE estimated with
the bootstrap method has a negative skewness, whereas
the Delta method assumes a solution symmetric about
the mean (Equation 11).

In summary, the GLMM and PAOM led to similar
conclusions. In this experiment, the motion direction
affected the precision (slope) but not the accuracy
(PSE) of the response. The estimate of the two
parameters was similar between the two models, with
a difference of about 1% to 2% of the value of each
parameter. On the other hand, it does not make sense
to compare the standard deviation of the two models,
because they have completely different interpretations.
In PAOM, the SD is a measure of the variability
between subjects. In the GLMM, it is possible both to
estimate the variability due to the experimental
condition (i.e., Table 4) and the variability between
subjects (the SD and correlation of the random effects).

Thereafter, we compared the power of the two
methods by resampling the original dataset. We
randomly chose 6, 5, and 4 subjects of the original
dataset and tested the hypothesis H0:b1down¼ b1up with
both GLMM and PAOM (we used the LR test with
GLMM). For each sample width, we repeated the
analysis with six different combinations of subjects. As
shown in Figure 1, we could always reject the null
hypothesis. The p-values were on average smaller with
GLMM than with PAOM. In this example, we
performed more analyses than usually expected in a
research article in order to illustrate different possibil-
ities and potential pitfalls of GLMM.

Example 2: Johnston et al., 2008

Here we applied the two models on a dataset from
Johnston et al. (2008), with permission of the corre-

sponding author. This paper showed that adaptation to
an invisible flicker reduces the perceived duration of a
subsequently viewed stimulus (Ibid., experiment 1, pp.
2–4). We chose this dataset because the analysis
performed in the original article showed a difference
in the PSE between the two conditions. Each experi-
ment consisted of an invisible flickering and control
condition (140 trials per condition). The duration of the
standard stimulus was fixed at 500 ms. Five subjects
were tested.

We first applied the PAOM, and tested for a
difference between conditions with a paired t-test.
The difference in slope was not significant (t¼1.88, df¼
4, p ¼ 0.13), whereas the difference in PSE was highly
significant (t ¼ 8.83, df ¼ 4, p , 0.001). The average
difference was 33 ms. Then we applied the GLMM
(probit link function) on the same data set. The model
was the following:

Y*
ij ¼ g0 þ u0i þ xijðg1 þ u1i Þ þ dijh2 þ ðxijdijÞg3; ð13Þ

where Y*
ij is the latent variable, xij is the stimulus

duration, dij is the dummy variable for the experimental
condition (either 1 or 0), xijdij is the interaction between
the stimulus duration and the dummy variable, g0, . . .,

Figure 1. Comparison of GLMM and PAOM by re-sampling

method. We resampled the dataset from the article: Moscatelli

and Lacquaniti (2011). We randomly chose six, five, and four

subjects of the original dataset and tested the hypothesis

H0:b1down ¼ b1up with GLMM (filled squares) and PAOM (blank

triangles). The x-axis labels the number of subjects in each

sample and the y-axis the corresponding p-value. For each

sample width, we repeated the analysis with six combinations of

subjects.
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g3 are the fixed-effects coefficients, and u0i , u
1
i are the

random-effect parameters. As in the previous example,
we included three random-effects parameters (the
random intercept, the random slope and their correla-
tion). Table 5 reports the estimate and standard error
of the fixed-effect parameters. The significance of each
parameter of the model was assessed by means of the
Wald statistics.

We thereby estimated the PSE and its standard
deviation with the Delta method (see Figure 2). The
estimates of the PSE were 473 6 7 ms (mean 6 SD) in
Invisible Flicker condition and 505 6 7ms in the
Control condition. The difference between the two
estimated values of PSE was 32 ms. We further
evaluated the PSE with the bootstrap method (sampled
datasets B ¼ 600). The PSE was 473 ms (95%
confidence interval: 458-490 ms) in Invisible Flicker
condition and 505 ms (95% confidence interval: 491-
523 ms) in the Control condition. Crucially, the two
confidence intervals estimated with the bootstrap
method do not overlap.

The estimates of the PSE with the GLMM (using
either the Delta or the bootstrap method) are close to
the estimates with the PAOM, which are 475 and 508
ms respectively for Invisible Flicker and Control
condition (compare, for instance, Figure 2 with figure
1.B of the original article).

In conclusion, the PAOM and the GLMM consis-
tently showed that the PSE was significantly shorter in
the Invisible Flicker than in the Control condition.

Simulated data

We further tested the GLMM and PAOM on
simulated data. With respect to the GLMM, we
focused on fixed effects in the following simulations.

In order to get plausible values, we based our first set
on a published article (Moscatelli, Polito, & Lacqua-
niti, 2011). We randomly sampled eight subjects from
the original dataset, in order to generate clustered data.
Each of these subjects has been tested with nine
possible values of a continuous predictor and 40
repetitions for each value, corresponding to a total
number of 360 dichotomous responses per subject. We
appropriately modified the initial data in order to set
the PSE to a specific value, as follows. First, we fitted

the responses of each subject with a probit model so as
to estimate the parameters b0i and b1i. We then
centered each fitted model on the average of the
continuous predictor, by choosing an appropriately
shifted value of the intercept:

b*
0i ¼ ��x � b1i ð14Þ

In Equation 14, b*
0i is the shifted intercept, �x is the

average value of the continuous predictor (equal to
800) and b1i is the fitted slope of the model. According
to Equation 2, the PSEi of each ‘‘shifted’’ model was:

PSEi ¼ �
b*
0i

b1i

¼ �x ¼ 800 ð15Þ

Using the estimates b*
0i and b1i, responses Yij were

randomly generated from a binomial (nij, p̂ij) ; where i is
the subject, j is the stimulus level, and pij ¼ U(b*

0i þ
b1ixij). We used the R function rbinom to generate
random numbers from the binomial distribution. The
simulated data set consists of the set of counts along
with their associated predictors, sample sizes and
subject labels. The procedure was repeated 1,000 times,
resulting in 1,000 randomly generated data sets. Each
sampled dataset was then fitted with a GLMM
(random intercept and slope) and a PAOM.

We first focused on the estimate of the PSE. In each
dataset we estimated the PSE and its 95% confidence
interval (CI; for the GLMM, CI was obtained by
means of the Delta method, reducing the computa-
tional load of the simulation). If both GLMM and
PAOM were unbiased, we would expect the grand

Parameter Estimate

Standard

error z value Pr(. jzj)

g0(Intercept) �4.61845 0.65614 �7.039 , 0.0001

g1(Duration) 0.00914 0.00137 6.688 , 0.0001

g2(Control Condition) 1.14258 0.409575 2.790 0.00528

g3(Interaction) �0.00180 0.00811 �2.222 0.02631

Table 5. Fixed effects parameters of the GLMM (Example 2).

Figure 2. The PSE estimated with the Delta method. We re-

analyzed the dataset from Johnston et al. (2008), ‘‘Visually-based

temporal distortion in dyslexia’’ (with permission of Johnston, A.,

& Bruno, A.). The bar plot shows the estimated PSE in Flickering

condition (in grey) and Control condition (in white). Vertical error

bars show the SD. The dataset has been fitted with GLMM; the

PSE and the SD were estimated with the Delta method.

Journal of Vision (2012) 12(11):26, 1–17 Moscatelli, Mezzetti, & Lacquaniti 9



mean of each model to be close to 800. We also would
expect that the theoretical value of the PSE (800) fell
within the CI in 95% of the samples. According to
PAOM, the grand mean of the PSE was 799.97. We
performed a one-sample t-test for each simulated
experiment. In each t-test, the alternative hypothesis
stated that the true value of the PSE was different from
800. Consistently with the expectation, we were unable
to reject the null hypothesis in 49/1,000 samples (with a
significance-level a equal to 0.05). According to
GLMM, the grand mean of the PSE was 799.95. The
95% CIs did not include the theoretical value of the
PSE (800) in 49/1,000 samples. Thus, the two methods
resulted to be unbiased, and Type I Errors of the PSE
were within the confidence level of 0.05.

In order to simulate an experimental effect, we added
a fixed value d to the slope of the probit model. For
each subject and stimulus level, we sampled the
responses from a binomial distribution, where the
specific probability of the outcome was determined
using the following equation:

U�1 PðYij ¼ 1Þ
� �

¼ b*
0i þ b1ixij þ b2idij þ dðxijdÞ ð16Þ

In Equation 16, dij is a dummy variable (dij¼1 in one
half of the observations), b2i ¼�[800 � (b1i þ d)] � b*

0i,
and d accounts for a simulated experimental effect.
According to this equation, PSE¼ 800 for both dij¼ 1
and dij¼ 0, while the difference in slope between dij¼ 1
and dij¼ 0 is equal to d (actually, d is a parameter of the
model, just as b0i, . . ., b02. We used this notation to
highlight that this specific parameter accounts for a
simulated difference between experimental conditions).
Using this algorithm, we first checked the two models
for Type I Errors. With respect to d, the hypothesis H0

states that the parameter is not significantly different
from 0, thus we set d¼ 0 in Equation 16 and simulated
1,000 data sets. In this case, we simulated 720 trials per
subject (360 trials in each experimental condition, with
dij ¼ 1 or dij ¼ 0). With a confidence level of 0.05, we
would expect d to be not significantly different from 0

in less than 5% of the samples. We tested the parameter
by means of the Wald statistics. The parameter was
significantly different from 0 in 42/1,000 samples with
PAOM (Figure 3) and 38/1,000 samples with GLMM
(Figure 4). Furthermore, according to the two methods,
the two estimates of the PSE were unbiased (Figures 5
and 6) and the PSE was significantly different from 800
in less than 5% of the samples.

Finally, we assessed the power of the two models by
setting d . 0. We always chose plausible values of the
parameter (according to our original data set). In
different simulations, d was 0.0005, 0.001, 0.002 and
0.0026. According to PAOM, the parameter was
significantly different from zero respectively in 210/
1,000, 593/1,000, 996/1,000 and 1,000/1,000 samples.
According to GLMM, the parameter was significantly
different from zero respectively in 283/1,000, 795/1,000,
1,000/1,000 and 1,000/1,000 samples. As shown in
Figure 7, the GLMM has a higher power than PAOM
(0.0005 . d . 0.002) while Type I Errors are similar (d
¼ 0).

Discussion

Most psychophysical studies make inferences on the
whole population by means of a two-level analysis
(PAOM). This two-level analysis has several limits: it
discards the subject-specific variability in the second
step, it has a lower statistical power, and it does not
allow assessing the overall goodness of fit easily.
Generalized Linear Mixed Models (GLMMs) are a
viable alternative to such two-level analysis. Here we
compared the performance of GLMMs and PAOMs in
psychophysics, using examples from the psychophysics
of time perception. We briefly discussed several options
for statistical inference on the parameters of the
GLMM, such as the LR test, the AIC and the Wald
statistics. None of these options apply to the estimate
of the PSE. Therefore, we proposed to estimate the PSE

Figure 3. Type I errors with PAOM. In each dataset, we tested the hypothesis H0: d¼ 0, where d is the difference in slope between D¼ 1

and D ¼ 0. We set the true value of d equal to 0. The y-axis shows the p value (paired t-test) in each sample. In red p , 0.05.
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and its uncertainty within the GLMM framework by
means of the Delta and Bootstrap methods. The Delta
method provides a confidence interval for the param-
eter of interest. It approximates the parameter with a
Gaussian distribution; the resulting confidence interval
is therefore symmetric around the estimated parameter
(Equation 11). The Delta method is computationally
fast, and may provide a rapid estimate of the variability
of the parameter. However, the normality assumption
may not apply: the interval of the PSE can be skewed,
and thus assuming a symmetric interval may lead to
biases in the individual tail-coverage probabilities.
Alternatively, the bootstrap method does not require

any a priori assumption about the interval of the PSE.
It is not straightforward to decide a priori the number
of replications (B) in bootstrap methods – this varies
from case to case, depending also on the variability of
the responses and on the size of the data set. Here, we
increased progressively the size of B; for a given B we
replicated 20 times the procedure, and empirically
chose a size of B that guaranteed stable results between
one replication and the other. As shown in
Supplementary T S1, in Example 1, the estimate of
PSE and 95% CI is similar for a further increase of B.
Both the bootstrap and the delta methods may
underestimate the variability of the PSE in case of

Figure 4. Type I errors with GLMM. We tested in each dataset the hypothesis H0: d¼ 0, where d is the difference in slope between D¼ 1

and D ¼ 0. We set the true value of d equal to 0. The y-axis shows the p value (Wald z) in each sample. In red p , 0.05.

Figure 5. Simulated data; values of the PSE estimated with PAOM. We simulated 1,000 datasets according to Equation 18. The Figure

shows the estimated PSE for D¼1 (white) and D¼0 (black). In both conditions, the theoretical value of the PSE was equal to 800 (dotted

line).
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overdispersion, however as we will illustrate below, it is
possible to account for overdispersion in GLMM with
different methods.

Next, we compared the PAOM and GLMM on real
and simulated data. Overall, we found that the
estimated values of the PSE and of the slope were
similar between the two models. In simulated data sets,
we found that Type I errors were within the confidence
level (p¼ 0.05) in both the PAOM and the GLMM. In
these simulations, we computed p-values of the d
parameter by means of the z Wald statistics, whereas
in Example 1 and Example 2 we performed statistical
inference by means of LR test and model comparison.

On real data, the z Wald statistics is unreliable if
overdispersion occurs; this is not the case with
simulated data, where the programmer can control
the sources of variability. According to previous
studies, Type I error rate in lme4 depends on both
the number of clusters, repetitions and within-cluster
correlations (Austin, 2010; Zhang et al., 2011). Austin
(2010) found that the empirical type I error rates were
acceptable as long as the number of subjects and
repetitions per subject were larger than five. Similarly,
Bolker et al. (2009) suggested the rule-of-thumb of
including more than five subjects or clusters for each
random effects, and more than 10 samples per each

Figure 6. Simulated data; values of the PSE estimated with GLMM. The Figure shows the estimated PSE for D ¼ 1 (white) and D ¼ 0

(black). In both conditions, the theoretical value of the PSE was equal to 800 (dotted line).

Figure 7. Comparison of the statistical power of the two models. Percentage of d significantly different from zero with respect to the true

values of the parameter. Gray circles are the estimated p-values with PAOM, black triangles with GLMM.
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level of the linear predictor. The power of the analysis
depends on the sample size, the effect size, and its
source of variability, that is, the rate of yes responses (it
will affect the variance in a Binomial distribution), the
overdispersions, and the heterogeneity between subjects
or clusters. Checking previous studies in the literature
may help in predicting the correct sample size to
address a specific experimental question.

The GLMMs have several advantages compared
with PAOMs. First, GLMMs have a higher statistical
power than PAOMs (Figure 7). Second, model
comparison is easier within the GLMM framework
than within the PAOM. Also, GLMMs separately
account for the variability within and between subjects,
by means of fixed and random effects, respectively.
Therefore, although the experimenter will usually focus
on fixed effects, she/he may want to look at the random
effects to study the heterogeneity between subjects.

Fitting GLMMs may be rather complex because the
likelihood function does not have a closed form
solution. The function can be approximated thorough
different numerical methods (Agresti, 2002, paragraph
12.6). In Examples 1 and 2, we used the Gauss-Hermite
quadrature. The approximation is a weighted sum that
evaluates the function at certain quadrature points. The
approximation improves as the number of quadrature
points increases; in lme4 package it is possible to choose
the number of points. Alternatively, the likelihood
function can be approximated using Monte Carlo
Markov Chain (MCMC) methods. The R package
lme4 allows the MCMC method in Linear Mixed
Model (LMM; Pinheiro & Bates, 2000), however, at the
time we wrote the article, this is not possible for
GLMMs. The R package MCMCglmm (Hadfield,
2010) allows fitting GLMMs by means of MCMC
algorithms. This package follows a Bayesian approach,
and therefore the researcher has to choose a prior
distribution of the parameters of the model. The
Gauss-Hermite and Monte Carlo integration methods
provide likelihood approximations, and the parameter
estimates converge to the ML estimates, as the
quadrature points and the sample size increase.
Alternatively, the penalized quasi-likelihood method
(PQL) maximizes the quasi-likelihood rather than the
likelihood function. The PQL may yield biased
estimates with binary data (Goldstein & Rasbash,
1996); Agresti (2002) recommends using ML rather
than PQL methods. Finally, it is worth noting that the
likelihood ratio test cannot be used with the PQL
fitting, because the test requires the ML. All methods
discussed above are implemented in several R packages
(for a comparison, see Bolker et al., 2009; Austin, 2010;
Zhang et al., 2011). The R-based code that we used in
this article is available on our web site (http://
mixedpsychophysics.wordpress.com).

GLMMs and related models also apply to unbal-
anced experimental designs, may account for over-
dispersion, and may extend to the Bayesian framework
(see below). Here, we illustrated GLMMs with a
random intercept and with a random slope and
correlated random intercept. Although rarely applied
in psychophysics, unbalanced experimental designs can
be also modeled in the mixed-model framework by
means of nested random effects and crossed random
effects (Bolker et al., 2009). Both types of random
effects can be implemented in lme4.

An issue that we mentioned before is that of
overdispersion. This may occur in GLMMs and in other
statistical models assuming a binomial distribution of the
data (such as, for example, the ordinary logit and probit
GLM). In GLMMs, it is possible to include subjects-
level random effects in order to account for over-
dispersion (Agresti, 2002). Other tips on GLMM and
over-dispersion are inAgresti (2002), Bolker et al. (2009),
and the related web site: www.glmm.wikidot.com.

In our examples, we modeled functions whose lower
and upper asymptotes were respectively 0 and 1;
however, in mixed model framework it is also possible
to model functions with different asymptotes. This
takes into account the guessing and lapsing behavior,
which affect respectively the lower and the upper
asymptote of the function. Guessing is particularly
important in n-Alternative-Forced-Choice (n-AFC)
paradigms, where the lower asymptote approaches the
probability of success for a random choice. Brockhoff
and Müller (1997) proposed a mixed model accounting
for guessing behavior in multiple forced choice
experiments. They introduced the parameter c that
accounts for the base-line probability. The probability
of Yes response is therefore:

PðYij ¼ 1Þ ¼ cþ ð1� cÞPðeij.� ui � b0 � xijb1Þ ð17Þ
Using the latent variable that we introduced in

Methods, we can write the model as:

PðYij ¼ 1Þ ¼ cþ ð1� cÞY* ð18Þ
Brockhoff and Müller (1997) applied a quasi-likeli-

hood method to estimate the parameters. Their model
was applied to experimental data inWilliams et al. (2006).
Yssaad-Fesselier and Knoblauch (2006) applied a Gen-
eralized Nonlinear Mixed Model to model lapses in
psychometric functions. In their article, authors modeled
the repeated responses of a single subject in different
experimental conditions. They assumed that lapses
originate from a random process, unrelated to experi-
mental variables. In their model, a single random-effect
parameter accounts for lapsing: therefore the number of
parameters does not increase with the number of
conditions, ensuring the parsimony of the model. The
issue of modeling lapses was further discussed on the R
group of interest ‘‘R-mixed-models,’’ by K. Knoblauch
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and D. Bates among others (see https://stat.ethz.ch/
mailman/listinfo/r-sig-mixed-models, third and fourth
quarter 2010). In psychometrics, similar solutions have
been suggested within the framework of the Item
Response Theory (Fox, 2010). Models discussed above
are not linear, and therefore cannot be fitted with the
lme4-function glmer.

In the linear mixed model, random effects estimates
of the unit means are compromises or weighted
averages between the biased-but-efficient grand mean
and the unbiased-but-inefficient unit mean. Random
Effects models fit naturally into a Bayesian paradigm.
Similar to the Bayesian approach, a mixed model
specifies the model in a hierarchical fashion, assuming
that parameters are random. However, unlike the
Bayesian approach, hyperparameters are estimated
from the data, and just as in the Bayesian approach,
one has to make a decision on some prior assumption.
It is possible to apply GLMM within the Bayesian
framework with the already cited MCMCglmm R-
package or other software, such as WinBUGS/Open-
BUGS or JAGS. R-packages BRugs and rjags interface
WinBUGS and JAGS with R.

In this article we showed that, in the classical two-
level model, a considerable amount of information is
lost when making inference on the whole population.
Therefore, we proposed to use the GLMM for
statistical inference on the whole population. Obvious-
ly, studying the whole population is not at odds with
studying each single subject. The aim of the GLMM is
to quantify the variability in behavior between subjects
and to draw conclusions on the whole set of data. In
conclusion, we believe that the GLMM may prove
quite useful in psychophysics, especially when different
individuals of the population are heterogeneous in the
variance of their experimental results.
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Footnotes

1 In other branches of medicine this parameter is
known as LD50 (see, for example, Faraggi, Izikson, &
Reiser, 2003; Kelly, 2001).

2 In other fields of neuroscience, two-level statistical
models have been proposed to take the subject-specific
variability into account; see, for example, Mériaux,
Roche, Dehaene-Lambertz, Thirion, & Poline, 2006.

3 In Equation 4 and 5, we labeled the within and
between-subjects sources of variability with the eij and
ui error terms. These two error terms do not appear in
Equation 3 because it is an expression for the expected
value. Alternatively, we could write the between-
subjects variability as a random-effects parameter
multiplied for a random weight predictor Z: Y*

ij ¼ b0i
þ b1ixijþ uiZiþ eij. The random predictor Z equals to 1
for subject i and 0 otherwise. In matrix notation: Y*¼
Xb þ Zu þ e. We assume that u has a normal
distribution with mean 0 and variance r2

u. This second
notation has been also frequently used (Breslow &
Clayton, 1993; Agresti, 2002).
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Appendix A

Here we focus on the difference in the error term in
GLM and GLMM.We start from the GLM with probit
link function (as in Equation 1):

U�1 PðYij ¼ 1Þ
� �

¼ b0i þ b1ixij ðA1Þ

A latent dependent variable Y*
ij, with normally

distributed errors, motivates the probit regression
model. It is assumed that Y*

ij is a continuous variable,
and that it is a linear function of the test stimulus xij
(since the reference stimulus has a constant value):

Y*
ij ¼ b0i þ b1ixij þ eij ðA2Þ

We assume that Y*
ij is related to the observed

dichotomous dependent variable

Yij ¼
1 if Y*

ij . 0

0 if Y*
ij � 0

ðA3Þ
(

We also assume that the error term eij has a standard
normal distribution. Therefore:

PðYij ¼ 1Þ ¼ PðY*
ij . 0Þ ¼ Pðb0i þ xijb1i þ eij . 0Þ ¼

¼ Pðeij .� b0i � xijb1iÞ ¼ Uðb0i þ xijb1iÞ
PðYij¼ 0Þ ¼PðY*

ij � 0Þ ¼Pðb0iþxijb1i þ eij � 0Þ ¼
¼ Pðeij � �b0i � xijb1iÞ ¼ 1� Uðb0i þ xijb1iÞ

ðA4Þ
The inverse function of U() is the probit function, as

shown in Equation A1. Note that the latent approach
does not necessarily require the assumption of unitary
variance. In fact, in Equation A2, if eij instead of a
standard Gaussian, has a Gaussian distribution with 0
mean and variance r2, we can easily derive Equation A4:

PðYij ¼ 1Þ ¼ PðY*
ij.0Þ ¼ Pðb0i þ xijb1i þ eij.0Þ

¼ P
b0i

r2
þ xij

b1i

r2
þ eij

r2
.0

� �

¼ P
eij
r2

.� b0i

r2
� xij

b1i

r2

� �

¼ U
b0i

r2
þ xij

b1i

r2

� �

Assuming unit variance makes distributions easier to
handle, and makes parameters easier to interpret; the
nonuniqueness of parameterization does not compro-
mise the identifiability. This is the classical psycho-
physical model for the single subject.

The GLMM is an extension of GLM that allows the
analysis of repeated measures from several subjects. We
recall from Equation 5:

U�1 PðYij ¼ 1Þ
� �

¼ b0 þ b1xij ðA5Þ
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The error term differs between the ordinary GLM
and the GLMM. In the GLM, we introduced the latent
variable Y*

ij and the normally distributed error term eij.
Within the mixed model framework, Y*

ij becomes:

Y*
ij ¼ b0 þ b1xij þ mij ðA6Þ

The error term mij is the sum of two components ui
and eij, such that:

vij ¼ ui þ eij
ui ;Nð0; r2

uÞ
eij ;Nð0;r2

e Þ
ðA7Þ

The error-term eij represents the variability within
subjects and the error-term ui the variability between
subjects. The model implies that the correlation

between two error terms for the same individual i is a
constant q given by:

q ¼ Corrðvim; vinÞ ¼
r2
u

r2
u þ r2

e
ðA8Þ

Where vim and vin are error-terms from different
trials and within the same subject. While error terms
within the same subject are positively correlated
(Equation A8), they are independently conditional on
the random parameter ui. The higher r2

u, the higher is
the correlation between the error terms of the same
subject. According to the model (Equation A5 and A6),
vim and vin are independent only for a degenerate
distribution of ui, that is, if r2

u ¼ 0.
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