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Abstract

We complete the proof started in [1] of the universal Luttinger liquid relations for a
general model of spinning fermions on a lattice, by making use of the Ward Identities due to
asymptotically emerging symmetries. This is done by introducing an effective model verifying
extra symmetries and by relating its critical exponents to those of the fermion lattice gas by
suitable fine tuning of the parameters.

1 Main results

We consider a standard (generically non solvable) model of a gas of spinning fermions on a one
dimensional lattice with a short range repulsive interaction, with Hamiltonian

H = −1

2

∑

x∈C
s=±

(a+
x,sa

−
x+1,s + a+

x,sa
−
x−1,s) + µ

∑

x∈C
s=±

a+
x,sa

−
x,s + λ

∑

x,y∈C
s,s′=±

vL(x− y)a+
x,sa

−
x,sa

+
y,s′a

−
y,s′ (1.1)

where C = {1, 2, . . . , L} is a one dimensional lattice of L, a±x,s are fermion creation and annihilation

operators at site x with spin s, and such that a±1,s = a±L+1,s (periodic boundary conditions), vL(x)
is a function on Z, periodic of period L, such that vL(x) = v(x) for −[L/2] ≤ x ≤ [(L − 1)/2],
v(x) being an even function on Z satisfying the short range condition |v(x)| ≤ Ce−κ|x|, and
−µ ∈ (−1,+1) is the chemical potential. In the special case λv(x−y) = Uδx,y the model is known
as Hubbard model, which is exactly solvable by Bethe ansatz [2].

We define the operators a±x,s = ex0Ha±x e
−Hx0 , with x = (x, x0), 0 ≤ x0 < β for some β > 0

(β−1 is the temperature) and the densities ραx with α = C, Si, SCi, TCi denoting respectively the
Charge density, the spin densities and singlet and tripled Cooper densities

ρCx =
∑

s=±
a+
x,sa

−
x,s ρSix =

∑

s,s′=±
a+
x,sσ

(i)
s,s′a

−
x,s′

ρSCx =
1

2

∑

s=±
ε=±

s aεx,sa
ε
x,−s ρTCix =

1

2

∑

s,s′=±
ε=±

aεx,sσ̃
(i)
s,s′a

ε
x+e,s′ , e = (1, 0) (1.2)

where σ(i) are the Pauli matrices, while

σ̃(1) =

(
1 0
0 0

)
, σ̃(2) =

(
0 1
1 0

)
, σ̃(3) =

(
0 0
0 1

)
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Similarly we will introduce the paramagnetic and diamagnetic part of the current

Jx =
1

2i

∑

s=±
[a+

x+e,sa
−
x,s − a+

x,sa
−
x+e,s] , τx = −1

2

∑

s=±
[a+

x,sa
−
x+e,s + a+

x+e,sa
−
x,s] (1.3)

Defining 〈·〉L,β := Tr[e−βH ·]
Tr[e−βH ]

, the density and current response functions are defined by the following

truncated correlations:

Ωα,β,L(x− y) := 〈Tραxραy〉T ;β,L := 〈Tραxραy〉β,L − 〈ραx〉β,L〈ραy〉β,L
Ωj,j,β,L(x− y) := 〈TJxJy〉T ;β,L := 〈TJxJy〉β,L − 〈Jx〉β,L〈Jy〉β,L (1.4)

where, if Ox is quadratic in the fermion operators, TOxOy = OxOy if x0 > y0 and OyOx if x0 ≤ y0.
If x − y = (ξ, τ), the response functions are defined in (−L,L) × [−β, β] and are β-periodic in τ
and L-periodic in ξ. If Fβ,L is any function of this type, we define its Fourier transform as

F̂β,L(p) =

∫ β
2

− β2
dx0

∑

x∈C
eipx Fβ,L(x) (1.5)

where p = (p, p0), with p ∈ 2π
L n, −[L/2] ≤ n ≤ [(L− 1)/2] and p0 ∈ 2π

β Z.
In the following we will be interested in the zero temperature limit of some truncated cor-

relation functions, in particular the two-point function δs,s′S
β,L
2 (x − y) := 〈Tα−x,sα+

y,s′〉β,L, the
density and current response functions and vertex functions (to be defined later), calculated in
the thermodynamic limit. We shall denote these functions by the same symbols, without the β
and L labels; for example, we shall write: limβ→∞ limL→∞ Ω̂L,β,α(p) ≡ Ω̂α(p). Note that the
thermodynamic limit L→∞ is taken before the zero temperature limit β →∞; this allows us to
derive properties of the thermal ground state. To shorten the notation, in the following we shall
use the definition limβ,L→∞ ≡ limβ→∞ limL→∞.

Several important thermodynamic quantities can be derived from the knowledge of the response
functions. In particular the susceptibility, which is given by

κ := lim
p→0

lim
p0→0

Ω̂C(p) . (1.6)

and the Drude weight, related to the response of the system to an e.m. field, is defined as

D = lim
p0→0

lim
p→0

D̂(p) (1.7)

with

D̂β,L(p) = −〈τx〉 −
∫ β/2

−β/2
dx0

∑

x∈Λ

eipx〈JxJ0〉T ;L,β (1.8)

where the first term is a constant independent of x. If one assumes analytic continuation in
p0 around p0 = 0, one can compute the conductivity in the linear response approximation by

the Kubo formula, that is σ = limω→0 limδ→0
D̂(−iω+δ,0)
−iω+δ . Therefore, a nonvanishing D indicates

infinite conductivity.
The conservation law

∂ρCx
∂x0

= eHx0 [H, ρx]e−Hx0 = −i∂(1)
x Jx ≡ −i[Jx,x0

− Jx−1,x0
] ,

where ∂
(1)
x denotes the lattice derivative, implies exact relations, called Ward identities (WI),

among the Schwinger functions, the density correlations and the vertex functions, defined as
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G2,1
ρ,β,L(x,y, z) = 〈Tρ(C)

x a−y a
+
z 〉T,β,L and G2,1

j,β,L(x,y, z) = 〈TJxa−y a+
z 〉T,β,L. Some Ward Identi-

ties, which will play an important role in the following, are

−ip0Ĝ
2,1
ρ,β,L(k,k + p)− i(1− e−ip)Ĝ2,1

j,β,L(k,k + p) = Ŝβ,L2 (k)− Sβ,L2 (k + p) (1.9)

−ip0Ω̂C,β,L(p)− i(1− e−ip)Ω̂j,ρ,β,L(p) = 0 (1.10)

−ip0Ω̂ρ,j,β,L(p)− i(1− e−ip)D̂β,L(p) = 0 (1.11)

where Ωρ,j,β,L(x,y) = 〈ρCx Jy〉T,β,L and Ωj,ρ,β,L(x,y) = 〈JxρCy 〉T,β,L.
In the previous paper [1] we have analyzed the model (1.1) in the repulsive non half-filled band

case and we have proved, see Theorem 1.1 of [1], that the zero temperature response functions
(1.4) in the thermodynamic limit decay at large distances with critical exponents, which are non
trivial functions of the coupling and are denoted by XC , XSi , XSC , XSC , XTCi, see (1.26) of [1];
finally η is the critical exponent of the interacting propagator, see (1.25) [1].

Such exponents, together with κ and D, depend on all microscopic details of the model, for
instance the form of the two body interaction or the chemical potential. Nevertheless, according
to the Luttinger liquid conjecture proposed by Haldane [3] (extending previous ideas by Kadanoff
[4], and Luther and Peschel [5]) such quantities, through model dependent, are believed to satisfy
a set of model independent relations. Such relations are true in a special solvable spinless models,
the Luttinger model, whose solvability relies on the absence of the spin and on the linear dispersion
relation of the fermions, see [6]. The content of the conjecture is that several of the relations valid
in the Luttinger model are generically valid in a wide class of systems describing 1D fermions with
with non linear dispersion relation and in presence of spin. The following Theorem proves for the
first time the validity of the universal Luttinger liquid relations in a wide class of models (including
the 1D Hubbard model) of spinning fermions on a one dimensional lattice with a generic short
range interaction satisfying a special positivity condition, in the non half filled band case.

Theorem 1.1 Given the Hamiltonian (1.1), if µ 6= 0 and v̂(2 arccos(µ)) > 0, there exists λ0 > 0
such that, if 0 ≤ λ ≤ λ0, it is possible to find a continuous function pF ≡ pF (µ, λ) = arccos(µ) +
O(λ) verifying the conditions

pF 6= 0, π/2, π , v̂(2pF ) > 0 (1.12)

so that there exist continuous functions

K ≡ K(λ) = 1− cλ+O(λ2), K ≡ K(λ) = 1− cλ+O(λ2) (1.13)

with c = 2[v̂(0)− v̂(2pF )/2](π sin pF )−1, such that

1. the critical exponents satisfy the extended scaling formulas

4η = K +K−1 − 2 , 2XC = 2XSi = K + 1 ,

2XTCi = 2XSC = K−1 + 1 , 2X̃SC = K +K−1 ;
(1.14)

2. the small momentum asymptotic behavior of the response functions is

Ω̂C(p) =
K

πv

v2p2

p2
0 + v2p2

+A(p)

D̂(p) =
v

π
K

p2
0

p2
0 + v2p2

+B(p)

(1.15)

with A(p), B(p) continuous and vanishing at p = 0, v = sin pF +O(λ); therefore the Drude
weight D and the susceptibility κ are O(λ) close to their free values and verify the Luttinger
liquid relation

v2 = D/κ (1.16)
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The relations (1.14) were proposed in the spinless case by Kadanoff [7] and Luther and Peschel
[5], and imply the exact determination of all the other exponents from the knowledge of a single
one of them. The relation (1.16), proposed by Haldane [3], gives exact formulas relating the
susceptibility and the Drude weight (connected to the amplitudes of the response functions) to
the charge velocity v. The importance of such relations, in addition to the fact that they are
among the very few cases in which the basic principle of universality in statistical mechanics can
be rigorously established, rely in the fact that they allow for predictions which could be possibly
experimentally verified in real anisotropic materials.

In order to prove such properties we introduce an effective model verifying some extra sym-
metries (which are only asymptotic in the lattice model) like the Lorentz symmetry and chiral
local phase invariance implying many Ward Identities. In the model (1.1) such symmetries are
not true, and there is a much smaller number of Ward Identities, given by (1.9), (1.10), (1.11),
which are not sufficient by themselves to derive the universal relations. The critical exponents
and the thermodynamic quantities of the effective model are related to the ones of the model
(1.1), provided that a suitable fine tuning of the parameters is done; on the other hand the Ward
Identities valid for the effective model imply relations from which at the end (1.14) and (1.16)
follow. This method is a way to implement the concept of emerging symmetries in a rigorous
mathematical setting. This fine tuning is possible thanks to the fact that both model are analyzed
by Renormalization Group methods, and have a two dimensional manifold of fixed points. The
strategy we followed can provide several extra information on the Hubbard model; an example is
provided by the content of App. D, in which a detailed expression of the 2-point function of the
Hubbard model is given, which looks in agreement with the so called spin-charge separation, that
is the conjectured property that the spin and charge waves have different velocities.

2 Renormalization Group Analysis of the Effective Model

2.1 Definition of the effective model

The effective model which we introduce in order to prove Theorem 1.1 is not Hamiltonian and is
defined directly in terms of Grassmann variables. Given L > 0, we consider the set D′L of space-
time momenta k = (k, k0), with k = 2π

L (n+ 1
2 ) and k0 = 2π

L (n0 + 1
2 ), n, n0 ∈ Z; with each k ∈ D′L

we associate eight Grassmann variables (sometimes also called fields) ψ̂+
k,ω,s, ψ̂

−
k,ω,s with ω = ± a

quasi-particle index and s = ± a spin index. We also define (only formally for the moment, since
the number of Grassmann variables is infinite) the Grassmannian field as

ψ±x,ω,s =
1

L2

∑

k∈D′L

e±ikxψ̂±k,ω,s (2.1)

where x = (x, x0) ∈ ΛL, ΛL being a two dimensional square torus of size L2. To shorten notation
we will also denote

∫
ΛL
dx by

∫
dx; moreover, in general we shall not stress the dependence on L

of the various quantities we shall consider.
Given two integers l and N independent of L, such that l� 0� N , the Generating Function

of the effective model with ultraviolet cutoff γN and infrared cutoff γl is the following Grassmann
integral:

eWl,N (J,η) =

∫
P

[l,N ]
Z (dψ) exp

{
−V (
√
Zψ) +

∑

ω,s

∫
dx Jx,ω,sψ

+
x,ω,sψ

−
x,ω,t

+
∑

ω,s

∫
dx
[
ψ+
x,ω,sη

−
x,ω,s + η+

x,ω,sψ
−
x,ω,s

]
}
,

(2.2)
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where J, η are (respectively commuting and anticommuting) external fields, P
[l,N ]
Z (dψ) is the Gaus-

sian Grassmann Integration (GGI) with propagator δω,ω′δs,s′g
[l,N ]
D,ω (x− y), where

g
[l,N ]
D,ω (x− y) =

1

Z

1

L2

∑

k∈D′L

e−ik(x−y)
χεl,N (|k̃|)
−ik0 + ωck

, k̃ = (ck, k0) (2.3)

Z, c > 0 and χεl,N (t) is a smooth cut-off function defined for t ≥ 0, depending on a small positive
parameter ε ≥ 0 with the following properties. If ε > 0, it is strictly positive for all t > 0, which
reduce, as ε→ 0, to a compact support function χl,N (t) equal to 1 for γl ≤ t ≤ γN and vanishing
for t ≤ γl−1 or t ≥ γN+1. The model is not really dependent of ε, since we plan to perform the
limit ε→ 0 in the expressions we get for the correlation functions and the kernels of the effective
potential, at fixed values of L, N and l.

t

1

γlγl−1 γN+11

Figure 1:Figure 1: The cut-off functions χεl,N (|k̃|) (dashed line) and χl,N (|k̃|) (solid line)

The interaction is

V (ψ) = g1,⊥V1,⊥(ψ) + g‖V‖(ψ) + g⊥V⊥(ψ) + g4V4(ψ) (2.4)

with

V1,⊥(ψ) =
1

2

∑

ω,s

∫
dxdyhL,K(x− y)ψ+

x,ω,sψ
−
x,ω,−sψ

−
y,−ω,sψ

+
y,−ω,−s

V‖(ψ) =
1

2

∑

ω,s

∫
dxdyhL,K(x− y)ψ+

x,ω,sψ
−
x,ω,sψ

+
y,−ω,sψ

−
y,−ω,s

V⊥(ψ) =
1

2

∑

ω,s

∫
dxdyhL,K(x− y)ψ+

x,ω,sψ
−
x,ω,sψ

+
y,−ω,−sψ

−
y,−ω,−s

V4(ψ) =
1

2

∑

ω,s

∫
dxdyhL,K(x− y)ψ+

x,ω,sψ
−
x,ω,sψ

+
y,ω,−sψ

−
y,ω,−s

(2.5)

where hL,K(x) is defined in the following way. Let us fix an integer K 1 and a smooth function

ĥ(p), defined on R2 and rotational invariant, such that |ĥ(p)| ≤ Ce−µ|p| for some positive C and

µ, and ĥ(0) = 1; moreover, let us call DL the set of space-time momenta k = (k, k0), with k = 2π
L n

and k0 = 2π
L n0, n, n0 ∈ Z. Then

hL,K(x) :=
1

L2

∑

p∈DL
ĥ(γ−Kp)eipx (2.6)

1it is possible but not advisable to choose K = 0, because leaving a generic K will make clearer the “power
counting” formulas: see for example Lemma 2.2
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Note that hL,K(x) is a smooth periodic function on ΛL, which converges, as L→∞, to a smooth

function hK(x) = γ2Kh(γKx), h(x) being the Fourier transform of ĥ(p); this function is fast
decreasing on scale γ−K .

Even if the properties of (2.2) are largely independent of the exact form of χεl,N (t) and χl,N (t),

we find it convenient to choose them in the following way. We introduce a function χ(t) ∈ C∞(R+)
such that χ(t) = 1 if t ≤ 1 and χ(t) = 0 if |t| ≥ γ; then we define, for any integer j, fj(t) =
χ(γ−jt)− χ(γ−j+1t) (hence the support of fj(t) is contained in the interval [γj−1, γj+1]) and we
put

χεl,N (|k̃|) =

N∑

j=l

fεj (|k̃|) (2.7)

where fεj (t) = fj(t), if l+ 1 ≤ j ≤ N −1, while fεl (t) and fεN (t) are obtained by slightly modifying

fl(t) and fN (t) in the following way, see Fig. 1. We put fεN (t) = fN (t) + ε∆N (γ−N t), where
∆N (t) is a Schwartz function with support in [1,+∞), such that ∆N (t) > 0, if t > 1. Analogously,
fεl (t) = fl(t)+ε∆l(γ

−lt), where ∆l(t) is a C∞ function with support in [0, 1], such that ∆l(t) > 0,
if t ∈ (0, 1).

In order to understand this definition, note that, if ε = 0, the model is well defined, since the
family of Grassmann variables ψ̂±k,ω,s, with k ∈ D̃′L = {k ∈ D′L : χl,N (|k̃|) > 0}, is finite, so that

we can restrict the sum in (2.3) and (2.1) to the set D̃′L and we can write

P
[l,N ]
Z (dψ) =

1

N exp
{
− Z

L2

∑
ω,s

k∈D̃′
L

χ−1
l,N (|k̃|)(−ik0 + ωck)ψ̂+

k,ω,sψ̂
−
k,ω,s

} ∏
ω,s

k∈D̃′
L

dψ̂+
k,ω,sdψ̂

−
k,ω,s (2.8)

where N is a suitable normalization constant. However, in the following we have to analyze the
behavior of this GGI under the local gauge transformation ψ±x,ω,s → e±iαx,ω,sψ±x,ω,s and this looks
very difficult, since it is not possible to give a useful representation of the GGI (2.8) in terms of
the Grassmann field ψ±x,ω,s, even if it is now well defined, if we restrict in (2.1) the sum to the

set D̃′L. In order to solve this problem, we put ε > 0 and, at the same time, in order to keep the
number of independent Grassmann variables finite, we introduce a lattice cutoff, by substituting
the torus ΛL with a lattice of spacing a, such that γN+1 < πa−1 and La−1 = 2M , M integer. We
call ΛaL = {x = (ma,m0a),m,m0 ∈ [−M,M − 1]} the lattice and we substitute everywhere

∫
dx

with
∑

x∈ΛaL
a2 and the set D̃′L with the set D̃′L,a = {k ∈ D′L : |k|, |k0| ≤ πa−1 − πL−1}.

The outcome of this procedure is that the field {ψ±x,ω,s,x ∈ ΛaL} is related to the field

{ψ̂±k,ω,s,k ∈ D̃′L}, up to a constant, through the finite Fourier transform, so that

dψ :=
∏

ω,s,k∈D̃′L,a

dψ̂+
k,ω,sdψ̂

−
k,ω,s =

1

N ′
∏

ω,s,x∈ΛaL

dψ+
x,ω,sdψ

−
x,ω,s (2.9)

whereN ′ is a normalization constant; (2.9) easily implies the invariance of
∏
ω,s,x∈ΛaL

dψ+
x,ω,sdψ

−
x,ω,s

under the local gauge transformation (3.1). Of course, after writing the Ward identities following
from the gauge invariance, we have to take the limit a → 0, followed by the limit ε → 0, while
keeping fixed L, N and l.

In agreement with these definitions, we shall define the Fourier transform of the external field
η±x,ω,s through the analogous of (2.1), while, for the external field Jx,ω,s, we shall use the definition

Jx,ω,s = L−2
∑

p∈D̃L,a Ĵp,ω,se
−ipx, where D̃L,a := {p ∈ DL : p, p0 ∈ [−π/a, π/a− 2π/L]}. For the

same reasons we modify the definition (2.6) of the function hL,K(x), by restricting the sum over

p to the set D̃L,a.
With this setup, as we shall prove, we can rigorously compute the correlations and the kernels

of the effective potentials at fixed values of L, N , l and then perform the limit a→ 0, followed by
the limit ε→ 0.
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It is easy to see that the limit a → 0 is essentially trivial; in fact, in the scale decomposition
that we shall describe below, the lattice spacing has a role only in two points:
a) The bounds concerning the integration of the Grassmann variables with momenta larger then

γN , which has to be performed in a single step using the propagator g
(N)
ω (x) defined as the

r.h.s. of (2.3) with fεN in place of χεL,N , can not be uniform in L. The reason is that we do

not modify the free propagator, in order to make it periodic on the set D̃′L,a, see (2.8); it follows
that boundary terms appear in the integration by part arguments which allow us to control the

decreasing properties in x of g
(N)
ω (x), see (2.15) below. However, thanks to the fast decreasing

properties of the function ∆N (t) introduced in the definition of f̃εN (|k̃|), it is easy to see that the

boundary terms are negligible for a small enough, so that the dimensional bounds on g
(N)
ω (x) are

uniform in a ≤ aL,N and ε ∈ [0, 1], with aL,N → 0 for L,N →∞. This is not a source of trouble,
since we have to perform the limit a→ 0 at fixed values of N and L.
b) The presence of the lattice introduces the so called Umklapp terms, when we write the ker-
nels of the effective potentials and the correlations in terms of Fourier transforms, a proce-
dure that is important in our analysis of the infrared scales. For example, our definitions im-
ply that

∑
x∈ΛaL

Jx,ω,sψ
+
x,ω,sψ

−
x,ω,s = L−2

∑
p∈D̃L,a Ĵp,ω,s[ρ̂p + ρ̂p+2πa−1 + ρ̂p−2πa−1 ] with ρ̂p =

L−2
∑

k+,k−∈D̃′L,a:p=k+−k− ψ̂
+
k+,ω,sψ̂

−
k−,ω,s. It is easy to see that the contribution of the terms pro-

portional to ρ̂p+2πa−1 and ρ̂p−2πa−1 , as well of all similar Umklapp terms does not qualitatively
modifies the structure of our multiscale expansion for a ≤ aL,N and that all quantities of interest
are well defined in the limit a→ 0, at fixed values of L and N and ε ≤ 1.

Hence, in the following we shall write the results of our calculations directly in the limit a→ 0;
in particular we shall use the symbols D′L and DL in place of D̃′L,a and D̃L,a, respectively.

As concerns the functions ∆N (γ−N |k̃|) and ∆l(γ
−l|k̃|), their strict positivity has a role only

when we discuss the Ward Identities following from the local gauge invariance. This calculation
involves the expression in the exponent of (2.8), which is very singular for ε → 0, but, as we
shall see, the Ward Identities for the correlations and the kernels of the effective potentials have
a simple well defined limit, which contains very important terms, which are at the origin of the
anomalous critical exponents.

Let us now give a look at the interaction. The coupling g1,⊥ has a special role: if g1,⊥ = 0 the
model is invariant under the global phase transformation

ψ±x,ω,s → e±iαω,sψ±x,ω,s (2.10)

with the constant phase αω,s which can depend both on ω and s. Otherwise, if g1,⊥ 6= 0, the spin
invariance is broken; the invariance is under the transformation

ψ±x,ω,s → e±iαωψ±x,ω,s (2.11)

with the phase independent of s.
For finite values of N, l, L it is a consequence of the Brydges-Battle-Federbush formula and of

the Gram-Hadamard inequality, see (2.43) and (2.47) of the companion paper [1], that the the
functional integral (2.2) is well defined and analytic in the couplings ~g = (g1,⊥, g‖, g⊥, g4) in a
disk in the complex plane. In order to get results valid in the limit of removed cut-off we need a
multiscale analysis.

It will turn out that the limit N → ∞ at l or L finite (that is the solution of the ultraviolet
problem) can be controlled by only assuming that ~g is small enough. The analysis of the ultraviolet
problem is somewhat similar to the one in §2.2, 2.3 of the companion paper [1] for the ultraviolet
problem of the model (1.1); in particular a tree expansion and a multiscale analysis are necessary.
However, in the case of the model (1.1) the lattice plays the role of an ultraviolet cut-off for spatial
momenta and this makes the problem much simpler. In the case of the continuum model (2.2),
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on the contrary, there is no such cut-off and the propagator (2.3) in the limit N → ∞ has a low
O(k−1) decay for large k; power counting arguments suggest that ultraviolet divergences, similar
to those appearing in d = 1 + 1 quantum Field Theory models, could appear. They are however
avoided, as we will see, thanks to cancelations and the non-locality of the interaction (1.1), see
lemma 2.2 below.

While the removal of the ultraviolet cut-off (at finite infrared cut-off) only requires that the
couplings are small, the removal of the infrared cut-off is much more subtle and depends critically
on the values of the couplings g⊥, g1,⊥, g⊥, g4; this reflects the fact that different long distance
decay properties of the correlations are expected to depend on the nature of the interaction. We
will show that the infrared cut-off can be safely removed in the following two cases:

1. the case g1,⊥ = 0

2. the case g‖ = g⊥ − g1,⊥ and g1,⊥ > 0

2.2 The ultraviolet integration

For simplicity, we shall put in (2.2) η = 0 and, for notational convenience we write (2.4) as

V (ψ) =
1

2

∑

Θ,Θ′

∫
dxdy ψ+

x,ω,sψ
−
x,ω,th

L,K
Θ,Θ′(x− y)ψ+

y,ω′,s′ψ
−
y,ω′,t′ (2.12)

with Θ = (ω, s, t), Θ′ = (ω′, s′, t′) and

hL,KΘ,Θ′(x− y) =





−g1,⊥hL,K(x− y) for ω′ = −ω and s = t′ = −s′ = −t
g‖hL,K(x− y) for ω′ = −ω and s = t = s′ = t′

g⊥hL,K(x− y) for ω′ = −ω and s = t = −s′ = −t′
g4hL,K(x− y) for ω′ = ω and s = t = −s′ = −t′
0 otherwise

To exploit certain identities, we have to put in (2.2) a more general source term; hence, we
substitute the term proportional to the J field with

∑
Θ

∫
dx Jx,Θψ

+
x,ω,sψ

−
x,ω,t, where again Θ =

(ω, s, t), and we define:

V(ψ, J) =
∑

Θ

∫
dx Jx,Θψ

+
x,ω,sψ

−
x,ω,t − V (

√
Zψ) (2.13)

The graphical representation of the interaction is given in Fig. 2.

x

ω, t

ω, s
x

ω, t

ω, s
y

ω′, t′

ω′, s′

− Z2

Figure 1:

Figure 2: Graphical representation of (2.13)

By using (2.7), we can write

g
[l,N ]
D,ω (x) =

N∑

j=l

g(j)
ω (x) (2.14)
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where g
(j)
ω (x) is defined as g

[l,N ]
D,ω (x) with χεl,N (|k̃|) replaced by fεj (|k̃|). Therefore, for a positive

constant c0,

‖g(k)‖L∞ := sup
x,ω
|g(k)
ω (x)| ≤ c0γk , ‖g(k)‖L1 := max

ω

∫
dx |g(k)

ω (x)| ≤ c0γ−k

‖g(k)‖L̃1
:= max

ω

∫
dx ‖x‖ |g(k)

ω (x)| ≤ c0γ−2k

(2.15)

where ‖x− y‖ is the distance on the torus, and, from (2.6)

‖hL,K‖L∞ := sup
x
|hL,K(x)| ≤ c0γ2K , ‖∂hL,K‖L1

:= sup
j=0,1

∫
dx |∂jhL,K(x)| ≤ c0γK

‖hL,K‖L1
:=

∫
dx |hL,K(x)| ≤ c0 (2.16)

The scales N,N−1, . . . ,K are called ultraviolet scales, while the remaining ones are called infrared

scales; if ψ(j), j ≥ K is the field with propagator g
(j)
ω (x) and we call PZ(dψ(j)) the corresponding

GGI, the integration of the fields ψ(N), . . . , ψ(K) is done iteratively in the usual way, by using
the decomposition PZ(dψ[l,N ])

∏K
j=l PZ(dψ(j)), where we have modified the previous notation by

writing PZ(dψ[l,N ]) in place of P
[l,N ]
Z (dψ). After integrating the fields ψ(N), ψ(N−1), ..., ψ(h+1),

h ≥ K, we get an expression of the form:

∫
PZ(dψ[l,N ])eV(ψ[l,N],J) = e−L

2Eh+Sh(J)

∫
PZ(dψ[l,h])eV

(h)(ψ[l,h],J) (2.17)

where

V(h)(ψ, J) =

∞∑

m=1

∞∑

n=0

∑

Θ,Θ′

∫
dzdxdyW

(n;2m)(h)
Θ,Θ′ (z;x,y)[

n∏

j=1

Jzj ,Θj ][

m∏

j=1

ψ+
xj ,ω′j ,s

′
j
ψ−yj ,ω′j ,t′j

] (2.18)

and Θ = (Θ1, . . . ,Θn), Θ′ = (Θ′1, . . . ,Θ
′
m), Θ′j = (ω′j , s

′
j , t
′
j).

Remark - The compact support properties of the single scale propagators g
(j)
ω imply that

V(h)(ψ[l,h], J) depends on N and L, but is independent of the IR cutoff l, if l < K.
The integration of the field ψ(j) is done after resumming the marginal terms, which is done by

rewriting the r.h.s. of (2.17) as

e−L
2Eh+Sh(J)

∫
PZ(dψ[l,h−1])

∫
PZ(dψ(h))eLV

(h)(ψ[l,h],J)+RV (h)(ψ[l,h],J) (2.19)

where R = 1− L and L is a linear operation acting on the kernels of V(h) so that

LW (n;2m)(h)(z;x,y) :=

{
W (n;2m)(h)(z;x,y) if n+m ≤ 2

0 otherwise
(2.20)

Therefore, if we define, as in §2.3 of [1], eh = Eh − Eh+1 and sh(J) = Sh(J) − Sh+1(J), then
−L2eh + sh(J) + V(h)(ψ, J) can be expressed as a tree expansion very similar to the one used in
Lemma 2.2 of the companion paper [1] that here we briefly recall.

Let us consider the family of all trees which can be constructed by joining a point r, the root,
with an ordered set of n ≥ 1 points, the endpoints of the unlabeled tree, so that r is not a branching
point. n will be called the order of the unlabeled tree and the branching points will be called the
non trivial vertices. The unlabeled trees are partially ordered from the root to the endpoints in
the natural way; we shall use the symbol < to denote the partial order. Two unlabeled trees are
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r v0

v

h h + 1 hv N N + 1

Figure 3: A renormalized tree appearing in the graphic representation of V(k)

identified if they can be superposed by a suitable continuous deformation, so that the endpoints
with the same index coincide. It is then easy to see that the number of unlabeled trees with n
end-points is bounded by 4n. We shall also consider the set TN,h,ng,nJ of the labeled trees with
ng+nJ endpoints (to be called simply trees in the following); they are defined by associating some
labels with the unlabeled trees, as explained in the following items.
1) We associate a label J or g to each endpoint, so that there are ng endpoints with label g, to

be called normal endpoints, and nJ endpoints with label J to be called special endpoints.
2) We associate a label h ≤ N with the root. Moreover, we introduce a family of vertical lines,

labeled by an integer taking values in [h,N + 1], and we represent any tree τ ∈ TN,h,ng,nJ so that,
if v is an endpoint or a non trivial vertex, it is contained in a vertical line with index hv > h,
to be called the scale of v, while the root r is on the line with index h. In general, the tree will
intersect the vertical lines in set of points different from the root, the endpoints and the branching
points; these points will be called trivial vertices. The set of the vertices will be the union of the
endpoints, of the trivial vertices and of the non trivial vertices; note that the root is not a vertex.
Every vertex v of a tree will be associated to its scale label hv, defined, as above, as the label of
the vertical line whom v belongs to. Note that, if v1 and v2 are two vertices and v1 < v2, then
hv1

< hv2
.

3) There is only one vertex immediately following the root, which will be denoted v0; its scale is
h+ 1. If v0 is an endpoint, the tree is called the trivial tree; this can happen only if ng + nJ = 1.
4) Given a vertex v of τ ∈ TN,h,ng,nJ that is not an endpoint, we can consider the subtrees of τ

with root v, which correspond to the connected components of the restriction of τ to the vertices
w ≥ v. If a subtree with root v contains only v and one endpoint on scale hv + 1, it will be called
a trivial subtree.
5) Given an end-point, the vertex v preceding it is surely a non trivial vertex, if ng + nJ > 1.

Our expansion is build by associating a value to any tree τ ∈ TN,h,n,m in the following way.
First of all, given an endpoint v ∈ τ with hv = N + 1, we associate to it one of the terms
contributing to the potential in (2.13), while, if hv ≤ N , we associate to it one of the terms
appearing in

∑

Θ,ω′

∫
dxdydzW

(1;2)(hv)
Θ,(ω′,s,t)(z;x,y)Jz,Θψ

+(<hv)
x,ω′,s ψ

−(<hv)
y,ω′,t +

∑

ω,s

∫
dxdyW (0;2)(hv)(x,y)ψ+(hv)

x,ω,s ψ
−(hv)
y,ω,s



December 2, 2013 11

+
∑

ω,s

∫
dx1dx2dx3dx4W

(0;4)(hv)ψ+(hv)
x1,ω1,s1ψ

−(hv)
x2,ω2,s2ψ

+(hv)
x3,ω3,s3ψ

−(hv)
x4,ω4,s4 (2.21)

All these possible choices will be distinguished by a label α in a set Aτ , depending on τ . Finally,
the operator R is associated with each non-trivial vertex v.

The previous definitions imply that the following iterative equations are satisfied:

V(h)(ψ(≤h), J) + sh(J)− L2eh =

∞∑

n=1

∑

τ∈TN,h,ng,nJ
α∈Aτ

V(h)(τ, α, ψ(≤h), J) , (2.22)

where, if v0 is the first vertex of τ and τ1, . . . , τs, s ≥ 1, are the subtrees with root in v0,

V(h)(τ, α, ψ(≤h), J) =

1

s!
ETh+1

[
V(h+1)

(τ1, α1, ψ
(≤h+1), J); . . . ;V(h+1)

(τs, αs, ψ
(≤h+1), J)

] (2.23)

where V(h+1)
(τi, αi, ψ

(≤h+1), J) is equal to RV(h+1)(τi, αi, ψ
(≤h+1), J) if the subtree τi contains

more than one end-point (that is v is a non trivial vertex), otherwise it is given by one of the
terms in (2.13), if hv = N + 1, or one of the terms in (2.21), if hv ≤ N .

Note that, by the definition (2.20), the tree value can be different from 0 only if, for any non
trivial vertex v 6= v0, |Pv|/2 + nJv > 2, where Pv is the number of ψ variables not yet contracted
in the vertex v (see App. A for a precise definition) and nJv is the number of J-endpoints of the
subtree with root v. Note also that |Pv| has to be positive for any v 6= v0 and that Pv0

= 0 for the

trees contributing to eh and sh(J); in the following, we shall denote by W (0;0)(h) and W
(n;0)(h)
Θ (z)

the corresponding kernels, while W̃ (0;0)(h) =
∑N
j=hW

(0;0)(j) and W̃
(n;0)(h)
Θ (z) =

∑N
j=hW

(n;0)(j)
Θ (z)

will be the kernels of Eh and Sh(J)
By (2.22) and (2.23) it is straightforward to verify, see App. A, that the kernelsW (n;2m)(h)(z;x,y)

in (2.18), h > K are represented by integrals of power series expansions in the running coupling
functions W (0;2)(k),W (1;2)(k),W (0;4)(k) with k > h. Consider now the L1 norm

‖W (n;2m)(k)‖ := max
Θ,Θ′

1

L2

∫
dzdxdy

∣∣∣W (n;2m)(k)
Θ;Θ′ (z;x,y)

∣∣∣ (2.24)

Of course, since the kernels may contain delta functions, we extend, as usual, the definition of the
L1 norm by treating the delta as positive functions. We also define

w
(1;2)(h)
Θ,Θ′ (z;x,y) := δΘ,Θ′δ(z− x)δ(z− y) (2.25)

w
(0;4)(h)
Θ,Θ′ (x1,x2,y1,y2) := Z2hL,KΘ,Θ′(x1 − x2)δ(x1 − y1)δ(x2 − y2) (2.26)

that are equal to W
(1;2)(h)
Θ,Θ′ and W

(0;4)(h)
Θ,Θ′ when h = N .

Theorem 2.1 Let K ≤ k ≤ N and assume that

sup
h>k

[
γ−h‖W (0;2)(h)‖+ ‖W (0;4)(h)‖

]
≤ ε0 sup

h>k
‖W (1;2)(h)‖ ≤ 2 (2.27)

with ε0 independent of k, L,N ; there exists a constant ε such that, if ε0 ≤ ε then, for a suitable
constant C,

‖W (n;2m)(k)‖ ≤ εdn,m0 Cn+mγk(2−n−m) (2.28)

where dn,m = max(m − 1, 0) if n > 0, and dn,m = max(m − 1, 1) if n = 0. Moreover the limits

limN→∞W
(n;2m)(k)
Θ,Θ′ do exist and are reached uniformly.
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The proof of this theorem is very similar to the proof of Lemma 2.2 of the companion paper [1],
and is in appendix A. Note however a crucial difference; in the present case the scaling dimension,
which can be read from the r.h.s. of (2.28), is n + m − 2; this explains why, according to (2.20),
we renormalize the kernels in Vh such that n+m ≤ 2, that is those which are the only ones with
m > 0 and scaling dimension ≤ 0.

Note that Theorem 2.1 implies a bound also on the L1 norm of the kernels W̃
(n;0)(k)
Θ (z) =

∑N
j=kW

(n;0)(j)
Θ (z). This bound is finite uniformly in N for n ≥ 3, while it is divergent for N →∞,

if n ≤ 2. The cases n = 0 and n = 1 do not give any trouble; in fact W (1,0)(h) = 0, because of the
oddness of the free propagator, while the divergence of the free energy is not a problem in a QFT
model. As concerns ‖W̃ (2;0)(k)‖, the logarithmic divergence for N →∞ of its bound is a problem

in the following analysis. However, by using the symmetry g
[k,N ]
ω (x, x0) = −iωg[k,N ]

ω (−x0, x), one

can see that
∫
dzdz′W̃ (2;0)(k)

Θ,Θ′ (z, z′) = 0; this identity (or better its validity for the term of order 0
in ~g) will be a crucial ingredient in the proof of Lemma 2.2 below, together with the non locality
of the interaction, which allows us to improve some bounds by substituting the L∞ norm of the
propagator with its L1 norm. In this way we will be able to verify the assumptions (2.27) on the
running coupling functions by improving their dimensional bound.

Lemma 2.2 There exist positive constants C1, C2, C3, such that, if g = max{|g1,⊥|, |g‖|, |g⊥|, |g4|}
is small enough and if K ≤ h ≤ N , then

‖W (0;2)(h)‖ ≤ C1gγ
hγ−2(h−K) (2.29)

‖W (1;2)(h) − w(1;2)(h)‖ ≤ C2gγ
−(h−K) (2.30)

‖W (0;4)(h) − w(0;4)(h)‖ ≤ C3gε0γ
−(h−K) (2.31)

By the above lemma we see that we can choose ~g so small that Theorem 2.1 holds and the
bound (2.28) is true. Note that the crux of the above bounds is the fact that C1, C2 and C3

are independent of the scale h. In other words, we have standard “power counting” bounds even
though we do not study beta functions of marginal or relevant terms: that is obtained by the
cancelations that we will provide in the proof below. For K ≤ h ≤ N , the factor(s) γ−(h−K) do
not play any decisive role, and in applications will be bounded by 1. However, note that they are
unbounded if, instead, h < K: this explains why this Lemma is stated only for K ≤ h ≤ N .

Proof of Lemma 2.2 The proof is by induction. We assume that the bounds (2.29)-(2.31) hold
for k + 1 ≤ h ≤ N (for h = N they are true with C1 = C2 = C3 = 0); then we can use Theorem
2.1 to have (2.28) on scale k, assuming that g ≤ ε/C where C is the minimum among C1, C2, C3;
finally, we prove that (2.29)-(2.31) holds for h = k. Note that the definition of the kernels (see
remarks after (2.23)) imply that, if m > 0 and n ≥ 0,

W
(n;2m)(h)
Θ;Θ′ (z;x,y) :=

n∏

j=1

∂

∂Jzj ,Θj
×

m∏

j=1

∂2

∂ψ+
xj ,ω′j ,s

′
j
∂ψ−yj ,ω′j ,t′j

V(h)(
√
Zψ[l,h], J)

∣∣∣∣∣∣
ψ=J=0

W̃
(n+1;0)(h)
Θ (z) :=

n+1∏

j=1

∂

∂Jzj ,Θj
Sh(J)

∣∣∣∣∣∣
J=0

, W̃ (0.0)(h) = Eh

(2.32)

Let us now put V
(h)

(ψ, J) = V(h)(ψ, J)−L2Eh+Sh(J). We will make repeated use of the following
two identities. The first one, graphically represented in Fig. 4, says that, for any Θ = (ω, s, t0),

∂V(k)

∂ψ+
x,ω,s

(ψ, J) =
∑

t0

Jx,Θψ
−
x,ω,t0 +

∑

t0

Jx,Θ

∫
du g[k+1,N ]

ω (x− u)
∂V(k)

∂ψ+
u,ω,t0

(ψ, J)
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+
∑

t0,Θ1

∫
dwdu hL,KΘ,Θ1

(x−w)g[k+1,N ]
ω (x− u)

[
∂2V(k)

∂Jw,Θ1
∂ψ+

u,ω,t0

+
∂V(k)

∂Jw,Θ1

∂V(k)

∂ψ+
u,ω,t0

]
(ψ, J)

+
∑

t0,Θ1

ψ−x,ω,t0

∫
dw hL,KΘ,Θ1

(x−w)
∂V

(k)

∂Jw,Θ1

(ψ, J) , (2.33)

x
=

x
+

x u

+
x

u

w

+
x

u

w

+
x

w

Figure 4: Graphical representation of (2.33). The wiggly line and the solid arrow between two points

represent hL,KΘ,Θ′ and g
[k+1,N ]
ω , respectively; the external wiggly line and the external arrow represent Jx,Θ

and ψ
[l,k]+
x,ω,s , respectively; the blobs represent the derivatives of V

(k)
with respect to their external fields,

with a ’halo’ that reminds the possibility of taking other derivatives w.r.t. J or ψ fields.

The second identity, graphically represented in Fig. 5, says that

∂V(k)

∂Jx,Θ
(ψ, J) = ψ+

x,ω,sψ
−
x,ω,t0 +

∫
du g[k+1,N ]

ω (x− u)

[
ψ+
x,ω,s

∂V(k)

∂ψ+
u,ω,t0

− ∂V(k)

∂ψ−u,ω,s
ψ−x,ω,t0

]
(ψ, J)

+

∫
dudu′ g[k+1,N ]

ω (x− u)g[k+1,N ]
ω (u′ − x)

[
∂2V(k)

∂ψ+
u,ω,s∂ψ

−
u′,ω,t0

+
∂V(k)

∂ψ+
u,ω,s

∂V(k)

∂ψ−u′,ω,t0

]
(ψ, J) .

(2.34)

A proof of these identities is given in appendix B. Let us show that (2.28) can be improved to
(2.29)-(2.31) case by case.

a) Bound for W
(0;2)(k)
Θ . If we take in (2.33) one derivative w.r.t. ψ−y,ω,t and, after that, we put

J = ψ = 0, we obtain an identity for W
(0;2)(k)
Θ (x,y), Θ = (ω, s, t), which, since W

(1;0)
Θ (0) = 0 by

the oddness of the fermion propagator, reads

W
(0;2)(k)
Θ (x− y) =

√
Z
∑

t0,Θ′

∫
dwdw′ hL,K(ω,s,t0),Θ′(x−w)g[k+1,N ]

ω (x−w′)W (1;2)(k)
Θ′;(ω,t0,t)

(w;w′,y) ,

(2.35)
where Θ = (ω, s, t). We now bound hK by its L∞-norm, the fermion propagator by its L1-norm
and W (1;2)(k) by (2.28), ‖W (1;2)(k)‖ ≤ C2. We get

‖W (0;2)(k)
Θ ‖ ≤ 16g‖hL,K‖L∞‖W (1;2)(k)‖

∑

j≥k+1

‖g(j)‖L1
≤ gC1γ

kγ−2(k−K) , (2.36)
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Figure 5: Graphical representation of (2.34). The notation is the same as in Fig. 4

generatore

ω ω

x y
=

ω ω

x

w′

w

y

Figure 6: Graphical representation of (2.35); the gray blobs represent W
(0;2)(k)
Θ and W

(1;2)(k)

Θ′;(ω,to,t); the solid

lines are fermion propagators g
[k+1,N ]
ω or external lines; the wiggly line is hL,KΘ,Θ′ .

This proves (2.29).

b) Bound for W (1;2)(k). If we take in (2.33) two derivatives w.r.t. ψ−y,ω,t and Jz,Θ′ and we put

J = ψ = 0, we can decompose W
(1;2)(k)
Θ′;Θ − w(1;2)(k)

Θ′;Θ into the four terms in Fig.7.

generatore

ω

x

ω

y

ω′
z

=
ω

x
u

ω

y

w ω′
z

(a)

+

ω
x = y

w

ω′
z (b)

+

ω
x u

ω
y

w

ω′
z (c)

+ δω′,ω

x = z
ω

u
ω

y

(d)

Figure 7: : Graphical representation of the decomposition of W
(1;2)(k)

Θ′;Θ ; the darker bubble represents the

difference W
(1;2)(k)

Θ′;Θ − w(1;2)(k)

Θ′;Θ ; the other bubbles represent the kernels in (2.32); the internal vertices are
integrated.

Consider first the graph (a). As in the previous case, take the L1-norm of the fermion prop-

agator and the L∞-norm of the function hL,KΘ,Θ′ ; then use for W (2;2)(k) the bound (2.28), that is
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‖W (2;2)(k)‖ ≤ C3ε0γ
−k. We get:

‖W (1;2)(k)
(a) ‖ ≤ 16g‖hL,K‖L∞‖W (2;2)(k)‖

∑

j≥k+1

‖g(j)‖L1
≤ C2

4
gγ−2(k−K) . (2.37)

Analogously, by using (2.36), we get for the graph (d) the bound

‖W (1;2)(k)
(d) ‖ ≤ 2‖W (0;2)(k)‖

∑

j≥k+1

‖g(j)‖L1
≤ C2

4
gγ−2(k−K) . (2.38)

Let us now consider the terms (b) and (c). In these cases the previous procedure, based on
the non locality of the interaction, which allows us to improve the bound by substituting the
L∞ norm of the propagator with its L1 norm, can not be directly applied and we have to face
the problem that the trivial bound is proportional to ‖W̃ (2;0)(k)‖, which is divergent for N → ∞
(see the remarks after Theorem 2.1). We shall bypass this difficulty, by exploiting the fact that∫
dzdz′W̃ (2;0)(k)

Θ,Θ′ (z, z′) = 0 in the following way. Let us consider first the term (b) and note that

W
(1;2)(k)
(b)Θ′;Θ (z;x,y) = δ(x− y)Z

∑

Θ′′

∫
dwW̃

(2;0)(k)
Θ′,Θ′′ (z,w)hL,KΘ′′,Θ(w − x)

If we take one derivative w.r.t. Jz,Θ′ in (2.34) and then we put ψ = J = 0, we get a represen-

tation of W̃
(2;0)(k)
Θ′,Θ′′ (z,w), that we insert in the previous expression; the result can be graphically

represented as in the left side of the first line in Fig. 8. We further expand this expression by

substituting the kernel W
(1;2)(k)
(b)Θ′;Θ′′(z;u′,u) with its expansion in Fig. 7; the result is represented

in Fig.8.

ω

x w

u′

u

ω′

z

(b)

=
ω

x w

u′

z′

u

w′

ω′

z

(b1)

+ ω

x w

ω′

z

(b2)

+
ω

x w u z′

ω′

z

(b3)

+
ω

x w

ω′

z

z′

v′

(b4)

+

ω

x w u

z′
u′

v′

ω′

z

(b5)

Figure 8: Graphical representation of the term (b) in the decomposition in Fig.7

Consider the term (b1). The new estimation procedure is now slightly more elaborated; de-

compose the three propagators g
[k+1,N ]
ω′′ (w−u′), g[k+1,N ]

ω′′ (u−w) and g
[k+1,N ]
ω′′ (u′−w′) into scales

and take the L∞-norm of the lowest scale propagator, while the two others are used to control the
integration over the inner space variables through their L1-norm; then, for W (2;2)(k) use again the
bound (2.28), that is ‖W (2;2)(k)‖ ≤ C3ε0γ

−k. We get:

‖W (1;2)(k)
(b1) ‖ ≤ 16g2‖hL,K‖L1

‖hL,K‖L∞‖W (2;2)(k)‖·

· 3!
∑

i≥j≥i′≥k+1

‖g(i)‖L1
‖g(j)‖L1

‖g(i′)‖L∞ ≤ C2,1g
2γ−2(k−K) (2.39)
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In a similar way, by using the bound (2.36), we see that ‖W (1;2)(k)
(b4) ‖ ≤ C2,4gγ

−2(k−K)

The bound of (b2) and (b3) looks as problematic as the bound of (b), but we can now use in a

simple way the cancelations related to the propagator symmetry g
[k,N ]
ω (x, x0) = −iωg[k,N ]

ω (−x0, x),

which implies that
∫
dzdz′W̃ (2;0)(k)

Θ,Θ′ (z, z′) = 0, at any order in ~g, in particular at order 0, that is

∫
du

[
g

[k+1,N ]
ω′ (u)

]2
= 0 . (2.40)

Let us consider first (b2); we get

W
(1;2)(k)
(b2)Θ′;Θ(z;x,y) = δ(x− y)

∑

Θ′′

∫
dw hL,KΘ,Θ′′(x−w)

[
g

[k+1,N ]
ω′′ (w − z)

]2
(2.41)

By using the identities (2.40) and

hL,KΘ,Θ′′(x−w) = hL,KΘ,Θ′′(x− z) +
∑

j=0,1

(zj − wj)
∫ 1

0

ds
(
∂jh

L,K
Θ,Θ′′

)(
x− z + s(z−w)

)
(2.42)

we get:

W
(1;2)(k)
(b2)Θ′;Θ(z;x,y) = δ(x− y)·

·
∑

Θ′′
j=0,1

∫ 1

0

ds

∫
dw

(
∂jh

L,K
Θ,Θ′

)(
x− z + s(z−w)

)
(zj − wj)

[
g

[k+1,N ]
ω′ (w − z)

]2 (2.43)

Hence,

‖W (1;2)(k)
(b2) ‖ ≤ 8g‖∂hL,K‖L1

∑

i≥j≥k+1

‖g(i)‖L̃1
‖g(j)‖L∞ ≤ C2,2gγ

−(k−K) . (2.44)

Following the same strategy, we obtain a bound for (b3) which is obtained from the bound for (b2)

by multiplying it by ‖W (1;2)(k)
(b) ‖; we get:

‖W (1;2)(k)
(b3) ‖ ≤ C2,2gγ

−(k−K)‖W (1;2)(k)
(b) ‖ (2.45)

Analogously, the bound for (b5) is obtained from the bound for (b4) by multiplying it by ‖W (1;2)(k)
(b) ‖;

hence ‖W (1;2)(k)
(b5) ‖ ≤ C2,4gγ

−2(k−K)‖W (1;2)(k)
(b) ‖.

Therefore, summing all the bounds for (b1) to (b5), we obtain

‖W (1;2)(k)
(b) ‖ ≤ C2

2
gγ−(k−K) + gC5‖W (1;2)(k)

(b) ‖

with C2 = 2(C2,1 + C2,2 + C2,4) and C5 = C2,2 + C2,4. Hence, if g is small enough,

‖W (1;2)(k)
(b) ‖ ≤ C2gγ

−(k−K) (2.46)

It is now easy to complete the proof of (2.30).

c) Bound for W (0;4)(k). If we take three derivatives w.r.t. ψ in (2.34) and then we put ψ = J = 0,
we get the decomposition of W (0;4)(k) depicted in Fig.9.

Let us consider first the graphs (a) and (d), which differ only for the interchange of y with y′;
by using (2.30), we get:

‖W (0;4)(k)
(a) ‖+ ‖W (0;4)(k)

(d) ‖ ≤ 16‖hL,K‖L1
C2gγ

−(h−K) ≤ C3,1g
2γ−(h−K)
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Figure 9: Decomposition of the class of graphs W
(0;4)(k)

α,α′ . The darker bubbles represents W
(0;4)(k)

α,α′ −w(0;4)

α,α′

or W
(1;2)(k)

α;α′ − w(1;2)

α;α′ .

By using (2.30) and the bound in the right side of (2.27), we get

‖W (0;4)(k)
(b) ‖+ ‖W (0;4)(k)

(e) ‖ ≤ 16‖hL,K‖L1
‖W (1;2)(k)‖‖W (0;2)(k)‖

N∑

j=k

‖g(j)‖L1
≤ C3,2g

2γ−2(h−K)

Finally, by using (2.27) to bound ‖W (1;4)(k)‖, we get

‖W (0;4)(k)
(c) ‖ ≤ 8‖hL,K‖L∞‖W (1;4)(k)‖

∑

j≥k
‖g(j)‖L1

≤ C3,3ε0gγ
−2(k−K)

Then, if g ≤ ε0, by summing the three previous bounds, we get (2.31), with C3 = C3,1+C3,2+C3,3.
Uniformity of the N → ∞ limit is proved as in the proof of Lemma 2.2 of [1], see after (2.52) of
[1]. The proof of Theorem 2.2 is complete.

2.3 The infrared integration

The parameter K has only the role of clarifying the dimensional content of the bounds in §2.2;
hence, from now on, we shall put K = 0. For analogous reasons we shall also put Z = 1.

Note that Theorem 2.1 implies that the effective potential on scale 0 of the model (2.2) is
equivalent, from the RG point of view, to the effective potential on scale 0 of the extended Hubbard
model, which has been studied in detail in the companion paper [1]. The reason is in the following
remarks:
a) The free propagator g

[l,0]
D,ω(x) has the same asymptotic behavior of the Hubbard free propagator,

see eq. (2.100) in [1], at the infrared scales; the fact that, in [1], there is a different definition
of the finite space region and of the infrared cutoff has negligible effects, as it is easy to see by
looking at the description of the infrared integration in §2.4 of [1].
b) The local parts of the effective potential in the two models have the same structure. As a
consequence, the running coupling constants (r.c.c.) of the two models can be defined in a similar
way, with two differences: in the model (2.2) there is one more quartic marginal term, but, thanks
to the oddness of the free propagator, the r.c.c. νh (that multiplying the relevant monomial
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ψ+
x,ω,sψ

−
x,ω,s) vanishes exactly, so that the singularity of the interacting propagator stays fixed at

k = (0, 0). As concerns the renormalization constants (ren.c.), in the model (2.2) we put a restrict
set of source terms, which are related to the charge and spin ren.c.’s of the Hubbard model; hence,

we have to consider three ren.c.’s, that is Zh, the free ren.c., Z
(1)
h and Z

(2)
h , related to the source

terms with s = t and s = −t, respectively.
Hence we can repeat word by word the analysis of §2.4 of [1], with the simplifications that

the free propagator scales exactly and νh = 0. In particular, we can define in a similar way the
functionals S̃j(J, η), V̂(j)(ψ), V(j)(ψ), B̂(j)(ψ, J, η), B(j)(ψ, J, η) and the renormalized single scale
GGI PZj−1,f̃

−1
j

(dψ), with propagator

ĝ(j)
ω (k) =





1
Zj−1

f̃j(|k̃|)
Dω(k) l < j ≤ 0

1

Z̃l−1(k)

fl(|k̃|)
Dω(k) j = l

(2.47)

where f̃j(t) has the same support ans smoothness properties of fj(t) and Z̃l−1(k) = 1 + (Zl−1 −
1)fl(|k̃|); for details see also §3 of [8].

Remark - Even if Z̃l−1(k) takes values between 1 and Zl−1, |ĝ(j)
ω (k)| is bounded by cγ−jZ−1

j−1 for
all j ∈ [l, 0]. However, in the following, in particular in the prove of the bounds (3.9), (3.10) and

(C.7), the strong dependence on k of Z̃l−1(k) will be relevant.

The r.c.c. are defined as the coefficients of the local part of V̂(j)(ψ), which is given by

LV̂(j)(ψ) = δjFδ(ψ) + g1,⊥,jF1,⊥(ψ) + g‖,j|F‖(ψ) + g⊥,jF⊥(ψ) + g4,jF4(ψ) (2.48)

where Fδ(ψ) =
∑
ω,s

∫
dxψ+

x,ω,s(iω∂x)ψ−x,ω,s, while the other functions are defined as the potentials
(2.5) with δ(x− y) in place of hL,K(x− y). Moreover,

LB̂(j)(ψ, J, η) =
∑

ω,s

∫
dx

[
Jx,ω,s,s

Z
(1)
j

Zj−1
ψ+
x,ω,sψ

−
x,ω,s + Jx,ω,s,−s

Z
(2)
j

Zj−1
ψ+
x,ω,sψ

−
x,ω,−s

]
(2.49)

We introduce a label α ∈ {1, 2} to distinguish, in the tree expansion, the endpoints of type J
associated with the two terms of (2.49).

Remark - As we have remarked in §2.2 for the UV scales, the compact support properties of the

single scale propagators ĝ
(j)
ω (k) imply that the effective potential on scale j depends on N and L,

but is independent of the IR cutoff l, if j > l. The same remark is of course true for the r.c.c. and
the ren.c.; however, since the r.c.c. are defined only up to scale l + 1, they are all independent of
L.

Let us now call W
(h)
ω,α,ε,s,mψ,mJ ,mη (x) the kernels of the various terms contributing to V(j)(ψ),

B(j)(ψ, J, η) and S̃j(J, η), where mψ, mJ , mη are the numbers of external fields of type ψ, J , η,
respectively; ω, ε and s are the sets of ω, ε and s indices (possibly void) of the ψ and η fields,
while α is the the set of α indices of the J fields. Let us define

εh = max
h≤j≤0

max{|δj |, |g1,⊥,j |, |g‖,j |, |g⊥,j |, |g4,j |} (2.50)

Lemma 2.3 of [1] and the analysis of the ren.c. flow in §2.6 of the same paper imply the following
Theorem.

Theorem 2.3 There is ε, c1, C, independent of N, l, L, such that, if εh ≤ ε, then

sup
j>h

Zj/Zj−1 ≤ ec1ε
2
h , sup

j>h
i=1,2

Z
(i)
j /Zj−1 ≤ ec1εh (2.51)
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∫
dx
∣∣W (h)

ω,α,ε,s,mψ,mJ ,mη
(x)
∣∣ ≤ βLCm+mSε

km,mS
h γ−hDmψ,mJ,mη (2.52)

where 2m = mψ +mη, mS = mJ +mη, Dmψ,mJ ,mη = −2 +m+mJ(1 + c1ε0) +mη(1 + 1
2c1ε

2
0),

km,ms = max{1,m− 1}, if mS = 0, otherwise km,ms = max{0,m− 1}.
This Theorem is sufficient to perform the limit N →∞, followed by the limit L→∞, at fixed

l, but to prove that ε is independent of l is not trivial. It can be proved only under one of the
conditions: 1) g1,⊥ = 0; 2) g‖ = g⊥ − g1,⊥ and g1,⊥ > 0. Moreover, we have to use the strong
cancelations related to the local gauge invariance of the interaction (2.13) in the case g1,⊥ = 0.
In the following sections, we shall explain how to use this symmetry in order to prove iteratively
that ε stays away from 0 for l→ −∞ and, at the same time, the important bound

∣∣∣∣∣
Z

(1)
j

Zj
− 1

∣∣∣∣∣ ≤ C|ε
2
j | (2.53)

The properties of the tree expansion allow us also to prove that all Schwinger functions and
the correlation functions, at fixed distinct values of the space variables, are well defined in the
limit L→∞, when all the cutoffs are removed (the condition that there are not coinciding space
points is to avoid the singularities related with the UV divergence of the free propagator). The
same is true for their Fourier transforms, if one puts the following condition on the corresponding
momenta {qi, i = 1, . . . ,m} of the m external fields of type J or η :

m∑

i=1

σiqi 6= 0 , ∀σi = ±1 (2.54)

If this condition is satisfied, we shall say that the momenta are not exceptional; it is imposed
to avoid the singularities related to the possible divergence of the L1 norm for L,−l → ∞, in
agreement with the bound (2.52); these singularities are of course related to the divergence of the
L1 norm of the free propagator. The proof of these properties depends only on the structure of
the tree expansion and on the possibility of controlling the r.c.c.’s flow, while the details of the
model are not important. Hence, we refer for their proof to paper [9], where they are precisely
discussed, especially the first one, with a different localization procedure, which involves also the
terms with one η field and no J field.

In §4.4 we shall also need a bound on some particular correlation functions in the limit L,N →
∞ at fixed l, when the external momenta are of order γl. A similar property, whose proof is
based on a technique introduced in §3 of [8], has been used in [10], Theorem 1, in the case of a
model with spin 0, local interaction and a fixed UV cutoff. To extend this theorem to the actual
model is essentially trivial; hence we shall write the result without proof. Let us define < · >T
the truncated expectation of the model (2.2) and ρx,ω,s := ψ+

x,ω,sψ
−
x,ω,s.

Theorem 2.4 In the hypotheses of Theorem 2.3, if |k̃| = γl, then, in the limit L→∞, followed
by the limit N →∞, at fixed l,

〈ψ̂−k,ω,sψ̂+
k,ω,s〉 =

1

ZlDω(k)

[
1 +O(εl)

]

〈ρ̂2k,ω,s; ψ̂
−
k,ω,sψ̂

+
−k,ω,s〉T = − Z

(1)
l

Z2
l Dω(k)2

[
1 +O(εl)

]

〈ψ̂+
k,ω,s; ψ̂

−
−k,ω,µs; ψ̂

+
−k,ω′,s′ ; ψ̂

−
k,ω′,µs′〉T = − 1

Z2
l |k̃|4

{
− g1,⊥,lδµ,−1δω,−ω′δs,−s′

+δµ,1
[
g‖,lδω,−ω′δs,s′ + g⊥,lδω,−ω′δs,−s′ + g4,lδω,ω′δs,−s′ +O(ε2

l )
]}

(2.55)
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3 Ward Identities

3.1 Ward Identities in the g1,⊥ = 0 case in presence of cut-offs

In this section we want to analyze the Ward Identities (WI) related to the local gauge invariance
of the interaction (2.4) in the case g1,⊥ = 0. As explained in §2.1, this can only be done by putting
ε > 0 in (2.3) and by introducing a lattice spacing a in ΛL. At the end, we have to perform the
limit a → 0, followed by the limit ε → 0. In §2.1 we have also explained why the limit a → 0 is
essentially trivial; hence, in the following, we shall write the WI directly in the continuum limit
a = 0. As concerns the limit ε→ 0, it is trivial too, in the contributions coming from the effective
potentials, that we shall then suppose evaluated at ε = 0, while it needs an accurate analysis for
the terms coming from the free GGI.

If g1,⊥ = 0, the model (2.2) is invariant under the global gauge transformation (2.10) and the
interaction V(ψ, J) (see (2.13), where

∫
dx has to be understood as

∑
x∈ΛaL

a2) is invariant even

under the local gauge transformation

ψ±x,ω,s → e±iαx,ω,sψ±x,ω,s , x ∈ ΛaL (3.1)

for any lattice periodic function αx,ω,s. Hence, if we make in the r.h.s. of (2.2) this transformation,
we get in the limit a → 0, followed by the limit ε → 0 (see §2 of [8] for details in a similar

problem), the following functional Ward Identity (WI), where p ∈ DL and Ĵp,ω,s is defined so that

Jz,ω,s = L−2
∑

p∈DL e
−ipzĴp,ω,s.

Dω(p)
∂Wl,N (J, η)

∂Ĵp,ω,s
= Bp,ω,s(J, η) +Rp,ω,s(p; J, η) , Dω(p) = −ip0 + cωp (3.2)

where (since Z = 1)

Bp,ω,s(J, η) :=
1

L2

∑

k∈D′L

[
η̂+
k+p,ω,s

∂Wl,N (J, η)

∂η̂+
k,ω,s

− ∂Wl,N (J, η)

∂η̂−k+p,ω,s

η̂−k,ω,s

]
(3.3)

and

Rp,ω,s(J, η) = e−Wl,N (J,η) lim
ε→0

1

L2

∑

q∈D′L

Cω(q + p,q)

∫
P

[l,N ]
Z (dψ) ψ̂+

q+p,ω,sψ̂
−
q,ω,se

V(ψ,J,η) (3.4)

with

Cω(k+,k−) :=

[
1

χεl,N (|k̃−|)
− 1

]
Dω(k−)−

[
1

χεl,N (|k̃+|)
− 1

]
Dω(k+) (3.5)

Note that, here and in the following, the derivatives with respect to the momenta have to be
understood as the ordinary derivatives times L2, so that they formally become the usual functional
derivatives when L→∞. Moreover, we are defining the derivatives w.r.t. the Grassman variables
so that, if {χεii , i = 1, . . . , n} is a set of distinct ψεk,ω,s variables and n > 1, then

∂

∂χ
εj
j

n∏

i=1

χεii = εj(−1)j−1
∏

i 6=j
χεii

The last term Rp,ω,s(J, η) formally vanishes if we replace the cut-off function χεl,N in (2.3) (nec-
essary to make the functional integral (2.2) well defined) with 1. This term can be therefore
considered a correction to the formal functional WI (the one in which Rω,s(p; J, η) is neglected);
the origin of this correction is in the fact that the momentum cut-offs break the (formal) local
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gauge invariance. We will show that such corrections are not vanishing even in the limit of removed
cut-offs, a phenomenon known as quantum anomaly.

A crucial role is played by the properties of the function Cω(k+,k−). This function looks very
singular; however, since it appears in the expansions always multiplied by two propagators, what
it is really important are the properties of the function

Û
(i,j)
l,N,ω(q + p,q) := Cω(q + p,q)ĝ(i)

ω (q + p)ĝ(j)
ω (q) (3.6)

with ĝ
(j)
ω (k) defined as in (2.47), for all j, if we put f̃j(|k̃|) = fj(|k̃|) and Z−1

j−1 = 1, if j > 0.
The main property, which we will extensively use in the following, is that, since χεl,N (k) = 1 if

ĝ
(j)
ω (k) 6= 0 and l < j < N , then

Û
(i,j)
l,N,ω(q + p,q) = 0 l < i, j < N (3.7)

In the following we shall use the function Û
(i,j)
l,N,ω(q + p,q) only under the condition that |p̃| ≤

2γN+1; hence we can multiply it by χ̃N (p) = χ̃0(2−1γ−N−1|p̃|), where χ̃0(t) is a smooth positive
function of support in [0, 2] and equal to 1 for t ≤ 1. In App. C we show that it possible to define

two functions Ŝ
(i,j)
l,N,ω′,ω(k+,k−), such that (recall that Zj = 1 for j ≥ 0)

χ̃N (p) lim
ε→0

Û
(i,j)
l,N,ω(q + p,q) =

1

Zi−1Zj−1

∑

ω′=±ω
Dω′(p)Ŝ

(i,j)
l,N,ω′,ω(q + p,q) (3.8)

and, if we define the Fourier transform of Ŝ
(i,j)
l,N,ω′,ω(q + p,q) as

S
(i,j)
l,N,ω′,ω(z;x,y) =

1

L4

∑

k+,k−∈D′L

e−ik
+(x−z)eik

−(y−z)Ŝ
(i,j)
l,N,ω′,ω(k+,k−)

then, if j ≥ l, for any positive integers r (which in the following will be fixed large enough, e.g.
r = 4),

|S(N,j)
l,Nω′,ω(z;x,y)| ≤ (1 + δj,lZl−1)br,N (x− z)br,j(y− z) , br,k(x) := Cp

γk

1 + [γk||y − z||]r (3.9)

where ||x − y|| is the distance on the torus ΛL. The bound (3.9) has an essential role in the
integration of the UV scales; in the integration of the IR scales, we shall need a bound on the
Fourier transform of the functions (independent of N)

S̃
(j,l)
l,ω′ω(q + p,q) :=

1

2
[1− χ̃l(p)] lim

ε→0

Û
(j,l)
l,N,ω(q + p,q)

Dω′(p)
, j ≥ l

where χ̃l(p) := χ̃0[2−1γ−l−1|p̃|], with χ̃0(t) is the same function used in the definition of χ̃N (p).

These functions allows to write an identity similar to (3.8) for Û
(j,l)
l,N,ω.

In App. C we also show that, for any positive integers r,

|S̃(j,l)
l,ω′ω(z;x,y)| ≤ (1− δj,l)

Zj−1
b̃r,j(x− z)ũr,l(y − z)

b̃r,j(x) := Cp
1

1 + [γk||y − z||]r , ũr,l(x) := Cp
γ2l

1 + [γk||y − z||]r
(3.10)

Finally, in App. C we show that, if we define (recall that we have put Z = 1 and K = 0)

τ±N :=

N∑

i,j=K+1

1

L2

∑

q∈D′L

Ŝ
(i,j)
±ω,ω(q,q) =

N∑

i,j=K+1

∫
duS

(i,j)
±ω,ω(z;u,u) (3.11)
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then

|τ+
N | ≤ C

γ−N

L
, |τ−N − τ | ≤ C

γ−N

L
, τ =

1

4πc
(3.12)

Let us now observe that, for any choice of the functions νωs (p), we can write Rp,ω,s(p; J, η) in
the following way:

Rp,ω,s(p; J, η) = −τ−ND−ω(p)Ĵ−p,ω,s+

+D−ω(p)
∑

ω′,s′

νωω
′

ss′ (p)
∂Wl,N (J, η)

∂Ĵp,−ω′,s′
+ lim
ε→0

∂Hl,N
∂α̂p,ω,s

(0, J, η)
(3.13)

where, if V(ψ, J, η) is the expression inside the braces in the r.h.s. side of (2.2) and α(z, ω, s) is a
periodic function, whose Fourier transform is defined (analogously to J(z, ω, s)) so that α(z, ω, s) =
L−2

∑
p∈DL e

−ipzα̂(p, ω, s), then

eHl,N (α,J,η) := e
1
L2

∑
p∈DL α̂p,ω,sτ

−
ND−ω(p)Ĵ−p,ω,s

∫
P

[l,N ]
Z (dψ) eV(ψ,J,η)+A0(ψ,α)−A−(ψ,α) (3.14)

and

A0(α,ψ) =
∑

ω,s

1

L2

∑

p∈DL

1

L2

∑

q∈D′L

Cω(q + p,q)α̂p,ω,sψ̂
+
q+p,ω,sψ̂

−
q,ω,s

A−(α,ψ) =
∑

ω,ω′
s,s′

1

L2

∑

p∈DL

1

L2

∑

q∈D′L

D−ω(p)νωω
′

ss′ (p)α̂p,ω,sψ̂
+
q+p,−ω′,s′ ψ̂

−
q,−ω′,s′

Let us call removed cutoffs limit the limit L → ∞, followed by the limit N → ∞ and, finally,
from the limit l→ −∞. In the following sections we shall prove that, in the removed cutoffs limit,
the last term in the r.h.s. of (3.13) vanishes, if the functions νωs (p) are chosen as

νωs (p) = τ−N ĥL,K(p)
[
δω,1

(
δs,−1g⊥ + δs,1g‖

)
+ δω,−1δs,−1g4

]
(3.15)

Note that the first two terms in the r.h.s. of (3.13) are, in this case, the corrections to the
formal functional WI we are looking for. Hence, we shall rewrite the functional WI (3.2), by using
(3.13), in the more convenient form

Dµ(p)
∂Wl,N (J, η)

∂Ĵp,µ,s
−D−µ(p)

∑

σ,r

νµσsr (p)
∂Wl,N (J, η)

∂Ĵp,−σ,r
=

− τ−ND−ω(p)Ĵ−p,ω,s +Bp,µ,s(J, η) + lim
ε→0

∂Hl,N
∂α̂p,µ,s

(0, J, η)

(3.16)

Summing (3.16) over s we obtain the charge Ward identity:

[
Dµ(p)− ν4(p)D−µ(p)

]∑

s

∂Wl,N (J, η)

∂Ĵp,µ,s
− 2νρ(p)D−µ(p)

∑

s

∂Wl,N (J, η)

∂Ĵp,−µ,s
=

∑

s

[
−τ−ND−µ(p)Ĵ−p,µ,s +Bp,µ,s(J, η) + lim

ε→0

∂Hl,N
∂α̂p,µ,s

(0, J, η)

] (3.17)

with
ν4(p) = τ−N g4ĥL,K(p) , 2νρ(p) = τ−N (g‖ + g⊥)ĥL,K(p) (3.18)
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Multiplying (3.16) by s and summing over s we obtain the spin Ward identity:

[
Dµ(p) + ν4(p)D−µ(p)

]∑

s

s
∂Wl,N (J, η)

∂Ĵp,µ,s
− 2νσ(p)D−µ(p)

∑

s

s
∂Wl,N (J, η)

∂Ĵp,−µ,s

=
∑

s

s

[
−τ−ND−µ(p)Ĵ−p,µ,s +Bp,µ,s(J, η) + lim

ε→0

∂Hl,N
∂α̂p,µ,s

(0, J, η)

] (3.19)

with
2νσ(p) = τ−N (g‖ − g⊥)ĥL,K(p) (3.20)

By doing suitable functional derivatives of the charge WI (3.17), we get many WI involving the
correlation functions. For example, if we take two derivatives w.r.t. η̂+

p+k,ω,s and η̂−k,ω,s in both
sides of (3.17), we sum over µ and we put η = J = 0, we get the following charge vertex Ward
identity:

−ip0

[
1− 2νρ(p)− ν4(p)

]
Gρ;ω,s(p;p + k) + cp

[
1− 2νρ(p) + ν4(p)

]
Gj;ω,s(p;p + k)

= G2;ω,s(k)−G2;ω,s(p + k) +Rω,s(p;p + k)
(3.21)

where

Gρ;ω,s(p;p + k) =
∑

µ,t

∂3W
∂Ĵp,µ,t∂η̂

−
k,ω,s∂η̂

+
p+k,ω,s

(0, 0) (3.22)

Gj;ω,s(p;p + k) =
∑

µ,t

µ
∂3W

∂Ĵp,µ,t∂η̂
−
k,ω,s∂η̂

+
p+k,ω,s

(0, 0) (3.23)

G2;ω,s =
∂2Wl,N

∂η̂−k,ω,s∂η̂
+
k,ω,s

(0, 0) , Rω,s(p;p+k) = lim
ε→0

∑

µ,t

∂3Hl,N
∂α̂p,µ,t∂η̂

−
k,ω,s∂η̂

+
p+k,ω,s

(0, 0, 0) (3.24)

Similarly, if we define ρ
(c)
x,ω :=

∑
s ψ

[l,N ]+
x,ω,s ψ

[l,N ]−
x,ω,s , so that 〈ρ̂(c)

p,ωρ̂
(c)
−p,ω′〉T =

∑
s,s′

∂2W
∂Ĵp,ω,s∂Ĵ−p,ω′,s′

(0, 0),

we get from (3.17):

[Dω(p)− ν4(p)D−ω(p)]〈ρ̂(c)
p,ωρ̂

(c)
−p,ω′〉T − 2νρ(p)D−ω(p)〈ρ̂(c)

p,−ωρ
(c)
−p,ω′〉T

= −δω,ω′τ−ND−ω(p) +R
(c)
ω,ω′(p)

(3.25)

with R
(c)
ω,ω′(p) = limε→0

∑
s,s′

∂2Hl,N
∂α̂p,ω,sĴ−p,ω′,s′

(0, 0, 0).

Finally, from (3.17) and (3.19) and some algebra we get the following identity, which will be
useful in the following:

∂Wl,N

∂Ĵp,µ′,s′
(J, η) =

∑

µ,s

Mρ
µ′,µ(p) + s′sMσ

µ′,µ(p)

2

[
− τ−ND−µ(p)Ĵ−p,µ,s+

+Bp,µ,s(J, η) + lim
ε→0

∂Hl,N
∂α̂p,µ,s

(0, J, η)
]

, p 6= 0

(3.26)

where, if γ = ρ, σ, and setting ν4,ρ = −ν4,σ = ν4,

Mγ
µ′,µ(p) =

[
D−µ(p)− ν4,γ(p)Dµ(p)

]
δµ′,µ +

[
2νγ(p)Dµ(p)

]
δµ′,−µ

[
D+(p)− ν4,γD−(p)

][
D−(p)− ν4,γ(p)D+(p)

]
− 4ν2

γ(p)D+(p)D−(p)

=
uγ,+(p)δµ′,µ + wγ,+(p)δµ′,−µ
−ivγ,+(p)

(
p0 + iµvγ(p)cp1

) +
uγ,−(p)δµ′,µ + wγ,−(p)δµ′,−µ
−ivγ,+(p)

(
p0 − iµvγ(p)cp1

)

(3.27)
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for

uγ,µ(p) =
1

2

[
1− ν4,γ(p)

vγ,+(p)
+ µ

1 + ν4,γ(p)

vγ,−(p)

]

wγ,µ(p) = νγ(p)

[
1

vγ,+(p)
− µ 1

vγ,−(p)

] (3.28)

v2
γ,µ(p) =

(
1− µν4,γ(p)

)2

− 4ν2
γ(p) , vγ(p) = vγ,−(p)/vγ,+(p) (3.29)

3.2 Analysis of the correction term (3.14). Integration of the UV scales.

The functional Hl,N (α, J, η) defined in (3.14) has a form close to the functional integralWl,N (J, η)
of (2.2); hence, the integration of the UV scales can be studied by a Renormalization Group
analysis very similar to the one in §2. In particular, the external field α in A0(α,ψ) and A−(α,ψ)
plays the same role of the field J in (2.2); the main difference is due to the presence, in the
definition of A0, of the singular function (3.5), whose peculiar properties will play a crucial role.

After the integration of the fields ψ(N), ...ψ(K+1), where K is the fixed integer defined in §2.1,
we get

eHl,N (α,J,η) =

∫
P

[l,K]
Z (dψ) eV

(K)(ψ,J,η)+A(K)(α,J,η,ψ) (3.30)

where V(K)(ψ, J, η) is defined as in (B.1) and A(K)(α, J, η, ψ) satisfies the identity

eA
(K)(α,J,η,ψ) = e

1
L2

∑
p∈DL α̂p,ω,sτ

−
ND−ω(p)Ĵ−p,ω,s

∫
P

[K+1,N ]
Z (dζ)eV(ψ+ζ,J,η)+A0(ψ+ζ,α)−A−(ψ+ζ,α)

(3.31)
As in §2.2, we shall consider, for simplicity, only the contributions to A(K)(α, J, η, ψ) with

η = 0; the result can be easily extended to the general case. Hence, since we have to evaluate only
the terms linear in α, we shall study in detail only the terms linear in α of A(K)(α, J, 0, ψ), whose
kernels are given, for Ω a generic multi-index, such as (ω′, σ′;ω, σ), by

H
(n+1;2m)(K)
ω′′,s′′;Ω (z;w;x,y) :=

n∏

i=1

∂

∂Jwi,ω′i,s′i
×

m∏

i=1

∂

∂ψ+
xi,ωi,si

∂

∂ψ−yi,ωi,ti

∂A(K)

∂αz,ω′′,s′′
(0, 0, 0, 0) . (3.32)

By using the definitions of A0 and A−, we can get an explicit formula for the Fourier transforms

of the kernels H
(n+1;2m)(h)
ω′′,s′′;Ω . In fact, (3.31) implies that

∂A(K)

∂α̂p,ω,s
(0, J, 0, ψ) = τ−ND−ω(p)Ĵ−p,ω,s+

+e−V
(K)(ψ,J,0)

[
1

L2

∑

q∈D′L

Cω(q + p,q)
∂2eV

(K)

∂η̂+
q,ω,s∂η̂

−
p+q,ω,s

(ψ, J, 0)−

−
∑

ω′′,s′′

D−ω(p)νωω
′′

ss′′ (p)
∂eV

(K)

∂Ĵp,−ω′′,s′′
(ψ, J, 0)

]
(3.33)

In a similar way, see (B.3) in App. B, one can prove that:

∂eV
(k)

∂ηεx,ω,s
(ψ, J, η) = ψ−εx,ω,se

V(k)(ψ,J,η) + ε

∫
du g[k+1,N ]

ω (x− u)
∂eV

(k)

∂ψεu,ω,s
(ψ, J, η) (3.34)
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By using this identity, we can expand the r.h.s. of (3.33) and we get, by some simple algebra, that

∂A(K)

∂α̂p,ω,s
(0, J, 0, ψ) = τ−ND−ω(p)Ĵ−p,ω,s +

1

L2

∑

q∈D′L

Cω(q + p,q)ψ̂+
q+p,ω,sψ̂

−
q,ω,s+

+WA,1(J, ψ) +WA,2(J, ψ)

where WA,1(J, ψ) and WA,2(J, ψ) are graphically represented in Fig. 10 and Fig. 11, respectively;
the filled triangle together with the wiggly line represents ∂A0/∂α̂p,ω,s, while the wiggly line

enclosed between two filled points represents
∑
ω′′,s′′ D−ω(p)νωω

′′
ss′′ (p). Note that in the terms

contributing to WA,1(J, ψ) both ψ fields of the interaction A0 or V (ψ) are contracted; in the case
of WA,2(J, ψ), only one of the ψ fields of the interaction A0 is contracted.

− +

Figure 1:Figure 10: : Graphical representation of WA,1(J, ψ). The corresponding kernels H(n+1;2m)(K) are ob-
tained by substituting the halos with 2m fermion lines and n J lines. The full triangle represents the Cω
operator; the wiggly line represents, in the first and the third graph, the α external field; the wiggly line
between two points represents the Fourier transform of D−ω(p)νωω

′′
ss′′ (p).

generatore

+

Figure 11: Graphical representation of WA,2(J, ψ). The corresponding kernels H(n+1;2m)(K) are obtained
by substituting the halos with 2m− 1 fermion lines and n wiggly lines.

For the analysis of the corresponding kernels, it is convenient to extract from the A0 vertex the
factors Dω′(p) of (3.8) and to separate the first two terms in Fig. 10 from the third one. Hence,
we make the following decomposition of the kernels Fourier transforms (without the momentum
conservation delta):

Ĥ
(n+1;2m)(K)
ω,s;Ω (p;p′;k+,k−) =

∑

σ=±
Dσω(p)K̂

(n+1;2m)(K)
σ;ω,s;Ω (p;p′;k+,k−)+

+
∑

σ=±
Dσω(p)Ĥ

(n+1;2m)(K)
σ;ω,s;Ω (p;p′;k+,k−) + Ĥ

(n+1;2m)(K)
#;ω,s;Ω (p;p′;k+,k−)

(3.35)

where K̂
(n+1;2m)(K)
σ;ω,s;Ω is related to the sum of the first two graphs in Fig. 10, Ĥ

(n+1;2m)(K)
σ;ω,s;Ω is related

to the third one and Ĥ
(n+1;2m)(K)
#;ω,s;Ω is related to the sum of the graphs in Fig. 11. Our notation

implies that p′ are the momenta of the n J fields, while k± are the momenta of the m external

ψ± fields and p = −∑n
i=1 p

′
i +
∑m
j=1(k+

j − k−j ). Note that Ĥ
(n+1;0)(K)
σ;ω,s;Ω = 0, for any n.
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Let us consider first the kernels corresponding to the functional WA,1(J, ψ). The following

lemma shows that, if νωs (p) is chosen as in (3.15) and m ≥ 1, the kernels K̂
(n;2m)(K)
σ;ω,s;Ω and Ĥ

(n;2m)(K)
σ;ω,s;Ω

are vanishing in the limit N →∞ and that the same is true for K̂
(2;0)(K)
σ;ω′,s′ (p).

Lemma 3.1 If νωs (p) is chosen as in (3.15), there exist two constants C0 > 0 and ϑ ∈ (0, 1), such
that, if g is small enough, n ≥ 1 and m ≥ 1, then, for ε ≥ 0,

|K̂(n;2m)(K)
σ;ω,s;Ω (p;p′;k+,k−)| ≤ Cn+m

0 gd1,n,mγ(2−m−n)Kγ−ϑ(N−K) (3.36)

|Ĥ(n;2m)(K)
σ;ω,s;Ω (p;p′;k+,k−)| ≤ Cn+m

0 gd2,n,mγ(2−m−n)Kγ−ϑ(N−K) (3.37)

with d1,n,m ≥ 1 and d2,n,m ≥ 2. Moreover,

|K̂(2;0)(K)
σ;ω,s;ω′,s′(p)| ≤ C0gγ

−ϑ(N−K) (3.38)

Proof. The bound (3.9) implies that |S(N,j)
ω′,ω (z;x,y)| has the same bound of |g(N)

ω (x− z)| |g(j)
ω (y−

z)|. Therefore, if we bound |K̂(n;2m)(K)
σ;ω,s;Ω | and |Ĥ(n;2m)(K)

σ;ω,s;Ω | with the L1 norm of K
(n;2m)(K)
σ;ω,s;Ω and

H
(n;2m)(K)
σ;ω,s;Ω , respectively, we can proceed as in the proof of Lemma 2.2.

An important role in the proof will have the property (3.7) of Û
(i,j)
ω (q + p,q), which implies

that in the multiscale expansion of K
(n;2m)(k)
σ;ω,s;Ω and H

(n;2m)(k)
σ;ω,s;Ω at least one of the two ψ-fields in

A0 has to be integrated at scale N . This implies, in particular, that we can bound Ĥ
(n;2m)(K)
σ;ω,s;Ω by

C2‖bN‖L1

N∑

j=K+1

‖bj‖L1

∑

n1+n2=n−1
m2+m2=m+1

‖W (n1;2m1)(K)‖ ‖W (n2;2m2)(K)‖ ;

Hence, if we use (2.28) with k = K, we easily get (3.37) with ϑ = 1.
In order to prove the bounds (3.36) and (3.38), instead, we have to take advantage of partial

cancelations. We can write

K
(n;2m)(K)
σ;ω,s;Ω (z;x;y) =

N∑

i,j=K

∫
dudw Z2S(i,j)

σω,ω(z;u,w)W
(n−1;2m+2)(K)
Ω,ω,s (x;y,u,w)

− δσ,−1

∑

ω′′,s′′

∫
dw νωω

′′
ss′′ (z−w)W

(n;2m)(K)
−ω′′,s′′,Ω (w;x,y) + δσ,−1δm,0δn,2δ(ω,s),Ω

τ−N
Z2

(3.39)

where νωω
′′

ss′′ (z) is the Fourier transform of νωω
′′

ss′′ (p).

a) Bound for K
(n;2m)(K)
−;ω,s;Ω for n,m ≥ 1. If we take in (2.33) 2m + 1 derivatives with respect to

the ψ field and n − 1 derivatives with respect to the J field, calculated at J = ψ = 0, we get an

expansion for W
(n;2m+2)(K)
Ω,ω,s , which has the structure of the r.h.s. of Fig. 4, without the first term

(since m ≥ 1). If we now insert this expansion in the first term of the r.h.s. of (3.39), we get an

expansion for K
(n;2m)(K)
−;ω,s;Ω , which is graphically represented in Fig.12.

We shall bound the terms corresponding to the graphs in the r.h.s. of Fig. 12, by the same
procedure used in §2; though this time we also want to find the exponential small factor γ−ϑ(N−K).
A crucial role plays a cancelation between the terms corresponding to the graphs (a) and (b), whose
sum can be represented in the following way:

∑

ω′′

∫
du


Z

2

τ−N

N∑

i,j=K+1

S
(i,j)
−ω,ω(z;u,u)− δ(z− u)



∫
dw νωω

′′
ss′′ (u−w)W

(n;2m)(K)
−ω′′,s′′;Ω (w;x,y) (3.40)



December 2, 2013 27

ω

z
u

w

− ω′′

z w

=
ω

z u w

(a)

− ω′′

z w

(b)

+
ω

z

u
u′

w
w′

(c)

+
ω

z

u
v

w

(d)

+
ω

z

w

w′

u(e)

+
ω

z

w

w′

u u′
(f)

+
ω

z

u
v

w

(g)

Figure 1:
Figure 12: : Graphical representation of K

(n;2m)(k)
−;ω,s;Ω . The identity is valid if m ≥ 1. The internal wiggly

lines represent hL,KΘ,Θ′ ; the others represent the α or J fields or, if they are closed by two full points, the

Fourier transform of νωω
′′

ss′′ (p); the full triangle represents here the operator Cω(q + p,q)D−ω(p). The
graph (g) is present only if n ≥ 2 (one wiggly line being already attached to w).

Using the identity (2.42) and the definition (3.11) of τ−N , we have

∑

ω′′

N∑

i,j=K+1

∫
dudw

Z2

τ−N
S

(i,j)
−ω,ω(z;u,u)νωω

′′
ss′ (u−w)W

(n;2m)(K)
−ω′′,s′′;Ω (w;x,y)

=
∑

ω′′

∫
dw νωω

′′
ss′ (z−w)W

(n;2m)(K)
−ω′′,s′′;Ω (w;x,y) +

∑

p=0,1

∑

ω′′

N∑

i,j=K+1

∫
du S

(i,j)
−ω,ω(z;u,u)·

·
∫ 1

0

dt

∫
dw (up − zp)(∂pνωω

′′
ss′ )(z−w + t(u− z))W

(n;2m)(K)
−ω′′,s′′;Ω (w;x,y)

(3.41)

The first term in the r.h.s. of (3.41), whose dimensional bound is divergent for N → ∞, is
indeed finite and is exactly canceled by the second term in (3.40), which then acts as a (finite)
counterterm. Note that the interpolation (2.42) was used also to control the graphs (b2) and (b3)
of Fig. 8; however, in that case the cancelation was due only to the symmetries of the propagator.

We are then left with the second term in the r.h.s. of (3.41), which has the estimate we wanted;
in fact, by using that one between i and j is equal to N , the bound (2.28) on ‖W (n;2m)(K)‖, the
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bound (3.9) on bj(x) and the bound ‖∂hL,K‖L1
≤ c0γK , we can bound its norm by

C3g‖W (n;2m)(K)‖‖∂hK‖L1
‖|x|bN‖L1

N∑

j=K+1

‖bj‖L∞ ≤ C4C
n+m(C1g)mγ−(N−K)γ(2−m−n)K (3.42)

Let us now consider the graph (c). Since either i or j of the kernel S
(i,j)
−ω,ω has to be equal to

N , we obtain the bound

C5g‖hL,K‖L∞‖W (n;2+2m)(K)‖
N∑

i,j,k=K

* sup
w,u′

∫
dzdu bi(z−w)bj(z− u)|g(k)

ω (u− u′)| (3.43)

where ∗ is the constraint that at least one between i and j has to be N . Since the L∞ and L1

norm of bj(x) and g
(j)
ω (x) are dimensionally equivalent, the best bound for the integral in (3.43)

(as in the analogous bound of the graph (b1) of Fig.8) is obtained by taking the L∞ norm of the
function with the smallest scale index and the L1 norm of the others; it is then easy to see that

EN,K :=

N∑

i,j,k=K

* sup
w,u′

∫
dzdu bi(z−w)bj(z− u)|g(k)

ω (u− u′)| ≤ Cγ−N (N −K) (3.44)

By using also the bound (2.28) for ‖W (n;2+2m)(K)‖ and the bound ‖hL,K‖L∞ ≤ c0γ
2K , we see

that (3.43) can be bounded by

C6C
n+m+1(C1g)m+1γ−ϑ(N−K)γ(2−m−n)K (3.45)

for any 0 < ϑ < 1 (C6 is divergent for ϑ→ 1).
For graph (d) a convenient estimate is given by

EN,K
∑

n1+n2=n,n1≥1
m1+m2=m

Fn1,2m1‖W (n2;2+2m2)(K)‖ (3.46)

where Fn1,2m1 is equal to either ‖hK‖L1‖W (n1;2m1)(K)‖, if (n1, 2m1) 6= (2; 0), or ‖W (1;2)(K)
(b),Ω ‖, if

(n1, 2m1) = (2; 0) (see Fig. 8 and bound (2.46)). Therefore, by using (2.28), (2.46) and (3.44), we
can bound (3.46) by

C7C
n+m+1(C1g)d̃n,mγ−ϑ(N−K)γ(2−m−n)K , d̃n,m ≥ 2 (3.47)

For the graphs (e) and (f) the argument is similar; for (f), for example, the bound is

‖hK‖L∞‖bN‖L1

N∑

j=K+1

‖bj‖L1
‖g[K+1,N ]‖L1

∑

n1+n2=n−1
m1+m2=m+1,mi≥1

‖W (n1;2m1)(K)‖‖W (n2;2m2)(K)‖] ,

which is less than C8C
n+m+1(C1g)d̃n,mγ−(N−K)γ(2−m−n)K , with d̃n,m ≥ 2. Finally, the graph

(g) has to be considered only in the case n ≥ 2; it is easy to see that the wanted bound can be
obtained with the same procedure used for the graph (d).

b) Bound for K
(n;2m)(K)
+,Ω for n,m ≥ 1. The graph expansion of K

(n;2m)(K)
+,Ω is given again by

Fig.12; the only differences is that the graph (b) is missing (because of δσ,−1 in (3.39)). Hence
a bound can be obtained as before, with only one important difference: the contribution that in
the previous analysis was compensated by (b) now is of order γ−N/L by the first bound in (3.12).
Hence, the result is the same.
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c) Bound for K
(2;0)(K)
σ;ω,s;Ω . In this case the last term in the r.h.s of (3.39) gives a contribution different

from 0, for σ = −1, and the kernel W
(1;2)(K)
Ω,ω,s contains a term of order 0 is g, corresponding to

the kernel w
(1;2)
Θ,Θ′ , defined in (2.25). Hence, if we expand W

(1;2)(K)
Ω,ω,s , Ω = (ω′, s′), as in Fig.7, we

obtain the graphical representation of Fig.13. In particular, the graph (e) comes from the kernel

w
(1;2)
Θ,Θ′ that is included in the darker bubble of Fig.7; moreover, the graphs (d) and (f) are obtained

by also using the identity in Fig.6 to extract a further wiggly line. It is evident that the terms

ω

z
u

w
ω′

x
−

ω′′

z w

ω′

x
+ δσ,−1 δω,ω′

z = x

=
ω

z u w

ω′

x

(a)

−
ω′′

z = u w

ω′

x

(b)

+
ω

z

u
u′

w
w′
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ω

z
u u′

v
v′

w
w′
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[
+

]
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ω′
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w

x
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Figure 1:
Figure 13: Graphical representation of K

(2;0)(K)
σ;ω,s;Ω . All graphical objects are defined as in the previous

pictures.

corresponding to graphs (a), (b), (c), (d) and (f) can be bounded as those related to the graphs
(a), (b), (c), (d) and (g) in Fig.(12), respectively; the only difference is in the number and nature
of the possible external lines, but that does not change the topology of the graph, and therefore
does not change the approach to the bound. The only term that is not bounded by the exponential
small factor is that corresponding to graph (e), which is present only if σ = −1; however it is easy
to see that this terms is a constant equal to −τ−N , hence it is exactly canceled by the constant
represented by the graph with a single point between two wiggly lines. Therefore also (3.38) is
proved.

Let us now analyze the kernels Ĥ
(n+1;2m)(K)
#;ω,s;Ω (p;p′;k+,k−), defined in (3.35); recall that they

are the kernels of the functional WA,2(J, ψ), graphically represented in Fig. 11. Since the two
graphs in this picture have the same structure, it is sufficient to analyze the contribution of the
first one, which has the form

Cω(p + q,q) ĝ[K+1,N ]
ω (q)ψ+(≤K)(p + q)W

(n;2m)(K)
ω,s;Ω (p′; (k′

+
,q),k−) (3.48)

where k+ = (k′
+
,p + q). By using (3.5) and the definitions of §2.1, it is easy to see that, if we

define uN (k) = 1− χ[−∞,N ](|k|) (see also App. C), the expression at left of W
(n;2m)(K)
ω,s;Ω in (3.48)
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can be written as

uN (q̃)ψ+(≤K)(p + q)− ĝ[K+1,N ]
ω (q)

[
1

χεl,N (|p̃ + q̃|) − 1

]
Dω(p + q)ψ+(≤K)(p + q) (3.49)

In the following sections, when we shall analyze also the integration of the infrared scales, the
following remarks will play an important role.

a) The first term in (3.49) gives no contribution, if p is fixed and N is large enough (how large
depending on p). In fact, the support properties of the field ψ implies that |p̃+ q̃| ≤ γK+1, while
uN (q̃) = 0 for |q̃| ≤ γN .

b) The second term can give a non zero contribution only if the field ψ+(≤K)(p+q) is contracted
on scale l, that is if |p̃ + q̃| ≤ γl+1. However, at finite volume, |p̃ + q̃| ≥

√
2(π/L)2, so that

this condition can not be satisfied if γl+1 ≤
√

2(π/L)2. It follows that the second term gives no
contribution, if L is fixed and l is small enough.

3.3 Analysis of the correction term (3.14). Integration of the IR scales
and removed cutoffs limit.

The integration of the IR scales can be done as in §2.3, with K = 0 for simplicity, by starting the
localization procedure at scale 0. Since we need to analyze the correction term only for external
momenta of order one, we shall impose the condition that

0 < |p̃| ≤ 1 (3.50)

Moreover, we have to take into account that at scale 0 the effective potential can be expanded in
terms of trees with one and only one α endpoint, which can be divided into three classes:
a) Those graphically represented in Fig. 12, that is those containing either one α endpoint with
interaction A−(α,ψ) or one α endpoint with interaction A0(α,ψ) (see (3.14), whose ψ fields are
both contracted on the UV scales; their kernels, by Lemma 3.1, have the property that their
Fourier transforms are bounded by a dimensional factor times a γ−ϑN factor.
b) Those corresponding to the first term in (3.49), that is those with only one ψ field of the α
endpoint with A0 interaction contracted on the UV scales and a smooth kernel proportional to
uN (q̃); these terms vanish for N ≥ 2, under the condition (3.50), so that we can neglect them,
since we want to send N to ∞.
c) Those with at most one ψ field of the α endpoint with A0 interaction contracted on the UV

scales and singular kernel, that is L−2
∑

q∈D′L Cω(q+p,q)ψ̂+
q+p,ω,sψ̂

−
q,ω,s and those corresponding

to the second term in (3.49).
Let us now suppose that the condition εh ≤ ε of Theorem 2.3 is satisfied, so that we can control

the tree expansion by localizing, besides the terms involved in the tree expansion of Wl,N (J, η),
the only new marginal terms, that is those with one α-vertex and two external ψ field. If we do
not localize the trees having a subtree at scale 0 of class c) above (whose kernel is singular), the
localization procedure gives rise to a local term of the form

∑

ω,s

∫
dxαx,ω,s,s

Z
(3)
j

Zj−1
ψ+
x,ω,sψ

−
x,ω,s

with Z
(3)
j /Zj−1 ≤ c0γ−ϑN . As concerns the marginal terms whose trees have a subtree at scale 0

of class c), the identity (3.7) implies that one of the ψ fields of the α vertex has to be contracted
at scale l, while the other, by momentum conservation, can be contracted only on a finite set of
scales around the scale jp = max{j : |p̃| ≤ γjp}. It follows that this term, because of the compact
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support properties of the single scale propagators, can be connected at a larger cluster with only
two external ψ field only a finite number of times; hence, the fact that these terms can not be
localized is irrelevant and the bound of the corresponding trees can be done as in the case where
all the vertices dimensions are positive, see App. A. Moreover, since the scale j > l of the tree
vertex where one of the ψ fields of the α vertex is contracted is essentially fixed to the value jp,
we can extract from the bound the ”short memory” factor γ−ϑ(jp−l) (0 < ϑ < 1), which goes to 0
if l→ −∞ at fixed p.

Let us now consider the kernels Ĥ(n+1;2m)
ω,s;Ω (p;p′;k+,k−) of the functional Hl,N (α, J, η) defined

in (3.14), in the limit L→∞; we are using here a notation similar to that used for the kernels (3.35)
(in terms of graphs, one has to substitute the 2m external ψ fields with external propagators linked
to η fields). Let us call q the set (p;p′;k+,k−) of external momenta; the previous considerations
imply that, if the momenta q are non exceptional, see (2.54), and we take the limit N →∞, the
values of all the trees go to zero, except those containing a subtree at scale 0 of class c), which
vanish in the limit l→ −∞, as explained above. Hence, we have proved the following Theorem.

Theorem 3.2 If ε is defined as in Theorem 2.3 and εh ≤ ε, uniformly in l and l ≤ h ≤ 0, the ker-

nels Ĥ(n+1;2m)
ω,s;Ω (p;p′;k+,k−) are well defined for any l and N and, if the momenta (p;p′;k+,k−)

are non exceptional,

lim
l→−∞

lim
N→∞

lim
L→∞

Ĥ(n+1;2m)
ω,s;Ω (p;p′;k+,k−) = 0 (3.51)

so that, in the same limit, the WI (3.16), (3.17), (3.19) and (3.26) are satisfied without the
correction term.

An application of this Theorem, which is important in this paper is the following. If we
take (3.26) with η = 0 and we perform a derivative w.r.t. Ĵ−p,µ,s, we obtain, in the removed
cutoffs limit, a closed expression for the Fourier transform of the density operator correlation
ρk,ω,s = ψ+

x,ω,sψ
−
x,ω,s, that is:

〈ρ̂p,ω′,s′ ρ̂−p,ω,s〉T = −D−ω(p)
ĥ(p)

4πZ2c

Mρ
ω′,ω(p) + s′sMσ

ω′,ω(p)

2
, p 6= 0 (3.52)

which implies that

〈ρx,ω′,s′ρy,ω,s〉T =
1

2

[
Gρω′,ω(x− y) + s′sGσω′,ω(x− y)

]
(3.53)

where

Gγω′,ω(x− y) =
1

4πZ2c

∫
dp

(2π)2
eip(x−y) p

2
0 + c2p2

Dω(p)
Mγ
ω′,ω(p)

3.4 Ward Identities in the limit L,N →∞ at fixed l.

If we take the limit L,N →∞ at fixed l and we consider external momenta of order γl, (3.51) is
of course not true, but we can say that the correlation values only depend on the trees containing
a subtree at scale 0 of class c), which can be easily estimated by trivial dimensional bounds. Note
that this result would be true, even if there were a contribution from the other trees; what it is
important is only that the effective potential on scale 0 is well defined in the limit N → ∞. In
§4.4 we shall use only the following bound. Let us define:

Ĥ(1;2)
ω,s (p;k+,k−) := lim

ε→0

∂3Hl,N
∂α̂p,µ,s∂η̂

+
k+,ω,s∂η̂

−
k−

(0, 0, 0)
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Lemma 3.3 If k+ = −k− = k and p = k+ − k− = 2k, with |k̃| = γl, then

∣∣Dω(2k)−1Ĥ(1;2)
ω,s (2k;k,−k)

∣∣ ≤ Cε2 γ
−2l

Zl
(3.54)

Proof. Note that, if |k̃+| = |k̃−| = γl, the term of order 0 in ε is given by Dω(2k)−1Û
(l,l)
l,N,ω(k,−k),

which vanish, as follows from its explicit value (C.6), since ul(±k) = 0. The same is true for
the terms of order 1 in ε, which are obtained by calculating the truncated expectation on scale
j = l, l + 1 of the product of Tω(k+,k−) = Cω(k+,k−)ψ+

k+,ω,sψ
−
k−,ω,s and the local effective

interaction (2.48). In fact, the two terms proportional to δj are obtained from the term of order

0 multiplying it by δjkĝ
(j)
ω (k), while the others can be represented in terms of Feynmann graphs,

which must contain a tadpole ĝ
(j)
ω (0) = 0. The factor γ−2l simply reflects the dimension of

Dω(2k)−1Ĥ(1;2), which is the same as the dimension of the correlation < ρ̂2k,ω,sψ̂
−
k,ω,sψ̂

+
−k,ω,s >T ,

see (2.55). On the contrary, the factor Z−1
l , related to the field strength renormalization, is

different from the corresponding factor of < ρ̂2k,ω,sψ̂
−
k,ω,sψ̂

+
−k,ω,s >T , that is Z

(1)
l Z−2

l , for the
following two reasons:
a) as discussed before, the potential A0(α,ψ) do not need any renormalization, hence we must

put 1 in place of Z
(1)
l ;

b) because of the bound (3.10), if j = l + 1, or (C.7), if j = l, there is a Z−1
l missing in the

contractions of the two ψ fields of A0(α,ψ).

4 Closed equations and vanishing of the beta function

We want to prove two relevant properties of our model:

a) If g1,⊥ = 0, the assumption εh ≤ ε, which allows us to remove the IR cutoff, by Theorem 2.3,
is indeed satisfied. In order to prove such highly non trivial property, we first combine the
Schwinger-Dyson Equation (SDE) with the WI, then we take the limit L→∞, followed by
the limit N → ∞, at fixed infrared cut-off γl. We get some relations among the Schwinger
functions, which, if computed at momenta of order γl, imply that the condition εh ≤ ε is
satisfied for h = l, if this is true for h = l + 1, provide ε is small enough.

b) By using the previous results, we can take the limit l → −∞ at fixed non exceptional
momenta in the previous relations and we get exact closed equations among the correlations;
some of them will be used in §5 to calculate the two point function and some response
functions needed in the proof of Theorem 1.1.

4.1 Combination of Schwinger-Dyson equations and Ward Identities in
the g1,⊥ = 0 case

If we put again Z = 1, for simplicity, and we define, as in §3.1, χ̃N (p) = χ̃0(2−1γ−N−1|p̃|), where
χ̃0(t) is a smooth positive function of support in [0, 2] and equal to 1 for t ≤ 1, the Schwinger-Dyson
equations (in the limit ε→ 0, see §2.1) are generated by the identity

∂eWl,N (0,η)

∂η̂+
k,ω,s

=
χl,N (|k̃|)
Dω(k)


η̂−k,ω,seWl,N (0,η) −

∑

µ′,s′

1

L2

∑

p

νωµ
′

ss′ (p)

τ−N
χ̃N (p)

∂2eWl,N (J,η)

∂Ĵp,−µ′,s′∂η̂
+
k+p,ω,s

∣∣∣∣∣
J=0




(4.1)
where k ∈ D′L (hence k 6= 0), p ∈ DL and νωs (p) is defined as in (3.15).
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Note that χ̃N (p) = 1 in the finite set {p ∈ DL : |p| ≤ 2γN+1}, so that it has been freely

introduced to remind us that p = k+−k−, where k± are the momenta of the ψ̂± variables linked
to Ĵp, whose modula are both bounded by γN+1, since ε = 0. Hence, (4.1) is a straightforward
consequence of the following property: given any F (ψ) which is a power series in the field, if 〈 · 〉0
denotes the expectation w.r.t. the free GGI,

〈ψ̂−k,ω,sF (ψ)〉0 = ĝ
[l,N ]
D,ω (k)〈 ∂F (ψ)

∂ψ̂+
k,ω,s

〉0. (4.2)

so that
∂eWl,N

∂η̂+
k,ω,s

(0, η) = 〈ψ̂−k,ω,seV(ψ,0,η)〉0 = ĝ
[l,N ]
D,ω (k)〈 ∂

∂ψ̂+
k,ω,s

eV(ψ,0,η)〉0 (4.3)

We now combine the SDE (4.1) with the functional WI (3.26), in order to get relations among
the correlations, in two different ways.

a) The first family of relations involves the non connected correlations; some of these relations
will be used in §5 to calculate the two point function and some response functions in the removed
cutoffs limit.

First of all, we decompose the sum over p in two parts, by using the identity

χ̃N (p) = χ̃l(p) + χ̃l,N (p) , χ̃l,N (p) := χ̃N (p)[1− χ̃l(p)] (4.4)

where χ̃l(p) := χ̃0[2−1γ−l|p̃|]; by this decomposition we divide in two parts the second term in
the r.h.s. of (4.1). Then we multiply both sides of (3.26) by exp(Wl,N ), we take one derivative
w.r.t. η̂+

k+p,ω,s and we insert the result in the part of the second term of (4.1) containing χ̃l,N (p).

By using the oddness of the function F̂µω,s(p) (defined below) and the fact that the sum over p is

a finite sum, we see that the term that we get, if we apply the derivative w.r.t. η̂+
k+p,ω,s to the

variable η̂+
k+p,µ,s in the decomposition (3.3) of Bp,µ,s(J, η), vanishes. Hence, we get, if k 6= 0:

Dω(k)
∂eWl,N (0,η)

∂η̂+
k,ω,s

= χl,N (|k̃|)
{
η̂−k,ω,se

Wl,N (0,η) − 1

τ−N

∑

µ,t

1

L4

∑

p,q

χ̃l,N (p)F̂−ωµ−ω,st(p)·

·
[
η̂+
q+p,µ,t

∂2eWl,N (0,η)

∂η̂+
q,µ,t∂η̂

+
k+p,ω,s

− ∂2eWl,N (0,η)

∂η̂+
k+p,ω,s∂η̂

−
q+p,µ,t

η̂−q,µ,t

]
+Rk,ω,s(η) + R̃k,ω,s(η)

} (4.5)

where, if Mγ
ω,ω′ is defined as in (3.27) and Hl,N is defined as in (3.14),

F̂µω,s(p) =
∑

ω′,s′

νωω
′

ss′ (p)Ms′
ω′,ωµ(p) , Ms

µ,µ′ =
1

2
(Mρ

µ,µ′ + sMσ
µ,µ′)

Rk,ω,s(η) =
1

τ−N

∑

ω′,s′

1

L2

∑

p

χ̃l,N (p)F̂−ωω
′

−ω,ss′(p) lim
ε→0

∂2eHl,N

∂α̂p,ω′,s′∂η̂
+
k+p,ω,s

(0, 0, η) (4.6)

R̃k,ω,s(η) = − 1

τ−N

1

L2

∑

µ′,s′

∑

p

χ̃l(p)νωµ
′

ss′ (p)
∂2eWl,N (J,η)

∂Ĵp,−µ′,s′∂η̂
+
k+p,ω,s

∣∣∣∣∣
J=0

(4.7)

We will show that

Theorem 4.1 The correlations generated by the functionals Rk,ω,s(η) and R̃k,ω,s(η) vanish in the
removed cutoffs limit (that is the limit L → ∞, followed by the limit N → ∞ and, finally, by the
limit l→ −∞), if the external momenta are non exceptional (see (2.54)) and the condition εh ≤ ε
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is satisfied for any h. Hence, under these conditions, we get from (4.5) and (3.12) a family of
exact closed equations for the non connected correlations, generated by the functional identity

Dω(k)
∂eWl,N (0,η)

∂η̂+
k,ω,s

= η̂−k,ω,se
Wl,N (0,η) − 4πc

∑

µ,t

∫
dpdq

(2π)6
F̂−ωµ−ω,st(p)·

·
[
η̂+
q+p,µ,t

∂2eWl,N (0,η)

∂η̂+
q,µ,t∂η̂

+
k+p,ω,s

− ∂2eWl,N (0,η)

∂η̂+
k+p,ω,s∂η̂

−
q+p,µ,t

η̂−q,µ,t

] (4.8)

b) The second family of relations, which is equivalent to the first one in the removed cutoffs
limit, involves truncated correlations. We shall use one of them to prove the vanishing of the beta
function.

First of all, we choose k so that χl,N (|k̃|) = 1 and we write (4.1) in the equivalent form

Dω(k)
∂Wl,N (0, η)

∂η̂+
k,ω,s

= η̂−k,ω,s −
∑

µ′,s′

1

L2

∑

p

νωµ
′

ss′ (p)

τ−N
χ̃N (p)

∂Wl,N (J, η)

∂Ĵp,−µ′,s′

∣∣∣∣∣
J=0

∂Wl,N (J, η)

∂η̂+
k+p,ω,s

−

−
∑

µ′,s′

1

L2

∑

p

νωµ
′

ss′ (p)

τ−N
χ̃N (p)

∂2Wl,N (J, η)

∂Ĵp,−µ′,s′∂η̂
+
k+p,ω,s

∣∣∣∣∣
J=0

(4.9)

Then we make in the last term of (4.9) the decomposition (4.4), we take on both sides of (3.26)
one derivative w.r.t. η̂+

k+p,ω,s and we insert the result in the term of (4.9) containing χ̃l,N (p). We
get

Dω(k)
∂Wl,N (0, η)

∂η̂+
k,ω,s

= η̂−k,ω,s −
∑

µ′,s′

1

L2

∑

p

νωµ
′

ss′ (p)

τ−N
χ̃N (p)

∂Wl,N (J, η)

∂Ĵp,−µ′,s′

∣∣∣∣∣
J=0

∂Wl,N (J, η)

∂η̂+
k+p,ω,s

− 1

τ−N

∑

µ,t

1

L4

∑

p,q

χ̃l,N (p)F̂−ωµ−ω,st(p)

[
η̂+
q+p,µ,t

∂2Wl,N (0, η)

∂η̂+
q,µ,t∂η̂

+
k+p,ω,s

− ∂2Wl,N (0, η)

∂η̂+
k+p,ω,s∂η̂

−
q+p,µ,t

η̂−q,µ,t

]

+R′k,ω,s(η) + R̃′k,ω,s(η)

(4.10)

where the correction terms R′k,ω,s(η) and R̃′k,ω,s(η) are defined as (4.6) and (4.7), with Hl,N and
Wl,N in place of the corresponding exponentials.

Since the truncated correlations can be written in terms of the untruncated ones, it is a priori
true that, if the external momenta are non exceptional, the correlations generated by R′k,ω,s(η)

and R̃′k,ω,s(η) go to 0 in the removed cutoffs limit; hence, the relations (4.10) could be used to get
directly exact closed equations even for the truncated correlations. However, in the following we
are only interested to consider the limit L,N → ∞ at fixed l, for external momenta of order γl;
in such case the correction terms do not vanish. In particular, in §4.4 we shall use only the bound
of the kernels we get if we take in (4.5) three derivatives w.r.t. the η variables at η = 0. Hence we
define

R
′(3)
ω,s,ω′,s′(k1,k2,k3,k4) :=

∂3

∂η−k1,ω,s
∂η+

k2,ω,s
∂η−k3,ω′,s′

Rk4,ω′,s′(0) (4.11)

In a similar way we define R̃
′(3)
ω,s,ω′,s′(k1,k2,k3,k4). We will show that

Lemma 4.2 Given a momentum k, such that |k̃| = γl,

|Dω′(k)|−1R̃
′(3)
ω,s,ω′,s′(k,−k,k,−k)| ≤ Cε2γ−4lZ

(1)
l

Z3
l

(4.12)

|Dω′(k)|−1R
′(3)
ω,s,ω′,s′(k,−k,k,−k)| ≤ Cε2γ−4l 1

Z2
l

(4.13)
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4.2 Proof of Theorem 4.1

To prove the vanishing of the (untruncated) correlations generated by R̃k,ω,s(η) in the removed
cutoffs limit is an easy task. In fact these correlations can be expressed as sums of products of
truncated correlations independent of k times the correlations generated by

− 1

τ−N

1

L2

∑

µ′,s′

∑

p

χ̃l(p)νωµ
′

ss′ (p)

[
∂2Wl,N (J, η)

∂Ĵp,−µ′,s′∂η̂
+
k+p,ω,s

∣∣∣∣∣
J=0

+
∂Wl,N (J, η)

∂Ĵp,−µ′,s′

∣∣∣∣∣
J=0

∂Wl,N (J, η)

∂η̂+
k+p,ω,s

]

All the correlations generated by the second term vanish for l→ −∞, by momentum conservation;
in fact p, by the condition on the external momenta, has a fixed non zero value, so that χ̃l(p) = 0
for |l| large enough. On the other hand, under the hypotheses of the theorem, the kernels of the
functional Wl,N (J, η) with one external J field (of momentum p) and 2m external η fields have a
bound divergent but integrable for p→ 0. This claim, which is easy to understand on the base of
rough dimensional arguments, can be made rigorous by using the (model independent) properties
of the tree expansion used to prove Theorem 2.3. A detailed discussion in the case m = 1 can be
found in §2.4 of [9] for the Thirring model.

To get the same result for the correction term (4.6), we shall proceed as in §3.1, by introducing
the following functional integral:

eTµ,t,l,N (β,η) =

∫
P

[l,N ]
Z (dψ)eV(ψ,0,η)+Bµ,t,0(ψ,β)−Bµ,t,−(ψ,β) (4.14)

where, if {β̂k,ω,s,k ∈ D′L} are external Grassmann variables,

Bµ,t,0(ψ, β) =
∑

ω,s

1

L6

∑

p,k,q

Ĝ−µ−ω,t(p)Cµω(q + p,q) β̂k,ω,sψ̂
−
k+p,ω,sψ̂

+
q+p,µω,tsψ̂

−
q,µω,ts (4.15)

Bµ,t,−(ψ, β) =
∑
ω,s
ω′,s′

∑

ω,s

1

L6

∑

p,k,q

Ĝ−µ−ω,t(p)D−µω(p)νµωω
′

tss′ (p) β̂k,ω,sψ̂
−
k+p,ω,sψ̂

+
q+p,ω′,s′ ψ̂

−
q,ω′,s′ (4.16)

where

Ĝ−µ−ω,t(p) :=
χ̃l,N (p))F̂−µ−ω,t(p)

τ−N

Then we have:
∂eTµ,t,l,N

∂βk,ω,s
(0, η) =

1

L2

∑

p

Ĝ−µ−ω,t(p)
∂2eHl,N

∂α̂p,µω,st∂η̂
+
k+p,ω,s

(0, η)

The multiscale analysis of the r.h.s. of this identity, performed in the following subsections will
allow us to complete the proof of the theorem.

4.2.1 Analysis of the correction term (4.6). Integration of the UV scales.

Let us put K = 0; after the integration of the fields ψ(N), ...ψ(K+1), we get

eTµ,t,l,N (β,η) =

∫
P

[l,0]
Z (dψ) eV

(0)(ψ,0,η)+B(0)
µ,t(β,η,ψ) (4.17)

and the functional B(0)
µ,t(β, η, ψ) satisfies the identity:

eB
(0)
µ,t(β,η,ψ) =

∫
P

[1,N ]
Z (dζ)eV(ψ+ζ,0,η)+Bµ,t,0(ψ+ζ,β)−Bµ,t,−(ψ+ζ,β) (4.18)
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As in §3.2 and §2.2, we shall consider, for simplicity, only the contributions to B(0)
µ,t(β, η, ψ) with

η = 0; the result can be easily extended to the general case. Hence, since we have to evaluate only

the terms linear in β, we shall study in detail only the terms linear in β of B(0)
µ,t(β, 0, ψ), whose

kernels are given, for Ω = (ω′, σ′) a generic multi-index, by (one has to take an odd number of
derivatives w.r.t. the ψ variables to get a non- zero result):

T
(2m+1)(0)
µ,t;ω,s;Ω (v;u;x,y) :=

m∏

i=1

∂

∂ψ+
xi,ω′i,s

′
i

∂

∂ψ−yi,ω′i,s′i
× ∂2B(0)

µ,t

∂βu,ω,s∂ψ
−
v,ω,s

(0, 0, 0) . (4.19)

A more explicit formula for the kernels T
(2m+1)(0)
µ,t;Ω is obtained by using in (4.19) the identity:

∂B(0)
µ,t

∂βk,ω,s
(0, 0, ψ) =

1

L4

∑

p,q

Ĝ−µ−ω,t(p)Cµω(q + p,q) e−V
(0)(ψ,0,0) ∂3eV

(0)(ψ,0,η)

∂η̂+
q,µω,ts∂η̂

−
q+p,µω,ts∂η̂

+
k+p,ω,s

∣∣∣
η=0

+
∑

ω′,s′

∫
dp

(2π)2
Ĝ−µ−ω,t(p)D−µω(p)νµωω

′

tss′ (p) e−V
(0)(ψ,0,0) ∂2eV

(0)(ψ,0,η)

∂Ĵp,ω′,s′∂η̂
+
k+p,ω,s

∣∣∣
η=0

(4.20)

If we now use again (3.34) to expand the derivatives w.r.t. the η variables in the first line of (4.20),
we get, by some simple algebra, that

∂B(0)
µ,t

∂βk,ω,s
(0, 0, ψ) = WT ,1(ψ) +WT ,#(ψ) (4.21)

where WT ,1(ψ), which is graphically represented in Fig. 14, includes all terms such that both

ψ̂ variables of the interaction A0 (that is the variables ψ̂+
q+p,µω,ts and ψ̂−q,µω,ts of (4.15)) are

contracted, while WT ,#(ψ) includes the other terms. We shall call T̂
(2m+1)(0)
1,µ,t;ω,s;Ω (k;k−;q+,q−) and

T̂
(2m+1)(0)
#,µ,t;ω,s;Ω(k;k−;q+,q−) the corresponding kernels

Lemma 4.3 There exist two constants C1 > 0 and ϑ ∈ (0, 1), such that, if g small enough, for
ε = ±1 and t = ±1,

|T̂ (2m+1)(0)
1,µ,t;ω,s;Ω (k;k−;q+,q−)| ≤ Cm0 g2γ−ϑN (4.22)

Proof. Let us put Ĥσ(p) = Ĝ−µ−ω,t(p)D−σµω(p) and let us call Hσ(x) its Fourier transform. It is
easy to see that:

|Ĥσ(p)| ≤ c1g , ‖Hσ‖L∞ ≤ c0g (4.23)

However, Hσ(x) is not L1 uniformly in L; the point is that the function Ĥσ(p), in the limit
L→∞, converges to a function which is bounded, but has a discontinuity in p = 0. In any case,
the second bound in (4.23) is sufficient to prove the bound (4.22) for the terms described, in Fig.
14, by graphs where the wiggling line belongs to a loop, since we can proceed in this case as in

the proof of Lemma 3.1, by using the L1 norm of T
(2m+1)(0)
1,µ,t;ω,s;Ω as an upper bound of |T̂ (2m+1)(0)

1,µ,t;ω,s;Ω |.
Let us consider first the sum [T̂

(a)(2m+1)(0)
1,µ,t;ω,s;Ω + T̂

(b)(2m+1)(0)
1,µ,t;ω,s;Ω ](k;k−;q+,q−) of the kernels asso-

ciated to the graphs (a) and (b) in Fig. 14; by using the identity (3.8) and the definition (3.35) of

the kernels K̂
(1;2m)(0)
σ;ω,s;Ω (see also (3.39)), we see that it can be written in the form:

1

L2

∑

p6=0

g[1,N ](k + p)
∑

σ=±
Ĝ−µ−ω,t(p)D−σµω(p)K̂

(1;2m+2)(0)
σ;ω,s;Ω (p; 0; q̃+, q̃−) (4.24)

if we put q+ = (q̃+,k + p) and q− = (q̃−,k−). By using the second bound in (4.23) and (3.36),
we can bound the L1 norm of the Fourier transform of this expression by

c0g‖g[1,N ]‖L1

∑

σ

‖K(1;2m+2)(0)
σ ‖ ≤ Cm1 g2γ−ϑN
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 1:
Figure 14: Graphical representation of WT ,1(ψ). The dashed line represents the external Grassmann
variable β; the external full line represents a ψ variable. The full triangle represents the function Cµω(q+

p,q). The wiggling line represents the function F̂−µ−ω,t(p), if it is linked to a triangle vertex, otherwise

F̂−µ−ω,t(p)D−µω(p).

Let us now consider the sum of the kernels associated to the graphs (c) and (d) in Fig. 14. In
this case we can not bound the l.h.s. of (4.22) by the L1 norm of the Fourier transform, but it is
easy to see, by using the first bound in (4.23), (3.36) and (2.28), that we can bound it by

c1g‖g[1,N ]‖L1

∑

m1+m2=m
m2≥1

‖W (0;2m1+2)(0)‖ ‖K(1;2m2)(0)‖ ≤ Cm1 g3γ−ϑN

Notice that the case m2 = 0 is excluded, because F̂−µ−ω,t(0) = 0, but, in any case, for any fixed

p 6= 0, K(1;0)(0)(p) converges, for L→∞, to a function which vanishes for p→ 0.
The bound of the sum of the kernels associated to the graphs (e) and (f) (that give a contri-

bution only for m ≥ 1) is similar; we get

c1g‖K(1;2m)(0)‖ ≤ Cm1 g2γ−ϑN

The bound for the kernels associated to the remaining graphs can be done one at a time, since
there are no cancelation among them. For (g), (h) and (i) we just use again that the second bound
in (4.23), together with (2.28). Let us consider, for example, the graph (g); we get

c0g‖g[1,N ]‖L1
‖bN‖L1

N∑

j=1

‖bj‖L1

∑

m1+m2=m
m1≥1

‖W (0;2m1+2)(0)‖ ‖W (0;2m2+2)(0)‖

≤ Cm1 g3γ−N

Finally, for the graphs (j) and (0) we have to use the first bound in (4.23), together to (3.36) and
(2.28) and the constraint that one of the ψ field of A0 has to be contracted on scale N ; we omit

the details.
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4.2.2 Analysis of the correction term (4.6). Integration of the IR scales and com-
pletion of the proof of Theorem 4.1.

The integration of the IR scales can be done as in §2.3, by starting the localization procedure at
scale 0, where the effective potential can be expanded in terms of trees with one and only one
β-vertex, which can be divided into three classes:
a) Those graphically represented in Fig. 14, that is all those containing one β endpoint with
interaction Bµ,t,−(α,ψ) and those containing one β endpoint with interaction Bµ,t,0(α,ψ), whose
ψ fields of the triangle vertex are both contracted on the UV scales; their kernels, by Lemma 4.3,
have the property that their L1 norms are bounded by a dimensional factor times a γ−ϑN factor.
b) Those graphically represented in Fig. 15 (or with different orientation of the arrows in the lines
linked to the triangle vertex), with the further condition the contracted line of the triangle vertex
has scale N and gives a smooth contribution χ̃N (p)uN (q̃)D−1

ω′ , corresponding to the first term in
(3.49).
c) The remaining ones, that is the interaction Bµ,t,0(α,ψ), those graphically represented in Fig.
15, with the further condition the contracted line of the triangle vertex has scale j < N and gives a
contribution corresponding to the second term in (3.49), and those with both lines of the triangle
vertex not contracted.

(a) (b) (c) (d)

Figure 1:Figure 15: Graphical representation of the contributions to WT ,#(ψ) with the property that one and
only one of the ψ fields linked to the triangle vertex is contracted. One should add the graphs obtained
by exchanging the arrows of the lines linked to the triangle vertex.

Let us now suppose that the condition εh ≤ ε of Theorem 2.3 is satisfied, so that we can control
the tree expansion by localizing, besides the terms involved in the tree expansion of Wl,N (J, η),
the new marginal terms, that is those with one β external field and two or three external ψ fields.
As we shall see, it is sufficient to localize only the terms with one external ψ field, by putting (in
the limit L→∞)

L
∫
dxdyβx,ω,sw(x− y)ψy,ω,s = ŵ(0)

∫
dxβx,ω,sψx,ω,s

Since ŵ(0) = 0, by the oddness of the free propagator, this can be done without introducing
any new renormalization constant and we are left with only marginal terms. The consequence
is that, given any tree with root of scale l − 1, all the tree vertices have positive dimension,
except those belonging to the path C which connects the endpoint of type β with the root; these
vertices may have dimension 0. However, if the tree has a subtree with root of scale 0 belonging
to the class a) above, its value has a γϑN factor in front of the dimensional bound. If we write
γϑN = γϑ(N+l)/2γϑ(N−l)/2, we can use the factor γϑ(N−l)/2 to regularize the vertices on C; hence,
if we consider the tree expansion of any particular correlation function, we can safely bound the
sum over the trees of class a), and we are left with a factor γϑ(N+l)/2 in front to it, which goes
to 0, if N →∞ at fixed l. A similar argument can be done for the trees of class b), by using the
bound (3.9).

Let us now consider the trees of class c). Because of the identity (3.7), they are characterized
by the fact that one of the two lines linked to the triangle vertex in Fig. 15 is contracted at scale l,
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while the other is contracted at a scale j ∈ [l, N−1] in a tree vertex that we call v∗, belonging to the
path C which connects the β endpoint vβ , of scale jβ ≥ j+1, with the root. Note that jβ+1 can be
larger than j only if j > l and the two ψ fields linked to the triangle vertex are still not contracted
in the effective potential of scale h ∈ [j + 1, jβ ]. However, these vertices may have dimension 0
only if the remaining ψ field of the Bµ,t,0 interaction is contracted in a propagator which enters a
cluster with two external fields; by the support properties of the free single scale propagators, this
can happens at most two times; hence these vertices do not need a regularization. As concerns the
vertices between v∗ and the root, the regularization is ensured by the bound (3.10), which implies
a “gain factor” γ−(j−l) with respect to the dimensional bound; from this factor we can extract
a factor γ−(jβ−l), without destroying the summability of the tree expansion of the correlation
functions. On the other hand, if the external momenta are non exceptional, the momentum k of
the β field is different from 0 and this implies that jβ is bounded from below, so that even the
contribution of the trees of class c) goes to 0 as l → −∞. This completes the proof of Theorem
4.1

4.3 Proof of Lemma 4.2

First of all, note that the connectivity structure of both R̃
′(3)
ω,s,ω′,s′ and R

′(3)
ω,s,ω′,s′ has to be the

same as that of graph a) of Fig. 14 (with three η fields extracted from the halo and a J-vertex

in place of the α-vertex, for R̃
′(3)
ω,s,ω′,s′), that is any Feymann graph has to be connected without

using the β vertex. It immediately follows that the lowest order contributions are of the second
order in ε.

The bound for R̃
′(3)
ω,s,ω′,s′(−k,k,−k,k) can be proved by the same arguments used in [11]

for proving a similar result (see Lemma A1.2 of that paper) in the case of a model with spin
0, local interaction and a fixed UV cutoff. Hence, we shall skip the proof, but only note that
the dimensional factors of the bound differ from those of the bound in (2.55) for the four point
correlations, which have the same formal scaling dimension, only because
a) the external propagator in the β-vertex is substituted with Dω′(k), so that we “loose” a Z−1

l

factor;
b) we have to take into account that the internal J-vertex is renormalized, so that we “gain” a

factor Z
(1)
l /Zl.

Let us finally consider R
′(3)
ω,s,ω′,s′(−k,k,−k,k). First of all note that, for a generic choice

of the external momenta, R
′(3)
ω,s,ω′,s′(k1,k2,k3,k4) is obtained from R(3)

ω,s,ω′,s′(k1,k2,k3,k4) by
subtracting the Feynmann graphs which are only connected through the β vertex. However,
these graphs give a vanishing contribution if (k1,k2,k3,k4) = (−k,k,−k,k), thanks to the cutoff
function χ̃l,N (p) present in the definition (4.6); in fact, for these graphs p = k4 − k3 = 2k and

χ̃l,N (p) = 0, if |p| ≥ 2γl. It follows that the tree expansion of R
′(3)
ω,s,ω′,s′(k1,k2,k3,k4) is that

discussed in the proof of Theorem 4.1; in particular it only depends on the trees containing a
subtree at scale 0 of class c), defined in §4.2.2. The contributions of these trees can be easily

estimated by trivial dimensional bounds and we get (4.13); the “missing factor” Z
(1)
l /Zl with

respect to the bound (4.12) can be explained as in the proof of Lemma 3.3.

4.4 Vanishing of the Beta function

We want now to prove the property a), defined at the beginning of §4, of the model with g1,⊥ = 0
(at N,L = +∞) and, at the same time, to analize the dependence of the r.c.c. on a small
perturbation of the “velocity” c, which appears in the free propagator (2.3). Hence, we put

c = c0 + δ , c0 > 0 , |δ| ≤ c0/2 (4.25)
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The introduction of the new parameter δ is essential to derive from the property a) a property of
the beta function, that we call partial vanishing of the beta functions, see (2.108), (2.159) and App.
C of the companion paper [1]. In its turn, this property is essential to control the IR integration
in the Hubbard model.

Lemma 2.2 and Theorem 2.1 imply that, if g = max{|g1,⊥|, |g‖|, |g⊥|, |g4|} is small enough and
K = 0,

eW[l,N](0,0) = e−L
2E1

∫
PZ(dψ[l,1])eV

(1)(
√
Zψ[l,1],0) (4.26)

where V(1)(ψ, 0) is given by (2.18) with W (n;2m)(1) verifying (2.28). Starting from (4.26) we can
move from the free integration to the effective interaction the term −δFδ(

√
Zψ[l,1]), with Fδ(ψ)

defined as in (2.48).
The new propagator differs from (2.3) because, in place of c, we have c0 + δul(k), with ul(k) =

1 − χ[l,1](|(k0, ck)|). On the other hand, for δ small enough, χ[l,1](|(k0, ck)|) and χ[l,1](|(k0, c0k)|)
differ only for values of k of size γ or γl and

ul(k) = 0 , if χ[l+1,0](|(k0, c0k)|) > 0 (4.27)

Hence, we can write

χ[l,1](|(k0, ck)|) = χ(1)(k) + χ[l+1,0](|(k0, c0k)|) + χ(l)(k) (4.28)

with χ(1)(k) and χ(l)(k) smooth functions, whose support is on values of k of size γ or γl, respec-
tively; moreover, if we define

C̃l(k) =
[
χ[l+1,0](|(k0, c0k)|+ χ(l)(k))

]−1

(4.29)

then C̃l(k) = 1, if 1 ≥ |(k0, c0k)| ≥ γl+1 and C̃l(k)−1χ(l)(k) ≤ 1. It follows that the free GGI

P (dψ[l,1]) can be written as P (dψ
(1)

)P (dψ̃[l,0]), where ψ
(1)

is a field whose covariances has the
same scale properties of ψ(1), while

P (dψ̃[l,0]) = N−1 exp



−

Z

L2

∑

k,ω,s

C̃l(k)[−ik0 + ωc0(1 + ul(k)δ)k]ψ̃
+[l,0]
k,ω,s ψ̃

−[l,0]
k,ω,s



 (4.30)

The integration of the single scale field ψ
(1)

can be done without any problem. At this point, we
start the multiscale integration of the field ψ̃[l,0] as in §2.3 up to scale l + 1, the only difference
being that we have c0 in place of c in the single scale propagators (2.47), thanks to (4.27). This
property is not true only in the last step, j = l, but this is not a problem, since we have to study
the RG flow at fixed j and l → −∞ and, moreover, the contribution of the IR scale fluctuations
to the Schwinger functions at fixed space-time coordinates vanishes as l→ −∞.

We prove the following lemma.

Lemma 4.4 Let ε and εh be defined as in Theorem 2.3. Then there are constants ε1 and c2,
independent of l, such that, if ε0 ≤ ε1, then εh ≤ c2ε0 ≤ ε, for any h ∈ [l + 1, 0].

Proof. The proof is by contradiction. Assume that there exists a h ≤ 0 such that

εh+1 ≤ c2ε0 < εh ≤ 2c2ε0 ≤ ε (4.31)

We show that this is not possible, if ε1, c2 are suitably chosen. Let us consider the model (2.2)
with l = h, that is with infrared cutoff γh.

Let us consider the first equation in (2.55), which says that, in the limit L,N → ∞ at fixed

l = h, if |k| = γh, Ŝω(k) =< ψ̂−k,ω,sψ̂
+
k,ω,s >= (ZhDω(k))−1[1 + O(εh)]. It is easy to see that,
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the only term of order one in εh contributing to Ŝω(k) is given by the graph with one insertion
of a δl vertex in the renormalized free propagator. Hence, if we move from the interaction to the
renormalized GGI the term −δlFδ(

√
Zlψ

(l)), before the integration of the field ψ(l), we get

Ŝω(k) ≡ 〈ψ̂−k,ω,sψ̂+
k,ω,s〉h =

1

ZhDh,ω(k)
[1 +W

(h)
2 (k)] (4.32)

where 〈 · 〉l denotes the expectation with propagator (2.3) (c = c0 + δ) and

Dω,h(k) = −ik0 + ωk(c0 + δh) , |W (h)
2 (k)| ≤ Cε2

h (4.33)

In the same manner we get, by using the second equation in (2.55), that

〈ρ̂2k,ω,sψ̂
−
k,ω,sψ̂

+
−k,ω,s〉h = − Z

(1)
h

Z2
hDω,h(k)2

[1 +W
(l)
2,1(k)] (4.34)

where |W (l)
2,1(k)| ≤ Cε2

h. Moreover, by using the WI (3.16), we can write an equation relating

(4.32) with (4.34). Let us put in (3.16) µ = ω and let us take two derivatives with respect to η̂−k,ω,s
(the first) and η̂+

k+p,ω,s at J = η = 0.

Dω(p)〈ρ̂p,ω,sψ̂−k+p,ω,sψ̂
+
k,ω,s〉h = Ŝω(k)− Ŝω(k+p) +D−ω(p)R(p,k) + Ĥ(1;2)

ω,s (p;k+p,k) (4.35)

whereD−ω(p)R(p,k) is the contribution of the second term in the first line of (3.16) and Ĥ(1;2)
ω,s (p;k+

p,k) is defined as in Lemma 3.3. Note that Rh(p,k) is of the second order in εh, since it is a

linear combination, with coefficients of order εh of the correlations 〈ρ̂p,ω,sψ̂−k+p,ω′,s′ ψ̂
+
k,ω′,s′〉h with

(ω′, s′) 6= (ω, s), which vanish at order 0. It follows, by using again the second equation in (2.55),
that, if k = −k, with |k| = γh, and p = 2k, then

|R(2k,k)| ≤ Cγ−2hZ
(1)
h

Z2
h

ε2
h (4.36)

Noreover, by Lemma 3.3,

|Dω(2k)Ĥ(1;2)
ω,s (2k;k,−k) ≤ Cγ−2h 1

Zh
ε2
h (4.37)

If we insert (4.32), (4.34), (4.36), (4.37) in (4.35), we easily get

Z
(1)
h

Zh

[
− ik0 + ωk(c0 + δ)

] [
1 +O(ε2

h)
]

=
[
− ik0 + ωk(c0 + δh)

] [
1 +O(ε2

h)
]

which implies that

Z
(1)
h

Zh
= 1 +O(ε2

h) , δh = δ +O(ε2
h) (4.38)

Let us now consider the equation we get, if we take three derivatives w.r.t. the field η at η = 0
on both sides of the WI (4.10), written in the limit N,L→∞. Let us define

Ŝ4(k, ω, s, ω′, s′) :=< ψ̂+
k1,ω,s

ψ̂−k2,ω,s
ψ̂+
k3,ω′,s′

ψ̂−k4,ω′,s′
>T

with k = (k1,k2,k3,k4), k1 − k2 + k3 − k4 = 0, and

Ŝ1,2(p,k, ω, s, ω′, s′) =< ρ̂p,ω,sψ̂
−
k−p,ω′,s′ ψ̂

+
k,ω′,s′ >T
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Hence, if we consider (4.10) with k = k4 and (ω′, s′) in place of (ω, s) and we take the derivative
w.r.t. η̂−k3,ω′,s′

followed by the derivatives w.r.t. η̂+
k2,ω,s

and η̂−k1,ω,s
, we get, by using (3.15), (3.12),

(2.6) (with K = 0) and the definition (4.11), if we put Ω := (ω, s, ω′, s′),

Dω(k4)S4(k,Ω) = −
∑

µ,t

ĥ(k1 − k2)
[
δµω′,1δts′,−1g⊥+

+δµω′,1δts′,1g‖ + δµω′,−1δts′,−1g4

]
S1,2(k1 − k2,k2,−µ, t, ω, s)S2(k3)−

−
√

4πc

∫
dp

(2π)2

[
F̂−ωω

′

−ω′,ss′(p)S4(k1,k2 − p,k3,k4 + p,Ω)−

−F̂−1
−ω′,+1(p)S4(k1,k2,k3 + p,k4 + p,Ω)− F̂−ωω′−ω′,ss′(p)S4(k1 + p,k2,k3,k4 + p,Ω)

]
+

+R
′(3)
Ω (k1,k2,k3,k4) + R̃

′(3)
Ω (k1,k2,k3,k4)

(4.39)

Let us now put (k1,k2,k3,k4) = (k,−k,k,−k), with |k̃| = γh. Under this condition, the terms
in the third and fourth line of (4.39), can be bounded by Cε2

hγ
−3hZ−2

h ; this can be proved as
in the proof of the analogous bound (4.21) in the paper [11]. A similar bound is valid for

R
′(3)
Ω (k,−k,k,−k) and R̃

′(3)
Ω (k,−k,k,−k), by Lemma 4.2. Hence, if we extract in both sides

of (4.39) the terms of order one in εh and use Theorem 2.4 and the first identity in (4.38), we
easily get the identity

[gα,h +O(ε2
h)]

γ−4h

Z2
h

= gα,0[1 +O(εh)]
γ−4h

Z2
h

+O(ε2
h)
γ−4h

Z2
h

, α = ⊥, ‖, 4 (4.40)

Note that, if we call vj the set of r.c.c. of scale j, its value is independent of the IR cutoff scale
up to j = h, see the remark after (2.49). Hence, (4.40) is valid also if we interpret εh as that
calculated in the model with IR cutoff l < h. Hence, the second identity in (4.38) and (4.40) imply
that, if the hypothesis (4.31) is satisfied, there exists a constant c3, independent of c2 and ε1, such
that

εh − ε0 ≤ c3ε2
h (4.41)

By the hypothesis (4.31), εh ≤ 2c2ε0; hence, the bound (4.41) implies that εh ≤ ε0(1 + 4c3c
2
2ε0).

On the other hand, the second member of this inequality can not be larger than c2ε0, if, for
instance, c2 = 2 and ε0 ≤ ε1 := 1/(16c3).

Lemma 4.4 implies that the r.c.c.’s are well defined and uniformly bounded for any h and that,
as a consequence, also the ren.c.’s, the effective potentials and the correlation functions are well
defined. We can then write, for any h ≤ 0, equations of the form

vh−1 = vh +B(h) (vh, . . . , v0, v) , v := (g‖, g⊥, g4, δ) (4.42)

Z
(1)
h−1

Zh−1
=
Z

(1)
h

Zh

[
1 + B̃

(h)
(vh, . . . , v0, v)

]
(4.43)

Let us call b(j)(v′) and b̃
(j)

(v′) the functions which are obtained from B(h) and B̃
(h)

, by subtracting
the contribution of the trees containing endpoints of scale grater than 0 and by putting everywhere
a fixed value v′, with |v′| ≤ ε in place of vj , for all j ≤ 0, in the remaining trees contribution (which
do not depend explicitly on the parameters v of the interaction). It is easy to see, by using the short

memory property of the tree expansion and its analyticity in the r.c.c.’s, that b(j)(v′) and b̃
(j)

(v′)

converge, as h→ −∞, to analytic functions b(−∞)(v′) and b̃
(−∞)

(v′), such that |b(j)(v′)−b(−∞)(v′)|
and |̃b(j)(v′)− b̃(−∞)

(v′)| are bounded by C|v′|2γϑj , with ϑ ∈ (0, 1). On the other hand, it is not
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too hard to prove that, as a consequence of the bound (4.41), b(−∞)(v′) = b̃
(−∞)

(v′) = 0; see pag.
156 of [12]. Hence, we get the very important property:

∣∣∣b(j)(v′)
∣∣∣ ≤ C|v′|2γϑj ,

∣∣∣∣̃b
(j)

(g‖, g⊥, g4, δ)

∣∣∣∣ ≤ C|v′|2γϑj (4.44)

that we call the asymptotic vanishing of the beta function. This property has been used to control
the flow of the r.c.c.’s also in the companion paper [1], not only in the case g1,⊥ = 0, but also in
the spin-symmetric and repulsive case, that is g‖ = g⊥ − g1,⊥ and g1,⊥ > 0.

As one can easily guess, the bound (4.44) allows us to prove that the r.c.c.’s, the correlation
functions at fixed space coordinates and their Fourier transforms at non exceptional external
momenta, converge as l→ −∞ to functions, which are analytic in v around the origin. A detailed
discussion of this point, which only depends on the structure of the tree expansion, can be found,
in the case of the Thirring model, in [9].

5 Closed equations in the limit of removed cut-offs

In order to prove Theorem 1.1, we need to calculate the explicit expression of the two-points
function and of the truncated correlations of some quadratic operators in the space coordinates.
We shall do that by taking the inverse Fourier transform of the closed equations obtained in the
previous sections for the Fourier transforms of the correlations.

There is in principle a problem in this procedure, because one could be afraid that the removed
cutoffs limit does not commute with the Fourier transform because of the presence of delta func-
tions in the calculations. However, we have shown in a paper on the Thirring model(see §A.3 of
[13]) that this is not the case and the arguments given there are model independent.

5.1 The two-points function

If we perform in (4.8) one derivative w.r.t. η̂−ω,s at η = 0 and we put 〈ψ−x,ω,sψ+
y,ω′,s′〉 = δω,ω′δs,s′Sω(x−

y), we get, in the space coordinates:

(∂ωSω) (x)− F−−ω,+(x)Sω(x) =
1

Z
δ(x) (5.1)

with ∂ω = ∂x0
+ iωc∂x1

; note that we have added the dependence on Z, which was put equal to 1
in (4.8).

The solution of (5.1) is:

Sω(x) = e∆−+(x|0)gω(x) , gω(x) =
1

2πZ

1

cx0 + iωx
, (5.2)

having defined ∆ε
s such that ∂xω∆ε

s(x|z) = F ε−ω,s(x):

∆ε
s(x|z) =

∫
dk

(2π)2

e−ikx − e−ikz
Dω(k)

F̂ ε−ω,s(−k) = ∆ε
ρ(x|z) + s∆ε

σ(x|z) . (5.3)

for

∆̂ε
ρ(p) = gρĥ(−p)

Mρ
−ω,−ωε(−p)

Dω(p)
+
g4

2
ĥ(−p)

Mρ
ω,−ωε(−p)

Dω(p)

∆̂ε
σ(p) = gσĥ(−p)

Mσ
−ω,−ωε(−p)

Dω(p)
− g4

2
ĥ(−p)

Mσ
ω,−ωε(−p)

Dω(p)
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In order to evaluate the asymptotic behavior of ∆ε
s(x|0), we need to study functions of the type

Iω,ε(x) =

∫
d2p

(2π)2
a(p)

e−ip·x − 1

(p0 + iωcp1)[v+(p)p0 − iεωv−(p)cp1]
(5.4)

where a(p) and vs(p) > 0 are even smooth functions of fast decrease. It is easy to show that

Iω,ε(x) =
a(0)

v+(0)
Ĩω,ε(x) +A+O(1/|x|) (5.5)

where A is a real constant and, if v = v−(0)/v+(0),

Ĩω,ε(x) =

∫ +1

−1

dp1

(2πc)

∫ +∞

−∞

dp0

(2π)

e−i(pox0+p1x1/c) − 1

(p0 + iωp1)(p0 − iεωvp1)

One can see that, if v > 0, v 6= 1 and x 6= 0,

Ĩω,ε(x) =
1

2πc(1 + εv)
[F (x0, ωx1/c) + εF (vx0,−εωx1/c)]

where

F (x0, x1) =

∫ 1

0

dp1

p1

[
e−p1(|x0|+isgn(x0)x1) − 1

]
= ln |z|+ iArg

(
sgn(x0)z

)
+B + O(1/z)

where z = x0 + ix1, B is a real constant and |Arg(z)| ≤ π. Since

Arg
(
sgn(x0)z

)
= Arg(z)− ϑ(x0)sgn(x1)π

the function F (x) (considered only for |x| > 1) is discontinuous at x0 = 0, while Ĩω,ε(x) is
continuous. We can then write

Ĩω,ε(x) = − 1

2πc(1 + εv)
[log(x0 + iωx1/c) + ε log(vx0 − iεωx1/c)] + C +O(1/|x|) (5.6)

where C is again a real constant. By using (3.27), (5.4), (5.5) and (5.6), one can easily check that

∆ε
γ(x|0) =− Hε

γ,ε

4πc
ln
(
v2
γx

2
0 + (x1/c)

2
)
− Hε

γ,− +Hε
γ,+

4πc
ln

x0 + iωx1/c

vγx0 + iωx1/c

+ Cεγ +O(1/|x|)
(5.7)

for

H+
γ,ε =

2gγuγ,ε + g4,γwγ,ε
vγ,+ + εvγ,−

=
εgγ

vγ,+vγ,−

H−γ,ε =
2gγwγ,ε + g4,γuγ,ε
vγ,+ − εvγ,−

= − 4πε

2νγ,+νγ,−

[
1− (vγ,− − εvγ,+)2

4

]

where C±γ are real constants and vγ = vγ,+(0)/vγ,−(0) (and g4,ρ = g4 while g4,σ = −g4).
By using (3.28) and (3.29),

H+
γ,+

4πc
=

νγ
vγ,+vγ,−

=
ζγ
2

H+
γ,− +H+

γ,+

4πc
= 0 (5.8)

H−γ,−
4πc

=
1− 1

4 (vγ,+ + vγ,−)2

2vγ,+vγ,−
=
ηγ
2

H−γ,− +H−γ,+
4πc

= −1

2
(5.9)
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Note that this expression is continuous in vγ = 1, as one expects, and that, at least at small
coupling, ηγ ≥ 0.

By using (5.2) and (5.3), we finally get

Sω(x) =
1

2πZ

(c2v2
ρx

2
0 + x2

1)−ηρ/2(c2v2
σx

2
0 + x2

1)−ησ/2

(cvρx0 + iωx1)1/2(cvσx0 + iωx1)1/2
eC+O(1/|x|) (5.10)

where C is a real constant O(g) and z1/2 = |z|1/2eiArg(z)/2. Note that the leading term is well
defined and continuous at any x 6= 0.

Note also that, if g4 = 0, vρ = vσ = 1 and ηρ = ησ ≡ η/2, so that

Sω(x) =
1

2πZ

(c2x2
0 + x2

1)−η/2

cx0 + iωx1
eC+O(1/|x|) (5.11)

If we also put g⊥ = 0 and g‖ = λ, we get for η the value found for the regularized Thirring model,
that is η = 2τ2/(1− τ2), with τ = λ/(4πc); see eq. (4.21) of [14].

5.2 The four point functions and the densities correlations

We want to calculate the truncated correlations 〈O(t)
x O

(t)
y 〉T of the local quadratic operators O

(t)
x ,

t = (1, α) or (2, α), defined as the analogous operators of the Hubbard model in §2.4 of the previous
paper [1], that is

O(1,C)
x =

∑

ω,s

ψ+
x,ω,sψ

−
x,ω,s , O

(1,Si)
x =

∑

ω,s,s′

ψ+
x,ω,sσ

(i)
s,s′ψ

−
x,ω,s′ , O

(1,SC)
x =

∑

ε,ω,s

s e2iεωpF xψεx,ω,sψ
ε
x,ω,−s

O(2,C)
x =

∑

ω,s

e2iωpF xψ+
x,ω,sψ

−
x,−ω,s , O(2,Si)

x =
∑

ω,s,s′

e2iωpF xψ+
x,ω,sσ

(i)
s,s′ψ

−
x,−ω,s′

O(2,SC)
x =

∑

ε,ω,s

sψεx,ω,sψ
ε
x,−ω,−s , O(2,TCi)

x =
∑

ε,ω,s,s′

e−iεωpFψεx,ω,sσ̃
(i)
s,s′ψ

ε
x,−ω,s′

Note that pF has no special meaning in the effective model, but it is left there since we want to
compare the correlations in the two models, in the proof of Theorem 1.1.

Our UV regularization implies that 〈O(t)
x 〉 = 0 for any t; hence we can make the calculation very

simply, by using the explicit expressions of the (untruncated) four points functions which follow
from the closed equation (4.5) and then evaluating them so that the two coordinates corresponding
to each O(t) operator coincide, if this is meaningful. This works for all values of t, except (1, C)
and (1, S3), where there is a singularity, related to the fact that the operators ρx,ω,s = ψ+

x,ω,sψ
−
x,ω,s

are not well defined in the limit N → ∞, because of the singularity of the free propagator at
x = 0. However, in these cases we can use directly the WI (3.52) to calculate correctly, in the

limit N → ∞, the correlations of O
(1,C)
x and O

(1,S3)
x , by using (3.53), (3.27) and the equations

(5.4), (5.5), (5.6). We get, for |x| > 1,

Gγω,ω(x) ' 1− v2
γ

8π2c2Z2

[
uγ,+

vγ,+ − vγ,−
1

(vγx0 + iωx1/c)2
− uγ,−
vγ,+ + vγ,−

1

(vγx0 − iωx1/c)2

]

Gγ−ω,ω(x) ' 1− v2
γ

8π2c2Z2

[
wγ,+

vγ,+ − vγ,−
1

(vγx0 + iωx1/c)2
− wγ,−
vγ,+ + vγ,−

1

(vγx0 − iωx1/c)2

]

the corrections being of order 1/|x|3. This implies that, for |x| > 1,

〈O(1,C)
0 O(1,C)

x 〉T =
v2
ρ(1− ν4 + 2νρ) + (1 + ν4 − 2νρ)

2πZ2c2vρ,+vρ,−

v2
ρx

2
0 − x2/c2

(v2
ρx

2
0 + x2/c2)2

+O(1/|x|3) (5.12)
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while 〈O(1,S3)
0 O

(1,S3)
x 〉T is obtained from this expression, by replacing ν4 with −ν4 and νρ with νσ

(hence also vρ, vρ,+ and vρ,− with vσ, vσ,+ and vσ,−).
In order to calculate the other correlations, we first note that the only four points functions

different from zero are those defined by the equation

Gω1,ω2
s1,s2 (x,y,u,v) = 〈ψ−x,ω1,s1ψ

−
y,ω2,s2ψ

+
u,ω2,s2ψ

+
v,ω1,s1〉

By (4.5), Gω1,ω2
s1,s2 (x,y,u,v) is the solution of the equation:

(
∂xω1

Gω1,ω2
s1,s2

)
(x,y,u,v) = δ(x− v)Sω2

(y − u)− δω1,ω2
δs1,s2δ(x− u)Sω1

(y − v)+
[
− F−ω1ω2

−ω1,s1s2(x− y) + F−ω1ω2
−ω1,s1s2(x− u) + F−−ω1,+(x− v)

]
Gω1,ω2
s1,s2 (x,y,u,v)

(5.13)

For the two-points correlation of O
(2,α)
x we are interested in the case ω1 = −ω2 = ω. For

Gωs (x,y,u,v) = Gω,−ωs′,ss′(x,y,u,v) we find

Gωs (x,y,u,v) = e
−
[

∆+
s (x−y|v−y)−∆+

s (x−u,v−u)

]
Sω(x− v)S−ω(y − u) . (5.14)

Therefore, for α = C, S3 we set x = u, y = v and s = +, while for α = S1.S2 we set s = −;
for TC1, TC3 we set u = v, x = y and s = +; while for TC2, SC we set s = −.

For the two-points correlation of O
(1,α)
x , α 6= C, S3, we are interested in the case ω1 = ω2 = ω.

If G
ω

s (x,y,u,v) = Gω,ωs′,ss′(x,y,u,v) we find

G
ω

s (x,y,u,v) = e
−
[

∆−s (x−y|v−y)−∆−s (x−u,v−u)

]
Sω(x− v)Sω(y − u)

− δs,+e
−
[

∆−+(x−y|u−y)−∆−+(x−v,u−v)

]
Sω(x− u)Sω(y − v) .

(5.15)

For α = SC we set x = y, u = v and s = −; for α = S1, S2 we set x = u, y = v and s = −; for
α = S3, C we set x = u, y = v and s = +.

Therefore, it is easy to see, by using (5.3) and (5.10), that, for |x| > 1,

〈O(2,α)
0 O(2,α)

x 〉T =
1

π2Z2c2
cos(2pFx)mα

(v2
ρx

2
0 + x2/c2)xρ,t

1

(v2
σx

2
0 + x2/c2)xσ,t

+O(1/|x|3) , ∀α

〈O(1,SC)
0 O(1,SC)

x 〉T = − 1

π2Z2c2
cos(2pFx)

(v2
ρx

2
0 + x2/c2)2ηρ

v2
ρx

2
0 − x2/c2

(v2
ρx

2
0 + x2/c2)2

+O(1/|x|3) (5.16)

〈O(1,α)
0 O(1,α)

x 〉T =
1

π2Z2c2
1

(v2
σx

2
0 + x2/c2)2ησ

v2
σx

2
0 − x2/c2

(v2
σx

2
0 + x2/c2)2

+O(1/|x|3), α = S1, S2

where mα = 1, if α = C, Si, while mα = 0, if α = SC, TCi, and

xγ,t =





ηγ − ζγ + 1/2 t = (2, C), (2, S3)

ηγ − s(γ)ζγ + 1/2 t = (2, S1), (2, S2)

ηγ + ζγ + 1/2 t = (2, TC1), (2, TC3)

ηγ + s(γ)ζγ + 1/2 t = (2, SC), (2, TC2)

(5.17)

Let us now consider the special case gσ = 0 (i.e. ησ = ζσ = 0), which we use as a effective

model for the Hubbard model. In this case, the equations (5.16) imply that 〈O(t)
0 O

(t)
x 〉 decays, for

|x| → ∞, as |x|−2Xt , with

2Xt =





2 + 2ηρ − 2ζρ t = (2, C), (2, Si)

2 + 2ηρ + 2ζρ t = (2, SC), (2, TCi)

2 + 4ηρ t = (1, SC)

2 t = (1, C), (1, Si)

(5.18)
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Note that

ηρ = −1

2
+

4− v2
ρ+ − v2

ρ−
4vρ+vρ−

, ξρ =
2νρ

vρ+vρ−
(5.19)

Let us now define K = 2X2,C − 1 and K̃ = 2X2,SC − 1. By using (3.29), we see that

K =
(1− 2νρ)

2 − ν2
4

vρ+vρ−
=

√
(1− ν4)− 2νρ
(1− ν4) + 2νρ

√
(1 + ν4)− 2νρ
(1 + ν4) + 2νρ

(5.20)

K̃ =
(1 + 2νρ)

2 − ν2
4

vρ+vρ−
= K−1

4ηρ = K + K̃ − 2

These equations imply that all the critical indices Xt and the parameter ηρ can be expressed in
terms of the single parameter K, only depending on g2/c and g4/c. In the following section we
will show that the coupling of the model (2.2) can be chosen so that its exponents coincide with
the Hubbard ones; then, by some simple algebra, one can check the validity of the scaling relations
(1.14).

6 Proof of Theorem 1.1

6.1 The extended scaling relations: proof of (1.14)

In this section we finally establish contact with the Renormalization Group analysis of the Hubbard
model done in the companion paper [1], and we prove Theorem 1.1.

Let us call ṽh = (g̃2,h, g̃4,h, δ̃h), h ≤ 0, the running coupling constants in the effective model
with ultraviolet cutoff γN and parameters

g1,⊥ = 0 , g‖ = g⊥ = g̃2,N , g4 = g̃4,N , δ = δ̃N (6.1)

so that, in particular, c = c0(1 + δ̃N ), and put ṽN = (g̃2,N , g̃4,N , δ̃N ). We call vh = (g2,h, g4,h, δh),
h ≤ 0, the analogous constants in the Hubbard model, and ~vh = (vh, g1,h, νh). The analysis of the
RG flow given above implies that, for h ≤ 0,

ṽh−1 = ṽh + β(0,h)(ṽh, .., ṽ0) + r̃(h)(ṽh, .., ṽ0, ṽN ) (6.2)

vh−1 = vh + β(0,h)(vh, .., v0) + r(h)(~vh, .., ~v0, λ) (6.3)

where β(0,h)(ṽh, .., ṽ0) is the beta function of the effective model with parameters (6.1), modified
so that the endpoints have scale ≤ 0. Note that β(0,h)(vh, .., v0) is the function β(h)(vh, .., v0)
modified so that, in its tree expansion, no trees containing endpoints of type g1 appear and the
space integrals are done in terms of continuous variables, instead of lattice variables (the difference
is given by exponentially vanishing terms). The crucial bound (4.44) and the short memory
property imply that |r̃(h)(ṽh, .., ṽN )| ≤ C[maxk≥h |ṽk|]2 γϑh, and a similar bound is verified from
r(h)(~vh, .., ~v0, λ).

Lemma 6.1 Given the Hubbard model with coupling λ such that g1,0 ∈ Dε,δ, it is possible to
choose ṽN as analytic function of λ, so that

g̃2 = 2λ

[
v̂(0)− 1

2
v̂(2pF )

]
+O(λ3/2) , g̃4 = 2λv̂(0) +O(λ2) , δ̃ = O(λ) (6.4)
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and, if ṽh are the r.c.c. of the effective model with parameters satisfying (6.1), while vh are the
r.c.c. of the Hubbard model, then, ∀h ≤ 0,

|vh − ṽh| ≤ C
|g1,0|

1 + (a/2)|g1,0| |h|
(6.5)

Moreover, the r.c.c. ṽh have a well definite limit as N → +∞ and this limit still satisfies (6.5).

Proof - We have seen in the previous sections that the flows (6.2) and (6.3) have well defined
limits ṽ−∞ and v−∞, as h→ −∞, if the initial values are small enough and g1,0 ∈ Dε,δ. Moreover,
the proof of this property for the flow (6.2) implies that ṽ−∞ is a smooth invertible function of
ṽN , such that ṽ−∞ = ṽN + O(ṽ2

N ); let us call ṽN (ṽ−∞) = ṽ−∞ + O(ṽ2
−∞) its inverse. It is also

clear that ṽN (ṽ−∞) has a well defined limit as N → ∞, that we shall call ṽ(λ), and that this is
true also for the r.c.c. ṽh, h ≤ 0.

The previous remarks imply that it is possible to choose ṽN , satisfying (6.4), so that

ṽ−∞ − v−∞ = 0 (6.6)

In order to prove (6.5), we note that, because of the bound (4.44) and the short memory property,
in the effective model with couplings satisfying (6.4),

|ṽh − ṽ−∞| ≤ Cλ2γϑh (6.7)

On the other hand

|vh − v−∞| ≤ C
h∑

j=−∞
[|g1,j |2 + λγ

ϑ
2 j ] ≤ C1

|g1,0|
1 + (a/2)|g1,0| |h|

(6.8)

These two bounds immediately imply (6.5).

Let us now note that the critical indices of the effective model can be calculated in terms of
ṽ−∞ by the same procedure used for the Hubbard model and that we get an equation with the

same function β
(0,j)
t . Hence, the above lemma allows us to conclude that the critical indices in the

Hubbard model and in the effective model coincide, provided that the value of ṽ = limN→∞ ṽN is
chosen properly. It follows that all the indices are given by the equations (5.18), with

νρ =
g̃2(λ)

4πc
= λ

v̂(0)− v̂(2pF )/2

2π sin pF
+O(λ3/2)

ν4 =
g̃4(λ)

4πc
= λ

v̂(0)

2π sin pF
+O(λ2)

(6.9)

where (6.4) has been used, together with c = sin pF +O(λ). Moreover, (6.9) and (5.20) imply that
K = 1− 2λ[v̂(0)− v̂(2pF )/2]/(π sin pF ) +O(λ3/2), in agreement with (1.13).

6.2 Susceptibility and Drude weight: proof of (1.15)

The effective model is not invariant under a gauge transformation with the phase depending both
on ω and s, if g1,⊥ > 0; however, it is still invariant under a gauge transformation with the phase
only depending on ω. This is true, in particular, if the interaction is spin symmetric, that is if
g‖ = g⊥ − g1,⊥. Since also the Hubbard model is spin symmetric, it is natural to see if one can
use this “restricted ” gauge invariance to get some useful information on the asymptotic behavior
of the Hubbard model, by comparing it with the effective model with g1,⊥ > 0.

Let us put g⊥ ≡ g2, g1⊥ ≡ g1 and g‖ = g2 − g1. We want to show that we can choose

the parameters of the effective model g1, g2, g4, δ, so that the running coupling constants are
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asymptotically close to those of the Hubbard model. This result is stronger of the similar one
contained in Lemma 6.1, since now all the running couplings are involved, and this implies also
that the values of g2, g4 and δ are different with respect to the analogous constants defined in
Lemma 6.1. The main consequence of these considerations is that we can use the restricted WI
of this new effective model to get non trivial information on some Hubbard model correlation
functions, not plagued by logarithmic corrections.

Let ~lh = (g1,h, g2,h, g4,h, δh), h ≤ 0, be the running coupling constants appearing in the inte-
gration of the infrared part of the effective model. The smoothness properties of the integration
procedure imply that, in the UV limit, ~l0 is a smooth invertible function of the interaction param-
eters ~l = (g1, g2, g4, δ), whose inverse we shall call ~l(~l0); hence we can fix the effective model by

giving the value of ~l0 and by putting ~l = ~l(~l0). In a similar way we call ~gh = (g1,h, g2,h, g4,h, δh),
h ≤ 0, the running couplings of the Hubbard model with coupling λ.

We now define ~xh = ~lh − ~gh, h ≤ 0. By using the decomposition for ~gh and the similar one for
~lh, we can write

~xh−1 = ~xh + [~β
(1)
h (~gh, .., ~g0)− ~β

(1)
h (~lh, ..,~l0)] + ~β

(2)
h (~gh, νh...~g0, ν0, λ) + ~β

(3)
h (~lh, ..,~l0,~l) (6.10)

In the usual way, one can see that

|~β(1)
h (~gh, .., ~g0)− ~β

(1)
h (~lh, ..,~l0)| ≤ C

[
|λ|+ sup

k≥h
|~lk|
] 0∑

k=h

γ−ϑ(k−h)|~xk| (6.11)

and that |~β(2)
h | ≤ C|λ|γϑh, |~β(3)

h | ≤ C[supk≥h |lk|]2. Note that the different power in the coupling
of these two bounds is due to the terms linear in λ in the beta function for δh, which are present
in the Hubbard model, while similar terms are absent in the effective model.

We want to show that, given λ positive and small enough, it is possible to choose ~l0, hence ~x0,
so that ~x−∞ = 0; we shall do that by a simple fixed point argument. Note that ~x−∞ = 0 if and
only if

~xh = −
h∑

h=−∞
{[~β(1)

h (~gh, .., ~g0)− ~β
(1)
h (~lh, ..,~l0)] + ~β

(2)
h + ~β

(3)
h } (6.12)

We consider the Banach space Mϑ, ϑ < 1, of sequences ~x = {~xh}h≤0 with norm
‖~x‖ = supk≤0 |~xk|γ−(ϑ/2)k and the operator T : Mϑ → Mϑ, defined as the r.h.s. of (6.12).
Given ξ > 0, let Bξ = {~x ∈ Mϑ : ‖~x‖ ≤ ξλ}; if λ is small enough, say λ ≤ ε0 and ξλ ≤ ε0,

and ~lh = ~gh + ~xh, the functions ~β
(1)
h (~lh, ..,~l0) and ~β

(3)
h (~lh, ..,~l0,~l) are well defined and satisfy the

bounds above, even if ~x is not the flow of the effective model corresponding to ~l0. Hence, we have:

γ−(ϑ/2)h|T(~x)h| ≤ c0λ(ξλ+ 1)

h−1∑

k=−∞
γ
ϑ
2 k ≤ c1λ(1 + ξλ) (6.13)

so that Bξ is invariant if ξ = 2c1 and λ ≤ ε1 = min{ε0, ε0/(2c1), 1/(2c1)}. Moreover

T(~x)h −T(~x′)h =

h∑

h=−∞

{
[~β

(1)
h ({~gk + ~xk}k≥h)− ~β

(1)
h ({~gk + ~x′k}k≥h)]

+ [~β
(3)
h ({~gk + ~x′k}k≥h)− ~β

(3)
h ({~gk + ~xk}k≥h)]

}

and |T(~x)h − T(~x′)h| ≤ c2λ‖x − x′‖, thanks to the fact that all the terms in the r.h.s. of this
equation are of the second order in the running couplings. It follows that, if c2λ < 1, T is
a contraction in Bξ, so that (6.12) has a unique solution ~x(0) in this set; moreover, if we put
~lh = ~gh + ~x

(0)
h , {~lh}h≤0 is the flow of the effective model corresponding to a value of ~l such that

|~gh −~lh| ≤ C|λ|γ
ϑ
2 h (6.14)
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Finally, this solution is such that ~l is equal to ~g0 at the first order; hence we get

g1 = 2λv̂(2pF )+O(λ2) , g2 = 2λv̂(0)+O(λ2) , g4 = 2λv̂(0)+O(λ2) , δ = O(λ) (6.15)

Thanks to the bound (6.14), this choice of ~l, allows us to say that there are constants Z =

1 +O(λ2), Z3 = 1 +O(λ) and Z̃3 = vF +O(λ) such that, if κ ≤ 1 and |p| ≤ κ,

Ω̂C(p) = Z2
3 〈ρ̂pρ̂−p〉(g) +Ac + o(p)

D̂(p) = −Z̃2
3 〈ĵpĵ−p〉(g) +Aj + o(p)

(6.16)

where 〈·〉(g) denotes the expectation in the effective model satisfying (6.14), Ac and Aj are suitable
O(1) constants and

ρx =
∑

ω,s

ψ+
x,ω sψx,ω s jx =

∑

ω,s

ωψ+
x,ω sψx,ω s . (6.17)

Moreover, if we put pωF = (ωpF , 0) and we suppose that 0 < κ ≤ |p|, |k′|, |k′−p| ≤ 2κ, 0 < ϑ < 1,
then

Ĝ2,1
ρ (k′ + pωF ,k

′ + p + pωF ) = Z3〈ρ̂pψk′,ωψ
+
k′+p,ω〉

(g)
[1 +O(κϑ)]

Ĝ2,1
j (k′ + pωF ,k

′ + p + pωF ) = Z̃3〈ĵpψk′,ωψ
+
k′+p,ω〉

(g)
[1 +O(κϑ)] (6.18)

Ŝ2(k′ + pωF ) = 〈ψ−k′,ω,σψ+
k,ω,σ〉

(g)
[1 +O(κϑ)] .

where G2,1
ρ (x) and G2,1

j (x) are defined after (1.9), while the functions 〈ρ̂pψk′,ωψ
+
k′+p,ω〉

(g)
and

〈ĵpψk′,ωψ
+
k′+p,ω〉

(g)
coincide with the functions (3.22) and (3.23), respectively, with c = vF (1 + δ).

As already mentioned, if g1 > 0, the effective model is still invariant under a spin-independent
phase transformation; hence the WI (3.16) is satisfied, if we sum both sides over s and we substitute
νµs (p) with

νµs (p) = {δω,1[δs,−1g2 + δs,1(g2 − g1)] + δω,−1δs,−1g4}
ĥ(p)

4πc
, c = vF (1 + δ) (6.19)

Therefore we get the a WI similar to (3.21), that is

− ip0[1− ν4(p)− 2νρ(p)]〈ρ̂pψk′,ωψ
+
k′+p,ω〉

(g)
+ cp[1 + ν4(p)− 2νρ(p)]〈ĵpψk′,ωψ

+
k′+p,ω〉

(g)

=
1

Z

[
〈ψ−k,ω,σψ−k,ω,σ〉

(g) − 〈ψ−k+p,ω,σψ
−
k+p,ω,σ〉

(g)
]

(6.20)

where

ν4(p) = g4

ĥ(p)

4πc
, νρ(p) =

g2 − g1/2

4πc
ĥ(p) (6.21)

By replacing (6.18) in (6.20), and comparing with (1.9) we get, if ν4(0) ≡ ν4, νρ(0) = νρ

Z3

Z
= (1− ν4 − 2νρ) ,

Z̃3

Z
= c(1 + ν4 − 2νρ) (6.22)

Similarly we get:

Dω(p)〈ρ(c)
p,ωρ

(c)
−p,ω′〉

(g) − ν4(p)D−ω(p)〈ρ(c)
p,ωρ

(c)
−p,ω′〉

(g)

−2νρ(p)D−ω(p)〈ρ(c)
p,−ωρ

(c)
−p,ω′〉

(g)
= −δω,ω′

D−ω(p)

2πZ2c

(6.23)
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Hence, by some simple algebra, we get:

〈ρ(c)
p,ωρ

(c)
−p,ω〉(g) =

1

2πZ2cv2
ρ,+

D−ω(p)[D−ω(p)− ν4Dω(p)]

p2
0 + c2v2

ρp
2

+O(p) (6.24)

〈ρ(c)
p,ωρ

(c)
−p,−ω〉(g) =

1

2πZ2cv2
ρ,+

2νρDω(p)D−ω(p)

p2
0 + c2v2

ρp
2

+O(p) (6.25)

where
vρ = vρ,−/vρ,+ , v2

ρ,µ = (1− µν4)2 − 4ν2
ρ (6.26)

Therefore the charge and current density correlations are given by:

〈ρ(c)
p ρ

(c)
−p〉(g) =

1

πZ2cv2
ρ,+

−p2
0(1− ν4 + 2νρ) + c2p2(1 + ν4 − 2νρ)

p2
0 + c2v2

ρp
2

+O(p)

〈j(c)
p j

(c)
−p〉(g) =

1

πZ2cv2
ρ,+

−p2
0(1− ν4 − 2νρ) + c2p2(1 + ν4 + 2νρ)

p2
0 + c2v2

ρp
2

+O(p)

(6.27)

Note the above equations are true also for g1 < 0, provided that an infrared cut-off is present
and for coupling small enough (vanishing removing the cut-off).

¿From the WI (1.9) we see that

Ω̂C(0, p0) = 0 , D̂(p, 0) = 0 (6.28)

and this fixes the values of the constants Ac and Aj in (6.16), so that

Ω̂C(p) =
Z2

3

πZ2cv2
ρ,+

[(1 + ν4 − 2νρ) + v2
ρ(1− ν4 + 2νρ)]

c2p2

p2
0 + v2

ρc
2p2

+ o(p)

D̂(p) =
Z̃2

3

πZ2cv2
ρ,+v

2
ρ

[(1 + ν4 + 2νρ) + v2
ρ(1− ν4 − 2νρ)]

p2
0

p2
0 + v2

ρc
2p2

+ o(p)

(6.29)

If we insert (6.22) in the previous equations, we get, for the susceptibility (1.6) and the Drude
weight (1.7), the values

κ =
(1− ν4 − 2νρ)

2

πcv2
ρ,+v

2
ρ

[(1 + ν4 − 2νρ) + v2
ρ(1− ν4 + 2νρ)] =

K

πcvρ

D =
c(1 + ν4 − 2νρ)

2

πv2
ρ,+v

2
ρ

[(1 + ν4 + 2νρ) + v2
ρ(1− ν4 − 2νρ)] =

Kcvρ
π

(6.30)

where

K =
(1− 2νρ)

2 − ν2
4

vρ+vρ−
=

√
(1− ν4)− 2νρ
(1− ν4) + 2νρ

√
(1 + ν4)− 2νρ
(1 + ν4) + 2νρ

(6.31)

so that
κ

D
=

1

c2v2
ρ

(6.32)

and this completes the proof of Theorem 1.1.

Remark 1 We are unable to see if cvρ = vF (1 + δ)vρ coincides with the velocity cvρ =

vF (1 + δ̃)vρ appearing in the two-point function asymptotic behavior (5.10), with vρ given (see
(3.29)) by

vρ =
(1 + ν4)2 − 4ν2

ρ

(1− ν4)2 − 4ν2
ρ

(6.33)
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with νρ and ν4 defined as in (6.9). In fact, it is easy to see that δ̃ is equal to δ at the first order
and this is true also for vρ and vρ by (6.15), (6.21) and (6.9); however, our arguments are not able
to exclude that the two velocities are different. Moreover, (6.31) and (5.20) imply that K = K
at first order, but they also could be different. Note that the equality of K and K, would imply
that κ = K/v, with v = cvρ being the charge velocity, a relation proposed in [3] which, together
with (1.14) and (1.16), would allow for the exact determination of the exponents in terms of the
susceptibility and the Drude weight.

Remark 2 Note that the Ward Identities (6.27) are true also for g1,⊥ < 0 and l = −∞,
provided that L is finite.

A Proof of Theorem 2.1

By using (2.23) and the definition (2.20) of L, we get in the following way a simple expression for
V(0)(τ, α, ψ[l,k], J), for any τ ∈ TN,k,ng,nJ .

We associate with any vertex v of the tree a subset Pv of Iv, the external ψ fields of v, and the
set xv of all space-time points associated with one of the end-points following v; moreover, we shall
denote xJv ⊂ xv the set of all space time points associated with the special endpoints following v.
The subsets Pv must satisfy various constraints. First of all, |Pv| ≥ 2, if v > v0; moreover, if v is
not an endpoint and v1, . . . , vsv are the sv ≥ 1 vertices immediately following it, then Pv ⊆ ∪iPvi ;
if v is an endpoint, Pv = Iv. If v is not an endpoint, we shall denote by Qvi the intersection of
Pv and Pvi ; this definition implies that Pv = ∪iQvi . The union Iv of the subsets Pvi \Qvi is, by
definition, the set of the internal fields of v, and is not empty if sv > 1. Given τ ∈ TN,k,ng,nJ ,
there are many possible choices of the subsets Pv, v ∈ τ , compatible with all the constraints. We
shall denote Pτ the family of all these choices and P the elements of Pτ . Then we can write:

V(0)(τ, α, ψ[l,k], J) =
∑

P∈Pτ
V(0)(τ, α,P) (A.1)

V(0)(τ, α,P) =

∫
dxv0

ψ̃[l,k](Pv0
)J̃(Sv0

)K
(k+1)
τ,α,P (xv0

) (A.2)

where Sv denotes the set of special endpoints following v, ψ̃[l,k](Pv) :=
∏
f∈Pv ψ

[l,k]ε(f)
x(f),s(f), J̃(Sv) =

∏
v∈Sv Jxv,Θv and K

(k+1)
τ,α,P (xv0 ,yv0) is defined inductively (recall that hv0 = k+1) by the equation,

valid for any v ∈ τ which is not an endpoint,

K
(hv)
τ,α,P(xv) =

1

sv!

sv∏

i=1

[K(hv+1)
vi (xvi)]EThv [ψ̃(hv)(Pv1

\Qv1
), . . . , ψ̃(hv)(Pvsv \Qvsv )] (A.3)

If v is an endpoint, K
(hv)
v (xv) is equal to one of the kernels in LV(hv), otherwise K

(hv)
v = RK(hv)

τi,Pi
,

where τ1, . . . , τsv are the subtrees of τ with root v, Pi = {Pv, v ∈ τi}. Hence, if we use the
Brydges-Battle-Federbush identity (see [15]) to expand the truncated expectation in (A.3), the
kernel in (A.2) can be rewritten as

K
(k+1)
τ,α,P (xv0

) =
∑

T∈T

[ n∏

i=1

Khi
v∗i

(xv∗i )
]

{ ∏

vnot e.p.

1

sv!

∫
dPTv (tv) · detGhv,Tv (tv)

[ ∏

l∈Tv
g(hv)
ωl

(xl − yl)]
]} (A.4)

where “e.p.” is an abbreviation of “endpoint”, v∗i are the end-points, Khi
v∗i

(xv∗i ) is W (0,4),hi ,

W (0,2),hi or W (1,2),hi , T is the set of the tree graphs on xv0
, obtained by putting together an
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anchored tree graph Tv for each non trivial vertex v and adding the lines connecting the space-
time points belonging to the sets xv∗i ; moreover, dPTv (tv) is a probability measure with support
on the set of tv = {tv,i,i′ ∈ [0,1],1 ≤ i, i′ ≤ sv} such that tv,i,i′ = ui ·ui′ for some family of vectors
ui ∈ Rs of unit norm; finally, if Lv = |Iv|/2 − sv + 1, Ghv,Tv (tv) is a Lv × Lv is a matrix with
elements of the form

Ghv,Tvv,ij,i′j′ = tv,i,i′g
(hv)
ωij,i′j′

(xij − yi′j′) (A.5)

with g
(h)
ω (x) admitting a Gram representation: g

(h)
ω (x− y) = 1

Z

∫
dzA∗h(x− z) ·Bh(y − z), with

Ah(x) =
1

L2

∑

k

√
fh(k̃)

e−ikx

k2
0 + c2k2

Bh(x) =
1

L2

∑

k

√
fh(k̃) e−ikx(ik0 + ωck)

(A.6)

and

||Ah||2 =

∫
dz|Ah(z)|2 ≤ Cγ−2h , ||Bh||2 ≤ Cγ4h , (A.7)

for a suitable constant C. Therefore the Gram–Hadamard inequality, combined with the dimen-

sional bound on g
(h)
ω (x), implies that

|detGhv,Tv (tv)| ≤ C
∑sv
i=1 |Pvi |−|Pv|−2(sv−1) · γhv(

∑sv
i=1 |Pvi |−|Pv|−2(sv−1)) . (A.8)

By the decay properties of g
(h)
ω (x), it also follows that

∏

v not e.p.

1

sv!

∫ ∏

l∈Tv
d(xl − yl) ||g(hv)

ωl
(xl − yl)|| ≤ Cn+m

∏

v not e.p.

1

sv!
γ−hv(sv−1) . (A.9)

Therefore, proceeding as in the proof of Lemma 2.2 in the companion paper [1], we get the bound

‖W (n;2m)(h)‖ ≤
∑

n≥dn,m
Cn+mεn0

∑

τ∈TN,h,n,m
α∈Aτ

∑

P∈Pτ
|Pv0 |=2m

γ−Dv0h
[ ∏

v not e.p.
v>v0

γ−Dv
]
, (A.10)

where

Dv = −2 +
|Pv|

2
+ nJv (A.11)

where nJv is the number of J-endpoints of the subtree with root v. The definition of theR operation
(which is applied to all vertices, except the endpoints and v0) implies that the tree value vanish, if
there is even one vertex, except the endpoints and v0, with Dv ≤ 0. Hence, we can suppose that
in (A.10), Dv > 0 in all vertices of the product and the bound (2.28) follows from (A.10) by the
combinatorial arguments used in the proof of Lemma 2.2 of companion paper [1].

As concerns the proof of the uniform convergence as N → ∞, which only depends on the
structure of the tree expansion and on the corresponding bounds, we again refer to Lemma 2.2 of
[1].

B Proof of (2.33) and (2.34)

Let us denote by V(ψ, J, η) the expression inside the braces in the r.h.s. side of (2.2) and let us
define V(0)(ψ, J, η) so that

eV
(0)(ψ,J,η) =

∫
P1,N (dζ) eV(ψ+ζ,J,η) (B.1)
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where P1,N (dζ) ≡ P (dψ[1,N ]). Note that V(N)(ψ, J, η) = V(ψ, J, η) and that the functional

V
(0)

(ψ, J) used in (2.33) and (2.34) is equal to V(0)(ψ, J, 0). The properties of the Grassman-
nian integral imply that, for ε = ±,

∫
Pk+1,N (dζ) ζ−εx,ω,sF (ζ) = ε

∫
du g[1,N ]

ω (x− u)

∫
Pk+1,N (dζ)

∂F (ζ)

∂ζεu,ω,s
(B.2)

and therefore

∂eV
(0)

∂ηεx,ω,s
(ψ, J, η) =

∫
Pk+1,N (dζ)

(
ψ−εx,ω,s + ζ−εx,ω,s

)
eV(ψ+ζ,J,η)

= ψ−εx,ω,se
V(0)(ψ,J,η) + ε

∫
du g[1,N ]

ω (x− u)
∂eV

(0)

∂ψεu,ω,s
(ψ, J, η)

(B.3)

which is (3.34). Besides, using the explicit expression of V(ψ, J, η), obtained by adding to (2.13)
the terms linear in η, by explicit computation of the derivatives on both sides of (B.1) we find the
following two identities; if Θ = (ω, s, t0),

∂eV
(0)

∂ψ+
x,ω,s

(ψ, J, 0) =
∑

t0

Jx,Θ
∂eV

(0)

∂η+
x,ω,t0

(ψ, J, 0)

+
∑

t0,Θ′

∫
dw hL,KΘ,Θ′(x−w)

∂2eV
(0)

∂Jw,Θ′∂η
+
x,ω,t0

(ψ, J, 0)

(B.4)

∂eV
(0)

∂Jx,Θ
(ψ, J, 0) = − ∂2eV

(0)

∂η+
x,ω,t0∂η

−
x,ω,s

(ψ, J, 0) (B.5)

Finally, plug (B.3) for ε = + into (B.4) and get (2.33). Also from (B.3) and (B.5) we obtain:

∂eV
(0)

∂Jx,Θ
(ψ, J, η) = −ψ−x,ω,t0

∂eV
(0)

∂η−x,ω,s
(ψ, J, η)

−
∫
du g[1,N ]

ω (x− u)
∂2eV

(0)

∂ψ+
u,ω,t0∂η

−
x,ω,s

(ψ, J, η) (B.6)

which gives (2.34) by applying (B.3) again and using that g
[1,N ]
ω (0) = 0.

C Some properties of the functions Û
(i,j)
l,N,ω(k

+,k−)

By using (3.6) and (3.7), we easily see that, if i, j > l,

lim
ε→0

Û
(i,j)
l,N,ω(k+,k−) =

1

Zi−1Zj−1

δj,NuN (k̃−)f̃i(|k̃+|)Dω(k−)− δi,NuN (k̃+)f̃j(|k̃−|)Dω(k+)

Dω(k+)Dω(k−)
(C.1)

where UN (k) is a smooth function such that uN (k) = 0 for |k| ≤ γN and uN (k) = 1 − fN (|k|)
for |k| ≥ γN ; note that uN (k) is a smooth function and that uN (k) = 1− χ[−∞,N ](|k|). If we put

p = k+ − k− and we use that Dω(p) = Dω(k+)−Dω(k−), we see that Û
(i,j)
l,N,ω(q + p,q) satisfies

the identity (3.8), if we put

Ŝ(i,j)
l,N,ω,ω(q + p,q) = −χ̃N (p)

δi,NuN (q̃ + p̃)f̃j(|q̃|)
Dω(q)Dω(q + p)

(C.2)
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Ŝ(i,j)
l,N,−ω,ω(q + p,q) = χ̃N (p)

δj,NuN (q̃)f̃i(|q̃ + p̃|)− δi,NuN (q̃ + p̃)f̃j(|q̃|)
D−ω(p)Dω(q + p)

(C.3)

The proof of the bound (3.9) for i = N and j > l easily follows from the smoothness and support

properties of the functions fi(|k̃|), uN (k) and χ̃N (p). Note that this definition of the functions

Ŝ(i,j)
l,N,ω′,ω is useful only in the case j > N − 2, in order to exploit the fact that Û

(i,j)
l,N,ω(k,k) = 0;

see §4.2 of [8] for more details in the case N = 0. If i = N and l < j ≤ N − 2, we could write the
simpler decomposition

χ̃N (p) lim
ε→0

Û
(N,j)
l,N,ω (k+,k−) = −1

2

∑

ω′=±ω
Dω′(p)

1

Zj−1
χ̃N (p)

f̃j(|k̃−|)uN (k̃+)

Dω(k−)Dω′(p)
(C.4)

which also satisifies the bound (3.9).
If i = N and j = l, one has to add to the r.h.s. of (C.4) the term

χ̃N (p)

Z̃l−1(k−)

fN (|k̃+|)ul(k̃−)

Dω(k+)
=

1

2

∑

ω′=±ω
Dω′(p)

1

Z̃l−1(k−)
χ̃N (p)

fN (|k̃+|)ul(k̃−)

Dω(k+)Dω′(p)

with Z̃l−1(k) defined as in (2.47); then we get the bound (3.9) even for j = l, since Z̃l−1(k) ≥ 1.
In order to prove the bound (3.10), note that, if N > j > l,

[1− χ̃l(p)] lim
ε→0

Û
(j,l)
l,N,ω(k+,k−) =

1

2

∑

ω′=±ω
Dω′(p)

[1− χ̃l(p)]

Zj−1Z̃l−1(k−)

f̃j(|k̃+|)ul(k̃−)

Dω(k+)Dω′(p)
(C.5)

where ul(k) is a smooth function such that ul(k) = 0 for |k| ≥ γl and ul(k) = 1 − fl(|k|) for

|k| ≤ γl; the identity is valid also for j = l, with Z̃l−1(k−) in place of Zj−1. Then the bound

(3.10) follows from the remarks that Z̃l−1(k) ≥ 1 and that [1 − χ̃l(p)]f̃j(|k̃+|)ul(k̃−) 6= 0 only if
j > l and, in such case |Dω(p)−1| ≤ cγ−j .

We are also interested in the bound of

Û
(l,l)
l,N,ω(k+,k−)

Dω′(p)
=

1

Z̃l−1(k+)Z̃l−1(k−)

[
f̃l(|k̃+|)ul(k̃−)

Dω(k+)Dω′(p)
− f̃l(|k̃−|)ul(k̃+)

Dω(k−)Dω′(p)

]
(C.6)

By using the remark after (2.47), we see that its Fourier transform S
l,l

ω,ω′(z;x,y) satisifies, for any
positive integer r, the bound

|Sl,lω,ω′(z;x,y)| ≤ 1

Zl−1
br,l(x− z)br,l(x− z) (C.7)

with br,l(x) defined as in (3.9).
Finally, we want to prove the bounds (3.12). To begin with, note that the r.h.s. of (C.2) and

(C.3) do not depend on l, if i, j ≥ K + 1, and that
∑N
i=K+1 fi(|q̃|) = χ[−∞,N ](|q̃|), if |p̃| ≤ 1 and

N is large enough. Hence, if |p̃| ≤ 1,

N∑

i,j=K+1

1

L2

∑

q∈D′L

Ŝ(i,j)
l,N,ω,ω(q + p,q) = − 1

L2

∑

q∈D′L

uN (q̃ + p̃)χ[−∞,N ](|q̃|)
Dω(q)Dω(q + p)

(C.8)

N∑

i,j=K+1

1

L2

∑

q∈D′L

Ŝ(i,j)
l,N,−ω,ω(q + p,q) =

1

L2

∑

q∈D′L

χ[−∞,N ](|q̃ + p̃|)− χ[−∞,N ](|q̃|)
D−ω(p)Dω(q + p)

(C.9)
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where we also used the fact that uN (k−)χ[−∞,N ](k
+) − uN (k+)χ[−∞,N ](k

−) = χ[−∞,N ](k
+) −

χ[−∞,N ](k
−). Since |q̃| is of order γN , it is easy to see that we can substitute L−2

∑
q∈D′L with

(2π)−2
∫
dq in the r.h.s. of (C.8), for any small p, and in the r.h.s. of (C.9), for p 6= 0 and small,

by making an error of order γ−N/L. On the other hand, by using the fact that under the change
of variables q̃ = (cq, q0)→ (q0,−cq), which leaves invariant |q̃|, Dω(q)→ iωDω(q), we see that

∫
dq

(2π)2

uN (q̃)χ[−∞,N ](|q̃|)
Dω(q)2

= 0

This proves (3.12) for τ+
N . As concerns τ−N , an easy calculation shows that

lim
p→0

∫
dq

(2π)2

χ[−∞,N ](|q̃ + p̃|)− χ[−∞,N ](|q̃|)
D−ω(p)Dω(q + p)

=

− 1

2c

∫
dq

(2π)2

χ′(|q|)
|q| = − 1

4πc

∫ ∞

0

dt χ′(t) = − 1

4πc
[χ(∞)− χ(0)] =

1

4πc

which proves (3.12) for τ−N .

D Approximate Spin-Charge Separation

Theorem D.1 Under the same condition of the previous Theorem, the Fourier transform of the
2-point Schwinger function is given by

Ŝ2(k + pωF ) = Z(k)ŜM,ω(k)[1 +R(k)] , pωF = (ωpF , 0) (D.1)

where

|R(k)| ≤ C λ2

1 + a|λ log |k|| , a ≥ 0 , (D.2)

Z(k) = L(|k|−1)ζz [1 +R′(k)] , |R′(k)| ≤ C|λ| (D.3)

L(t), t ≥ 1, is the function defined in Theorem 1.1 of the companion paper [1] and ŜM,ω(k) is a
function whose Fourier transform is of the form

SM,ω(x) =
1

2πvF

[v2
ρx

2
0 + (x1/vF )2]−ηρ/2

(vρx0 + iωx1/vF )1/2(vσx0 + iωx1/vF )1/2
eC+O(1/|x|) (D.4)

with vρ,σ = 1 +O(λ), ηρ = O(λ2), vρ − vσ = cvλ+O(λ2), with cv 6= 0.

Similar expressions are true also for the density correlations (the explicit formulae are in §5
and are not reported here for brevity). The above theorem says that the two point function can
be written, up to a logarithmic correction, as the 2-point function of the Mattis model [16], a
model which shows an anomalous dimension and the phenomenon of spin-charge separation. This
last property means that there is, in the Mattis model, an exact decoupling of the hamiltonian
as sum of two independent hamiltonians describing the spin and charge degrees of freedom. A
manifestation of spin charge separation is that the 2-point function is factorized in the product of
two functions, similar to Schwinger functions of particles with different velocities. In this sense,
the above theorem says that the spin-charge separation occurs approximately also in the Hubbard
model, but is valid only at large distances and up to logarithmic corrections.

If k 6= 0, the Fourier transform Ŝ2(k + ωpF ) of the two-point Schwinger function S2(x) in the
Hubbard model an be written as a tree expansion, in a way similar to eq. (2.64) of [9], whom we
shall refer to for the notation:

Ŝ2(k + pωF ) =

∞∑

n=0

0∑

j0=−∞

∑

τ∈Tj0,n,2,0

∑

P∈P
|Pv0 |=2

Ĝ2
τ,ω(k) (D.5)
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where pωF = (ωpF , 0), ω = ±. Here Ĝ2
τ,ω(k) represents the contribution of a single tree τ with n

endpoints and root of scale j0; if |k| ∈ [γhk , γhk+1), it obeys the bound:

|Ĝ2
τ,ω(k)| ≤ Cγ−(hk−j0) γ

−hk

Zhk

∞∑

n=0

0∑

j0=−∞

∑

τ∈Tj0,n,k

∑

P∈P
|Pv0 |=2

(C|λ|)n
∏

v not e.p.

γ−dv
Zhv
Zhv−1

, (D.6)

where Tj0,n,k denotes the family of trees whose special vertices (those associated with the external
lines) have scale hk or hk+1. Moreover, dv > 0, except for the vertices belonging to the path
connecting the root with v∗, the higher vertex (of scale h∗) preceding both the two special end-
points, where dv can be equal to 0. These vertices can be regularized by using a factor γ−(h∗−j0),
extracted from the factor γ−(hk−j0), so that we can safely perform the sum over all the trees with
a fixed value of h∗ and we get

|Ŝ2(k + pωF )| ≤ C γ
−hk

Zhk

hk∑

h∗=−∞
γ−(hk−h∗) ≤ C γ

−hk

Zhk

(D.7)

A similar bounds can be obtained for the effective model with g1⊥ = 0 and couplings chosen as
in Lemma 6.1. We shall call ŜMω (k) and Z̃h the two-point function Fourier transform and the
renormalization constants, respectively, in this model.

Let us put

Ŝ2(k + pωF ) =
1

Zhk

G
2

ω(k) , ŜMω (k) =
1

Z̃hk

G
2,M

ω (k) (D.8)

We can write

Ŝ2(k + pωF ) =
Z̃hk

Zhk

G
2

ω(k)

Z̃hk

=
Z̃hk

Zhk

ŜMω (k) +
1

Zhk

[G
2

ω(k)−G2,M

ω (k)] (D.9)

Note now that G
2

ω(k) differs from G
2,M

ω (k) for three reasons:

1) the propagators are different, which produces a difference exponentially small thanks to the
bounds (2.102) and (2.103) of [1] and the short memory property;

2) the r.c.c. vh and ṽh are different, which produces a difference of order g̃1,hk
, thanks to (6.5)

and the short memory property;

3) in the tree expansion of G
2

ω(k) and of the ratios Zj/Zj−1 there are trees with endpoints of

type g1, not present in the tree expansion of G
2,M

ω (k) and Z̃j/Z̃j−1; this fact produces again
a difference of order g̃1,hk

.

These remarks, together with the fact that there is no tree with only one endpoint in the tree
expansion, implies that

∣∣∣∣
1

Zhk

[G
2

ω(k)−G2,M

ω (k)]

∣∣∣∣ ≤ C|λg̃1,hk
|γ
−hk

Zhk

(D.10)

For similar reason, we have

Z̃hk

Zhk

=

0∏

j=hk

Z̃hj
Zhj−1

Z̃h0

Zh0

= [1 +O(λ2)]e
O(λ)

∑0
j=hk

g̃1,j = [1 +O(λ)]L(|k|−1)O(λ) (D.11)
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