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Abstract

We present a construction “à la Chevalley” of connected affine supergroups associated
with Lie superalgebras of type D(2, 1; a), for any possible value of the parameter a . This
extends the results in [6] (and [7]) where all other simple Lie superalgebras of classical type
were considered. The case of simple Lie superalgebras of Cartan type being dealt with in [9],
so this work completes the program of constructing connected affine supergroups associated
with any simple Lie superalgebra.

1 Introduction

1 In his work of 1955, Chevalley provided a combinatorial construction of all simple affine
algebraic groups over any field. In particular, his method led to an existence theorem for simple
affine algebraic groups: one starts with a simple (complex, finite-dimensional) Lie algebra and a
simple module V for it, and realizes the required group as a closed subgroup of GL(V ) . This can
also be recast as to provide a description of all simple affine groups as group schemes over Z .

In [6] the philosophy of Chevalley was revisited in the context of supergeometry. The outcome
is a construction of affine supergroups whose tangent Lie superalgebra is of classical type. However,
some exceptions were left out, namely the cases when the Lie superalgebra is of type D(2, 1; a) and
the parameter a is not an integer number; the present work fills in this gap. As the case of simple
Lie superalgebras of Cartan type is solved in [9], this paper completes the program of constructing
connected affine supergroups associated with any simple Lie superalgebra.

By “affine supergroup” here I mean a representable functor from the category (salg) of com-
mutative superalgebras — over some fixed ground ring — to the category (groups) of groups: in
other words, an affine supergroup-scheme, identified with its functor of points. In [6], one first
constructs a functor from (salg) to (groups) , recovering Chevalley’s ideas to define the values of
such a group functor on each superalgebra A — i.e., to define its A–points; then one proves that
the sheafification of this functor is representable — hence it is an affine supergroup-scheme.

For the case D(2, 1; a) — with a ̸∈ Z — one needs a careful modification of the general
procedure of [6]; thus the presentation hereafter will detail those steps which need changes, and
will simply refer to [6] for those where the original arguments still work unchanged.

The initial datum is a simple Lie superalgebra g = D(2, 1; a) .
We start with basic results on g : the existence of Chevalley bases (with nice integrality proper-

ties) and a PBW theorem for the Kostant Z–form of the universal enveloping superalgebra U(g) .

1 2010 MSC : Primary 14M30, 14A22; Secondary 17B20.
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Next we take a faithful, finite-dimensional g–module V , and we show it has suitable lattices
M invariant by the Kostant superalgebra. This allows to define — functorially — additive and
multiplicative one-parameter (super)subgroups of operators acting on scalar extensions of M . The
additive subgroups are just like in the general case: there exists one of them for every root of g .
The multiplicative ones instead are associated to elements of the fixed Cartan subalgebra of g ,
and are of two types: those of classical type, modeled on the group functor A 7→ U(A0) — the
group of units of A0 — and those of a–type, modeled on the group functor A 7→ Pa(A) — the
group of elements of A0 “which may be raised to the ak–th power, for all k ”. The second type of
multiplicative one-parameter subgroups, not used in [6], is now needed because one has to consider
the “operation” t 7→ ta , defined just for t ∈ Pa(A) ; this marks a difference with the case a ∈ Z .

Then we consider the functor G : (salg) −→ (groups) whose value G(A) on A ∈ (salg) is the
subgroup of GL(V (A)) — with V (A) := A⊗M —generated by all the homogeneous one-parameter
supersubgroups mentioned above. This functor is a presheaf, hence we can take its sheafification
GV = G : (salg) −→ (groups) . These GV are, by definition, our “Chevalley supergroups”.

Acting just like in [6], one defines a “classical affine subgroup” G0 of GV , corresponding to
the even part g0 of g (and to V ), and then finds a factorization GV = G0 G1

∼= G0 × G1 ,
where G1 corresponds instead to the odd part g1 of g . Actually, one has even a finer factorization
GV = G0 ×G−,<

1 ×G+,<
1 with G±,<

1 being totally odd superspaces associated to the positive or
negative odd roots of g . Thus G1 = G−,<

1 ×G+,<
1 is representable, and G0 is representable too,

hence the above factorization implies that GV is representable too, so it is an affine supergroup.
The outcome then is that our Chevalley supergroups are affine supergroups.

Finally, one also proves that our construction is functorial in V and that Lie(GV ) is just g as
one expects, like in [6] (no special changes are needed).
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2 Preliminaries

2.1 Superalgebras, superspaces, supergroups

Let k be a unital, commutative ring.

We call k–superalgebra any associative, unital k–algebra A which is Z2–graded. Thus A splits
as A = A0⊕A1 , and AaAb ⊆ Aa+b . The k–submodule A0 and its elements are called even, while
A1 and its elements odd . By p(x) we denote the parity of any homogeneous element x ∈ Ap(x) . A

superalgebra A is said to be commutative iff xy = (−1)p(x)p(y)yx for all homogeneous x, y ∈ A ,
and z2 = 0 for all odd z ∈ A1 . Clearly, k–superalgebras form a category, whose morphisms are
those in the category of algebras which preserve the unit and the Z2–grading; we denote (salg) the
full subcategory of commutative superalgebras; we shall also write (salg)k to stress the role of k .

At last, for any n ∈ N we call An
1 the A0–submodule of A spanned by all products ϑ1 · · ·ϑn

with ϑi ∈ A1 for all i , and A
(n)
1 the unital k–subalgebra of A generated by An

1 .

We consider the notions of superspace, (affine) superscheme and (affine) supergroup as defined
in detail in [4] and [6]: here we just recall them rather quickly. Roughly speaking, a superspace is a
locally ringed space whose structure sheaf is made of commutative superalgebras, the stalks being
local; the morphisms among superspaces then are morphisms of locally ringed spaces, respecting
the parity on sections of the structure sheaf. In any superspace S, the structure sheaf OS has
natural “even” and “odd” parts, say OS,0 and OS,1 : the latter is a sheaf of modules over the
former, which in turn is just a sheaf of commutative algebras (whose stalks are local).
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A superscheme is just a superspace S for which OS,1 is quasi-coherent as a OS,0–module.

For any A ∈ (salg) , the prime spectrum Spec (A0) of its even part bears a natural structure
of superscheme, denoted by Spec (A) , induced by the fact that A itself is an A0–module. Any
superscheme which is isomorphic to such a Spec (A) is said to be affine.

If X is any superscheme, its functor of points is the functor hX : (salg) −→ (sets) defined
on objects by hX(A) := Hom

(
Spec (A) , X

)
and on arrows by hX(f)(ϕ) := ϕ ◦ Spec (f) . If

(groups) is the category of groups and hX is a functor hX : (salg) −→ (groups) , then we say that
X is a supergroup. When X is affine, this is equivalent to the fact that O(X) — the superalgebra
of global sections of the structure sheaf on X — is a (commutative) Hopf superalgebra. More in
general, by supergroup functor we mean any functor G : (salg) −→ (groups) .

Any representable supergroup functor is the same as an affine supergroup: indeed, the former
corresponds to the functor of points of the latter. Thus we use the same letter to denote both a
superscheme and its functor of points. See [4], Ch. 3–5, for more details.

Examples 2.1.

(1) The affine superspace Ap|q
k , also denoted kp|q , is defined — for each p , q ∈ N — as

Ap|q
k := Spec

(
k[x1, . . . , xp] ⊗k k[ξ1 . . . ξq]

)
; hereafter k[ξ1 . . . ξq] is the exterior (or “Grassmann”)

algebra generated by ξ1, . . . , ξq , and k[x1, . . . , xp] the polynomial algebra in p indeterminates.

(2) Let V be a free k–supermodule. Set V (A) := (A⊗ V )0 = A0 ⊗ V0 ⊕ A1 ⊗ V1 for any
A ∈ (salg) : this yields a representable functor in the category of superalgebras, represented by the
superalgebra of polynomial functions on V . Hence V can be seen as an affine superscheme.

(3) GL(V ) as an affine supergroup. Let V be a free k–supermodule of finite (super)rank p|q .
For any A ∈ (salg)k , let GL(V )(A) := GL

(
V (A)

)
be the set of isomorphisms V (A) −→ V (A) .

If we fix a homogeneous basis for V , we see that V ∼= kp|q ; in other words, V0 ∼= kp and V1 ∼= kq .
In this case, we also denote GL(V ) with GLp|q . Now, GLp|q(A) is the group of invertible matrices
of size (p+ q) with diagonal block entries in A0 and off-diagonal block entries in A1 . It is known
that the functor GL(V ) is representable (see [16], Ch. 3, for details). ♢

2.2 Lie superalgebras

The notion of Lie superalgebra is well known, at least over a field of characteristic neither 2
nor 3. To take into account any ground ring, we consider a modified formulation: it is a “correct”
notion of Lie superalgebra given by the standard notion enriched with an additional “2–mapping”,
an analogue to the p–mapping in a p–restricted Lie algebra over a field of characteristic p > 0 .

Definition 2.2. (cf. [3], [5]) Let A ∈ (salg)k . We call Lie A–superalgebra any A–supermodule
g = g0 ⊕ g1 endowed with a (Lie super)bracket [ , ] : g × g −→ g , (x, y) 7→ [x, y] , and a

2–operation ( )
⟨2⟩

: g1 −→ g0 , z 7→ z⟨2⟩ , such that (for all x, y ∈ g0∪g1 , w ∈ g0 , z, z1, z2 ∈ g1):

(a) [ , ] is A–superbilinear (in the obvious sense) , [w,w] = 0 ,
[
z[z, z]

]
= 0 ;

(b) [x, y] + (−1)p(x) p(y)[y, x] = 0 (anti-symmetry) ;

(c) (−1)p(x)p(z)[x, [y, z]]+(−1)p(y)p(x)[y, [z, x]] + (−1)p(z)p(y)[z, [x, y]] = 0 (Jacobi identity) ;

(d) ( )
⟨2⟩

is A–quadratic, i.e. (a0 z)
⟨2⟩

= a2 z⟨2⟩ , (a1 w)
⟨2⟩

= 0 for a0 ∈ A0 , a1 ∈ A1 ;

(e) (z1+ z2)
⟨2⟩

= z
⟨2⟩
1 + [z1, z2] + z

⟨2⟩
2 ,

[
z⟨2⟩, x

]
=

[
z , [z, x]

]
.

All Lie A–superalgebras form a category, whose morphisms are the A–superlinear (in the obvi-
ous sense), graded maps preserving the bracket and the 2–operation.
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A Lie superalgebra g is called classical if it is simple, i.e. it has no nontrivial (homogeneous)
ideals, and g1 is semisimple as a g0–module. Classical Lie superalgebras of finite dimension over
algebraically closed fields of characteristic zero were classified by V. Kac (cf. [12], [14]), whom we
shall refer to for the standard terminology and notions.

Examples 2.3. (a) Let A = A0 ⊕A1 be any associative k–superalgebra. There is a canonical

structure of Lie superalgebra on A given by [x, y] := x y − (−1)p(x)p(y)y x for all homogeneous
x, y ∈ A0∪A1 and 2–operation z⟨2⟩ := z2 = z z (the associative square in A) for all odd z ∈ A1 .

(b) Let V = V0 ⊕ V1 be a free k–supermodule, and consider End(V ) , the endomorphisms of
V as an ordinary k–module. This is again a free super k–module, End(V ) = End(V )0⊕End(V )1 ,
where End(V )0 are the morphisms which preserve the parity, while End(V )1 are the morphisms
which reverse the parity. By the recipe in (a), End(V ) is a Lie k–superalgebra with [A,B] :=

AB − (−1)p(A)p(B)
BA , C⟨2⟩ := C2 , for all A,B,C ∈ End(V ) homogeneous, with C odd.

The standard example is for V of finite rank, say V := kp|q = kp ⊕ kq , with V0 := kp and
V1 := kq : in this case we also write End

(
km|n) := End(V ) or glp|q := End(V ) . Choosing a basis

for V of homogeneous elements (writing first the even ones), we identify End(V )0 with the set of
all diagonal block matrices, and End(V )1 with the set of all off-diagonal block matrices. ♢

2.3 The Lie superalgebra D(2, 1; a)

Let K be an algebraically closed field of characteristic zero, and let a ∈ K \ {0,−1} . Then let
Z[a] be the unital subring of K generated by a . Clearly Z[a] = Z if and only if a ∈ Z .

According to Kac’s work, we can realize g := D(2, 1; a) as a contragredient Lie superalgebra:
in particular, it admits a presentation by generators and relations with a standard procedure
(detailed in general in [12]). In order to do that, we first fix a specific choice of Dynkin diagram
and corresponding Cartan matrix, like in [8], §2.28 (first choice), namely

2

⃝−−
1
−−−

1⊗
−−

a
−−−

3

⃝ ,
(
ai,j

)
i,j=1,2,3;

:=

 0 1 a
−1 2 0
−1 0 2


We define g = D(2, 1; a) as the Lie superalgebra over K with generators hi , ei , fi (i = 1, 2, 3) ,
with degrees p(hi) := 0 , p(ei) := δ1,i , p(fi) := δ1,i (i = 1, 2, 3) , and relations (for i, j = 1, 2, 3 )[

hi, hj
]
= 0 ,

[
e1, e1

]
= 0 ,

[
f1, f1

]
= 0 ,[

hi, ej
]
= +ai,j ej ,

[
hi, fj

]
= −ai,j fj ,

[
ei, fj

]
= δi,j hi ,

e
⟨2⟩
1 = 0 , f

⟨2⟩
1 = 0 .

The subspace h :=
∑3

i=1 Khi is a Cartan subalgebra of g (included in g0). The adjoint action
of h splits g into eigenspaces, namely g =

⊕
α∈h∗

gα with gα :=
{
x∈g

∣∣ [h, x] = α(h)x , ∀ h∈h
}

for

all α ∈ h∗ . Then we define the roots of g by ∆ := ∆0

⨿
∆1 = { roots of g } with

∆0 :=
{
α ∈ h∗ \ {0}

∣∣ gα ∩ g0 ̸= {0}
}

= { even roots of g }
∆1 :=

{
α ∈ h∗

∣∣ gα ∩ g1 ̸= {0}
}

= { odd roots of g }

Now ∆ is called the root system of g , and for each root α we call gα its root space. Moreover, every
non-zero vector in a root space is called root vector. Note that every root space is one dimensional,
so any root vector forms a basis of its own root space. Then any K–basis of h together with any
choice of a root vector for each root will provide a K–basis of g = D(2, 1; a) .

There is an even, non-degenerate, invariant bilinear form on g , whose restriction to h is in turn
an invariant bilinear form on h . We denote this form by

(
x, y

)
, and we use it to identify h∗ to
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h, via α 7→ Hα , and then to define a similar form on h∗, such that
(
α′, α′′) =

(
Hα′ ,Hα′′

)
. In

particular, we fix normalizations so that α(Hα) = 2 and α(Hα′) = 0 for all α, α′ ∈ ∆0 such that(
α , α′) = 0 (in short, we adopt the normalizations as in [10]). Moreover, if α is any (even, odd,
etc.) root we shall call the vector Hα the (even, odd, etc.) coroot associated to α .

Actually, we can describe explicitly the root system of g = D(2, 1; a) (after [8], Table 3.60) as
∆ = {±2 ε1 , ±2 ε2 , ±2 ε3 , ±ε1±ε2±ε3 } , ∆0 = {±2 ε1 , ±2 ε2 , ±2 ε3 } , ∆1 = {±ε1±ε2±ε3 }
where {ε1, ε2, ε3} is an orthogonal basis in a K–vector space with inner product ( , ) such that
(ε1, ε1) = −(1 + a)

/
2 , (ε2, ε2) = 1

/
2 , (ε3, ε3) = a

/
2 .

Then we fix a distinguished system of simple roots, say {α1, α2, α3} , namely α1 = ε1−ε2−ε3 ,
α2 = 2 ε2 , α3 = 2 ε3 associated to this choice. In terms of these, we call positive the roots

2 ε1 = 2α1 + α2 + α3 , 2 ε2 = α2 , 2 ε3 = α3

ε1−ε2−ε3 = α1 , ε1+ε2−ε3 = α1+α2 , ε1−ε2+ε3 = α1+α3 , ε1+ε2+ε3 = α1+α2+α3

(those in first line being even, the others odd), and denote their set by ∆+ : so

∆+ = {α1 , α2 , α3 , α1 + α2 , α1 + α3 , α1 + α2 + α3 , 2α1 + α2 + α3}

We call instead negative the roots in ∆− := −∆+ . So the root system is given by ∆ = ∆+
⨿

∆− .
We also set ∆±

0 := ∆0 ∩∆± , ∆±
1 := ∆1∩∆± .

It is worth stressing at this point that the coroots Hα ∈ h associated to the positive roots are
H2ε1 = (1 + a)

−1(
2h1 − h2 − a h3

)
, H2ε2 = h2 , H2ε3 = h3 , Hε1−ε2−ε3 = h1 , Hε1+ε2−ε3 =

h1−h2 , Hε1−ε2+ε3 = h1−a h3 , and Hε1+ε2+ε3 = h1−h2−a h3 ; then the formula H−α = Hα

yields coroots associated to negative roots out of those associated to positive ones.

Now we introduce the following elements:

e1,2 :=
[
e1, e2

]
, e1,3 :=

[
e1, e3

]
, e1,2,3 :=

[
e1,2, e3

]
, e′1,1,2,3 :=

[
e1, e1,2,3

]
f2,1 :=

[
f2, f1

]
, f3,1 :=

[
f3, f1

]
, f3,2,1 :=

[
f3, f2,1

]
, f ′

3,2,1,1 :=
[
f3,2,1, f1

]
All these are root vectors, respectively for the positive roots α1 +α2 , α1 +α3 , α1 +α2 +α3 and
2α1 + α2 + α3 (for the first line vectors) and similarly for the negative roots (for the second line
vectors). Moreover, by definition the generators ei and fi ( i = 1, 2, 3 ) are root vectors respectively
for the roots +αi and −αi ( i = 1, 2, 3 ). As {h1, h2, h3} is a K–basis of h , we conclude that all
these root vectors along with h1 , h2 and h3 form a K–basis of g .

The relevant new brackets among all these basis elements — dropping the zero ones, those
given by the very definition of D(2, 1; a), those coming from others by (super-)skewcommutativity,
and those involving the hi’s (given by the fact that all involved vectors are h–eigenvectors) — are[

e1, e2
]
= e1,2 ,

[
e1, e3

]
= e1,3 ,

[
e1, e1,2,3

]
= e′1,1,2,3[

e1, f2,1
]
= f2 ,

[
e1, f3,1

]
= af3 ,

[
e1, f

′
3,2,1,1

]
= −(1+ a)f3,2,1[

e2, e1,3
]
= −e1,2,3 ,

[
e2, f2,1

]
= f1 ,

[
e2, f3,2,1

]
= f3,1[

e3, e1,2
]
= −e1,2,3 ,

[
e3, f3,1

]
= f1 ,

[
e3, f3,2,1

]
= f2,1[

f1, f2
]
= −f2,1 ,

[
f1, f3

]
= −f3,1 ,

[
f1, f3,2,1

]
= f ′

3,2,1,1[
f1, e1,2

]
= e2 ,

[
f1, e1,3

]
= a e3 ,

[
f1, e

′
1,1,2,3

]
= (1+ a) e1,2,3[

f2, f3,1
]
= f3,2,1 ,

[
f2, e1,2

]
= −e1 ,

[
f2, e1,2,3

]
= −e1,3[

f3, f2,1
]
= f3,2,1 ,

[
f3, e1,3

]
= −e1 ,

[
f3, e1,2,3

]
= −e1,2[

e1,2, e1,3
]
= −e′1,1,2,3 ,

[
e1,2, f2,1

]
= h1−h2 ,[

e1,2, f3,2,1
]
= af3 ,

[
e1,2, f

′
3,2,1,1

]
= (1+ a)f3,1
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[
e1,3, f3,1

]
= h1−ah3 ,

[
e1,3, f3,2,1

]
= f2 ,

[
e1,3, f

′
3,2,1,1

]
= (1+ a)f2,1[

f2,1, f3,1
]
= −f ′

3,2,1,1 ,
[
f2,1, e1,2,3

]
= a e3 ,

[
f2,1, e

′
1,1,2,3

]
= −(1+ a) e1,3[

f3,1, e1,2,3
]
= e2 ,

[
f3,1, e

′
1,1,2,3

]
= −(1+a) e1,2[

e1,2,3, f3,2,1
]
= h1−h2−ah3 ,

[
e1,2,3, f

′
3,2,1,1

]
= −(1+ a)f1 ,[

f3,2,1, e
′
1,1,2,3

]
= −(1+ a) e1 ,

[
e′1,1,2,3, f

′
3,2,1,1

]
= −(1+ a)

(
2h1−h2−ah3

)
e
⟨2⟩
1,2 = 0 , e

⟨2⟩
1,3 = 0 , e

⟨2⟩
1,2,3 = 0 , f

⟨2⟩
2,1 = 0 , f

⟨2⟩
3,1 = 0 , f

⟨2⟩
3,2,1 = 0

Now we modify just two root vectors taking

e1,1,2,3 := +(1+ a)
−1
e′1,1,2,3 , f3,2,1,1 := −(1+ a)

−1
f ′
3,2,1,1 ;

(recall that a ̸= −1 by assumption); then the above formulas has to be modified accordingly.

In particular now one checks that the even part of g := D(2, 1; a) is g0 = sl2⊕sl2⊕sl2 . More-

over, the three triples
(
e1,1,2,3 , f3,2,1,1 , (1+ a)

−1
(2h1−h2− a h3)

)
,
(
e2 , f2 , h2

)
,
(
e3 , f3 , h3

)
are sl2–triples inside g , each one being associated to a (positive) even root 2 εi ( i = 1, 2, 3 ).

3 Chevalley bases and Kostant superalgebras for D(2, 1; a)

In this section we introduce the first results we shall build upon to construct Chevalley super-
groups of type D(2, 1; a) . As before, K is an algebraically closed field of characteristic zero.

3.1 Chevalley bases and Chevalley Lie superalgebras

The subject of this subsection is an analogue, in the super setting, of a classical result due to
Chevalley: the notion of Chevalley basis, and corrispondingly of Chevalley Lie superalgebra. For
g := D(2, 1; a) , this notion is introduced exactly like in Definition 3.3 in [6], up to changing Z to
Z[a] , the latter being the unital subring of K generated by a (cf. §2.3).

Definition 3.1. We call Chevalley basis of g := D(2, 1; a) any homogeneous K–basis B ={
Hi

}
1,2,3

⨿{
Xα

}
α∈∆

of g with the following properties:

(a)
{
H1,H2,H3

}
is a K–basis of h ; moreover, with Hα∈ h as in §2.3,

hZ[a] := SpanZ[a]
(
H1,H2,H3

)
= SpanZ[a]

(
{Hα |α∈∆}

)
;

(b)
[
Hi ,Hj

]
= 0 ,

[
Hi , Xα

]
= α(Hi)Xα , ∀ i, j∈{1, . . . , ℓ } , α∈∆ ;

(c)
[
Xα , X−α

]
= σαHα ∀ α ∈ ∆

with Hα as in (a), and σα := −1 if α ∈ ∆−
1 , σα := 1 otherwise;

(d)
[
Xα , Xβ

]
= cα,β Xα+β ∀ α, β ∈ ∆ : α+ β ̸= 0 , with

(d.1) if (α+ β) ̸∈ ∆, then cα,β = 0 , and Xα+β := 0 ,

(d.2) if
(
α, α

)
̸= 0 or

(
β, β

)
̸= 0 , and if Σα

β :=
(
β+Zα

)
∩
(
∆∪{0}

)
=

{
β− r α , . . . , β+

q α
}

is the α–string through β , then cα,β = ±(r + 1) ;

(d.3) if
(
α , α

)
= 0 =

(
β , β

)
, then cα,β = ±β

(
Hα

)
.
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Definition 3.2. If B is a Chevalley basis of g , we denote by gZ[a] the Z[a]–span of B , and we
call it the Chevalley Lie superalgebra (of g).

Remark 3.3. The above notions are taken from [6]: in general, one should (and can) adapt them
to the notion of “Lie superalgebra” in the stronger sense of Definition 2.2 (involving the “2-ope-
ration”): however, in the present case, i.e. for g = D(2, 1; a) , no change is necessary. Also, all
examples of Chevalley bases considered in [6], §3.3, are Chevalley bases in the “stronger” sense too.

3.2 Existence of Chevalley bases

Let us consider in g the generators hi , ei , fi ( i = 1, 2, 3 ) and the root vectors e1,2 , e1,3 ,
e1,2,3 , e1,1,2,3 , f2,1 , f3,1 , f3,2,1 , f3,2,1,1 constructed in §2.3. Looking at all brackets among them
considered there, it is a routine matter to check that the set

B :=
{
Hi , ei , fi

}
i=1,2,3

∪{
e1,2 , e1,3 , e1,2,3 , e1,1,2,3 , f2,1 , f3,1 , f3,2,1 , f3,2,1,1

}
with H1 := h1 , H2 := (1+ a)

−1(
2h1−h2−ah3

)
, H3 := h3 , is indeed a Chevalley basis for

g = D(2, 1; a) — the proof is a bookkeeping matter.
To be precise, the root vectors in B are:

— even: X+(2α1+α2+α3) = e1,1,2,3 , X+α2 = e2 , X+α3 = e3 (positive)

X−(2α1+α2+α3) = f3,2,1,1 , X−α2 = f2 , X−α3 = f3 (negative)

— odd: (positive) X+α1 = e1 , X+α1+α2 = e1,2 , X+α1+α3 = e1,3 , X+α1+α2+α3 = e1,2,3

(negative) X−α1 = f1 , X−α1−α2 = f2,1 , X−α1−α3 = e3,1 , X−α1−α2−α3 = f3,2,1

while the Cartan elements in B are just H1 , H2 and H3 defined as above. See also [11].

3.3 Kostant superalgebra

For any K–algebra A , given n ∈ N and y ∈ A we define the n–th binomial coefficients
(
y
n

)
and the n–th divided power y(n) by

(
y

n

)
:=

y(y−1) · · · (y−n+1)

n!
, y(n) := yn

/
n! .

Recall that Z[a] is the unital subring of K generated by a . We need also to consider the unital

subring Za of K generated by the subset
{(

P (a)
n

) ∣∣∣P (a) ∈ Z[a] , n ∈ N
}
.

By a classical result on integer-valued polynomials (see [6], Lemma 4.1) one shows that Za in

fact is generated by
{(

a
n

) ∣∣∣ n ∈ N
}

as well. Note also that Za = Z if and only if a ∈ Z .

Fix in g := D(2, 1; a) a Chevalley basis B = {H1,H2, H3}
⨿ {

Xα

}
α∈∆

as in Definition 3.1.

Let U(g) be the universal enveloping superalgebra of g .

In [6], §4.1, the Kostant superalgebra KZ(g) was defined as the subalgebra of U(g) generated
by: divided powers of the root vectors attached to even roots, root vectors attached to odd roots,
and binomial coefficients in the elements of hZ , the Z–span of the elements of {H1,H2 , H3} .

If we try to perform the same construction verbatim for g = D(2, 1; a) for a ∈ K \ Z , we are

soon forced to include among the generators all binomial coefficients of type
(
H
n

)
with H ∈ hZ[a] ,

the Z[a]–span of {H1 ,H2 ,H3} . When commuting such binomial coefficients with divided powers,

coefficients of type
(
α(H)
n

)
show up, where α is a root and H ∈ hZ[a] . By construction we have

α(H) ∈ Z[a] , hence
(
α(H)
n

)
belongs to the ring Za defined above.

By the above remarks, for g := D(2, 1; a) we define the Kostant superalgebra KZa(g) like we
did in [6] (for the other classical Lie superalgebras), but with Za as ground ring: more precisely,
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Definition 3.4. We call Kostant superalgebra, or Kostant’s Za–form of U(g) , the unital Za–
subsuperalgebra KZa(g) of U(g) generated by all the elements

X(n)
α := Xn

α

/
n! , Xγ ,

(
H

n

)
∀ α ∈ ∆0 , n ∈ N , γ ∈ ∆1 , H ∈ hZ[a]

The following analogue of Corollary 4.2 in [6] holds (with same proof), which is needed in the
proof of the PBW-like theorem for KZa(g) :

Corollary 3.5.
(a) HZa :=

{
h∈U(h)

∣∣ h(z′1, z′2, z′3) ∈ Za, ∀ z′1, z′2, z′3 ∈ Za

}
is a free Za–submodule of U(h),

with basis BU(h) :=
{(

H1

n1

)(
H2

n2

)(
H3

n3

) ∣∣∣n1, n2, n3∈N
}
.

(b) The Za–subalgebra of U(g) generated by all the elements
(
H′−z′

n

)
with H ′ ∈ hZa :=∑3

i=1 ZaHi , z
′ ∈ Za , n ∈ N , is nothing but HZa .

3.4 Commutation rules and Kostant’s theorem

In [6] the authors proved a “super PBW-like” theorem for the Kostant’s superalgebra: namely,
the latter is a free Z–module with Z–basis the set of ordered monomials (w. r. to any total order)
whose factors are binomial coefficients in the Hi’s, or odd root vectors, or divided powers of even
root vectors. This result follows from a direct analysis of commutation rules among the generators
of the Kostant’s superalgebra. One can perform the same for D(2, 1; a) , using a list of relevant
“commutation rules” (all proved by easy induction) whose main feature is that all coefficients
belong to Za . We split the list into two sections: (1) relations involving only even generators
(known by classical theory); (2) relations involving also odd generators.

(1) Even generators only (that is
(
Hi

m

)
’s and X

(n)
α ’s only, α ∈ ∆0 ):(

Hi

n

)(
Hj

m

)
=

(
Hj

m

)(
Hi

n

)
∀ i, j ∈ {1, 2, 3} , ∀ n,m ∈ N

X(n)
α f(H) = f

(
H − n α(H)

)
X(n)

α ∀ α ∈ ∆0 , H ∈ h , n ∈ N , f(T ) ∈ K[T ]

X(n)
α X(m)

α =
(
n+m
m

)
X(n+m)

α ∀ α ∈ ∆0 , ∀ n,m ∈ N

X(n)
α X

(m)
β = X

(m)
β X(n)

α + l.h.t ∀ α, β ∈ ∆0 , ∀ n,m ∈ N

where l.h.t. stands for a Za–linear combination of monomials in the X
(k)
δ ’s and in the

(
Hi

c

)
’s whose

“height” — by definition, the sum of all “exponents” k occurring in such a monomial — is less
than n+m . A special case is

X(n)
α X

(m)
−α =

∑min(m,n)
k=0 X

(m−k)
−α

(
Hα −m−n+2 k

k

)
X(n−k)

α ∀ α ∈ ∆0 , ∀ m,n ∈ N

(2) Odd and even generators (also involving the Xγ ’s, γ ∈ ∆1 ):

Xγ f(H) = f
(
H − γ(H)

)
Xγ ∀ γ ∈ ∆1 , h ∈ h , f(T ) ∈ K[T ]

Xn
γ = 0 ∀ γ ∈ ∆1 , ∀ n ≥ 2

X−γ Xγ = −Xγ X−γ + Hγ ∀ γ ∈ ∆1

Xγ Xδ = −XδXγ + cγ,δXγ+δ ∀ γ, δ ∈ ∆1 , γ + δ ̸= 0

with cγ,δ as in Definition 3.1,
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X(n)
α Xγ = Xγ X

(n)
α +

∑n
k=1

(∏k
s=1 εs

)(
r+ k
k

)
Xγ+k αX

(n−k)
α ∀ n ∈ N , α ∈ ∆0 , γ ∈ ∆1

with σα
γ =

{
γ − r α , . . . , γ , . . . , γ + q α

}
, Xγ+k α := 0 if (γ+k α) ̸∈ ∆ , and εs = ±1 such that[

Xα , Xγ+(s−1)α

]
= εs (r + s)Xγ+s α .

Here now is our super-version of Kostant’s theorem for KZa(g) :

Theorem 3.6. The Kostant superalgebra KZa(g) is a free Za–module. For any given total order
≼ of the set ∆ ∪ {1 , 2 , 3} , a Za–basis of KZa(g) is the set B of ordered “PBW-like monomials”,

i.e. all products (without repetitions) of factors of type X
(nα)
α ,

(
Hi

ni

)
and Xγ — with α ∈ ∆0 ,

i ∈ {1 , 2 , 3} , γ ∈ ∆1 and nα, ni ∈ N — taken in the right order with respect to ≼ .

This result is proved like the similar one in [6], making use of the commutation relations conside-
red above. It also has a direct consequence, again proved like in [6]. To state it, let first consider

g
Z[a]
1 , the odd part of gZ[a] : it has

{
Xγ

∣∣ γ∈∆1

}
as Z[a]–basis, by construction. Then let

∧
g
Z[a]
1

be the exterior Z[a]–algebra over g
Z[a]
1 , and

∧
gZa
1 be its scalar extension to Za . Let also KZ(g0)

be the classical Kostant’s algebra of g0 (over Z) and let KZa(g0) be its scalar extension to Za . Then
the tensor factorization U(g) ∼= U(g0)⊗K

∧
g1 (see [16]) has the following “integral version”:

Corollary 3.7. There exists an isomorphism of Za–modules KZa(g)
∼= KZa(g0)⊗Za

∧
gZa
1 .

Remarks 3.8. (a) Following a classical pattern (and cf. [1], [2], [15] in the super context) we
can define the superalgebra of distributions Dist (G) on any supergroup G . Then Dist (G) =
KZa(g)⊗ZaK , when g := Lie (G) is just D(2, 1; a) .

(b) All the above proves that the assumptions of Theorem 2.8 in [15] hold for any supergroup G
with tangent Lie superalgebra g = D(2, 1; a) . Thus all results in [15] do apply to such supergroups.

4 Chevalley supergroups of type D(2, 1; a)

I present now the construction of affine supergroups associated to the Lie superalgebra g =
D(2, 1; a) . The method, inspired to Chevalley’s original one (dealing with complex semisimple Lie
algebras), follows closely the one presented in [6] for the other classical Lie superalgebras — includ-
ing g = D(2, 1; a) when a ∈ Z . However, the occurrence of the (possibly non-integral) parameter
a demands to revisit that construction and to introduce some suitable, delicate modifications.

4.1 Admissible lattices

Let K be an algebraically closed field of characteristic zero. If R is a unital subring of K ,
and V a finite dimensional K–vector space, any M ⊆ V is called R–lattice (or R–form) of V if
M = SpanR(B) for some K–basis B of V . Let g = D(2, 1; a) be defined over K , and fix the ring
Za , a Chevalley basis B of g and the Kostant algebra KZa(g) as in §3.

The following definition and results are just slight variations of those in [6], §5.1.

Definition 4.1. Let V be a g–module, and let M be a Za–lattice of it.

(a) We call V rational if:

(a-1) hZ[a] := SpanZ[a]
(
H1, H2, H3

)
acts diagonally on V with eigenvalues in Z[a] ; in other

words, one has V =
⊕

µ∈h∗Vµ , with Vµ :=
{
v∈V

∣∣h.v = µ(h) v ∀h∈h
}
, and µ(Hi) ∈ Z[a] for all

i and all µ such that Vµ ̸= {0} ;
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(a-2) µ(Hα) ∈ Z for all α ∈ ∆0 and µ ∈ h∗ such that Vµ ̸= {0} .

(b) We call M admissible (lattice) if it is KZa(g)–stable.

Theorem 4.2. Any rational, finite dimensional, semisimple g–module V contains an admissible
lattice M . Any such M is the (direct) sum of its weight components, i.e. M =

⊕
µ∈h∗

(
M ∩ Vµ

)
.

Theorem 4.3. Let V be a rational, finite dimensional g–module, M an admissible lattice of V ,
and gV =

{
X∈g

∣∣X.M ⊆M}
. If V is faithful, then

gV = hV
⊕(
⊕α∈∆ ZaXα

)
, hV :=

{
H ∈ h

∣∣ µ(H) ∈ Za , ∀ µ ∈ Λ
}

where Λ is the set of all weights of V . In particular, gV is a Za–lattice in g , independent of the
choice of the admissible lattice M (but not of V ).

From now on, we retain the following notation: V is a rational, finite dimensional g–module,
and M is an admissible lattice of V . Also, we assume k to be a commutative unital Za–algebra.

With these assumptions, we set gk := k⊗Za gV , Vk := k⊗ZaM , Uk(g) := k⊗ZaKZa(g) ;
so gk acts faithfully on Vk , yielding an embedding of gk into gl(Vk) . For any A ∈ (salg)k , the Lie
superalgebra gA := A⊗k gk acts faithfully on Vk(A) := A⊗k Vk , so it embeds into gl

(
Vk(A)

)
, etc.

4.2 Additive one-parameter supersubgroups

Let α ∈ ∆0 , β ∈ ∆1 , and let Xα , Xβ be the associated root vectors (in our fixed Chevalley
basis of g ). Both Xα and Xβ act as nilpotent operators on V , hence on M and Vk , so they are
represented by nilpotent matrices in gl(Vk(A)) ; the same holds for all operators

tXα , ϑXβ ∈ End
(
Vk(A)

)
∀ t ∈ A0 , ϑ ∈ A1 . (4.1)

Of course we have Y (n) := Y n
/
n! ∈

(
KZ(g)

)
(A) for any Y as in (4.1) and n ∈ N ; moreover,

Y (n) = 0 for n ≫ 0 , by nilpotency. Thus the formal power series exp(Y ) :=
∑+∞

n=0 Y
(n) , when

computed for Y as in (4.1), gives a well-defined element in GL
(
Vk(A)

)
, expressed as finite sum.

Definition 4.4. Let α∈∆0 , β∈∆1 , and Xα , Xβ as above. We define the supergroup functors
xα and xβ from (salg) to (groups) as

xα(A) :=
{
xα(t) := exp

(
tXα

)∣∣ t∈A0

}
=

{(
1 + tXα + t

2! X
2
α + · · ·

)∣∣ t∈A0

}
xβ(A) :=

{
xβ(ϑ) := exp

(
ϑXβ

) ∣∣ϑ ∈ A1

}
=

{(
1 + ϑXβ

) ∣∣ϑ ∈ A1

}
For later convenience we also write xζ(t) := 1 when ζ belongs to the Z–span of ∆ but ζ ̸∈ ∆.

Like in [6], Proposition 5.8(a), one sees that these supergroup functors are in fact representable,
hence they both are affine supergroups: namely, xα is represented by k[x] and xβ by k[ξ] . We
shall refer to both xα and xβ as additive one-parameter (super)subgroups.

4.3 Multiplicative one-parameter supersubgroups of classical type

For any α ∈ ∆0

(
⊆ h∗

)
, let Hα ∈ h0Z be the corresponding coroot (cf. §2.3). Then consider

h0Z := SpanZ
({
Hα

∣∣α∈∆0

})
; clearly this is a Z–form of h , and by definition we have h0Z ⊆ hZ[a] :=

SpanZ[a]
(
H1, H2,H3

)
. Let V = ⊕µVµ be the splitting of V into weight spaces; as V is rational,

we have µ(Hα) ∈ Z for all α ∈ ∆0 and µ ∈ h∗ : Vµ ̸= {0} . Now, for any A ∈ (salg) , α ∈ ∆0
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and t ∈ U(A0) (the group of invertible elements in A0 ) set hα(t).v := tµ(Hα) v for all v ∈ Vµ ,
µ ∈ h∗ : this defines another operator (also locally expressed by exponentials)

hα(t) ∈ GL
(
Vk(A)

)
∀ t ∈ U(A0) , α ∈ ∆0 . (4.2)

More in general, if
{
Hαi

}
i=1,2,3

is any basis of ∆0 and H =
∑3

i=1 ziHαi (with z1, z2, z3 ∈ Z )

then we define hH(t) :=
∏3

i=1

(
hαi(t)

)zi
, for α ∈ ∆0 .

Definition 4.5. Let H ∈ h0Z as above. We define the supergroup functor hH (also writing hα :=
hHα for any α ∈ ∆0 ) from (salg) to (groups) as A 7→ hH(A) :=

{
tH := hH(t)

∣∣ t ∈U(A0)
}
.

Like in [6], Proposition 5.8(b), one sees that these functors are representable, so they are affine
supergroups; even more, they are also closed subgroups of the diagonal subgroup of GL

(
Vk(A)

)
.

4.4 Multiplicative one-parameter supersubgroups of a–type

In order to attach a suitable “multiplicative one-parameter supersubgroup” to any element in
hZ[a] := SpanZ[a]

(
H1,H2,H3

)
— not only in h0Z — we need to adapt our previous construction.

Consider a Cartan element Hi in our fixed Chevalley basis: we want to define a suitable,

representable supergroup functor associated to it, to be called h
[a]
i . Given any A ∈ (salg) , and

t ∈ U(A0) , we look for an operator like h
[a]
i (t) := tHi ∈ GL

(
Vk(A)

)
. This should be given by

h
[a]
i (t) := tHi =

(
1 + (t−1)

)Hi
=

∑+∞
n=0 (t−1)

n
(
Hi

n

)
Let V =

⊕
µ∈h∗Vµ be the splitting of V into weight spaces; definitions imply

h
[a]
i (t)

∣∣∣
Vµ

=
∑+∞

n=0 (t−1)
n
(
µ(Hi)

n

)
idVµ = tµ(Hi) idVµ

on weight spaces, which makes sense — and then globally yields a well-defined operator on all of

V =
⊕

µ∈h∗Vµ — as soon as tµ(Hi) :=
∑+∞

n=0 (t−1)n
(
µ(Hi)

n

)
is a well-defined element of A . Now,

V is rational and M is admissible, so µ(Hi) ∈ Z[a] . Thus a necessary condition we may require is

tz(a) :=
∑+∞

n=0 (t−1)
n
(
z(a)
n

)
∈ A ∀ z(a) ∈ Z[a] (4.3)

which in the end is equivalent to having

t±ak

:=
∑+∞

n=0 (t−1)
n
(
±ak

n

)
∈ A ∀ k ∈ N (4.4)

Both (4.3) and (4.4) must be read as conditions defining a suitable subset of A0 , namely that of
all elements t ∈ A0 for which the condition does hold. Now we go and fix details, as to give a
well-defined meaning to the expressions in (4.3–4) and to the just sketched construction.

Consider the polynomial Za–superalgebra Za[ ℓ ] , where ℓ is an even indeterminate: this is also
a (super)bialgebra, with ∆(ℓ) = ℓ ⊗ ℓ , ϵ(ℓ) = 1 . Let Za[[ ℓ −1]] be the (ℓ−1)–adic completion
of Za[ ℓ ] ; this contains also an inverse of ℓ , namely ℓ−1 =

∑+∞
n=0 (−1)n (ℓ−1)n , so Za

[
ℓ , ℓ−1

]
⊆

Za[[ ℓ−1]] . The coproduct of Za[ ℓ ] extends to Za[[ ℓ−1]] making it into a formal bialgebra — the
coproduct taking values into the (ℓ−1)–adic completion of the algebraic tensor square of Za[[ ℓ−1]]
— which indeed is a formal Hopf algebra. In the latter, both ℓ and ℓ−1 are group-like elements, so
that Za

[
ℓ , ℓ−1

]
is a (non formal) Hopf subalgebra of Za[[ ℓ−1]] . Consider the elements

ℓ±ak

:=
∑+∞

n=0 ( ℓ−1)
n
(
±ak

n

)
∈ Za[[ ℓ−1]] ∀ k ∈ N (4.5)

A key property of these elements is the following:
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Lemma 4.6. All the ℓ±ak

’s ( k ∈ N) are group-like elements of Za[[ ℓ−1]] .

Proof. When ℓ belongs to C and a ∈ C \ {0,−1} , the power series
+∞∑
n=0

(ℓ−1)n
(
±ak

n

)
represents

the Taylor expansion of the analytic function ϕa : ℓ 7→ ℓ±ak

in a neighbourhood of ℓ0 := 1 .
Now, the function ϕa is multiplicative, i.e. ϕa

(
ℓ1 ℓ2

)
= ϕa(ℓ1)ϕa(ℓ2) ; this identity for all complex

values of ℓ1 and ℓ2 in a neighbourhood of 1 implies (passing through Taylor expansion) a similar
identity at the level of power series. In turn, the latter identity implies an identity among formal
power series (i.e., still holding when complex numbers ℓ1, ℓ2 are replaced with indeterminates).

This can be recast saying that the formal power series
∑+∞

n=0 ( ℓ−1)
n
(
±ak

n

)
is a group-like element

in Za[[ ℓ−1]] . As this holds for any a ∈ C , it must hold for a formal parameter a , i.e. if the
complex value of a is replaced by an indeterminate. Then the formal symbol a can be replaced by
any genuine value in K \ {0,−1} , and the formal series in Za[[ ℓ−1]] will still be group-like.

4.7. The affine (super)groups Pa . Let La := Za

[{
ℓ±ak}

k∈N

]
be the Za–subalgebra of

Za[[ ℓ−1]] generated by all the ℓ±ak

’s: as these generators are group-like, Za

[{
ℓ±ak}

k∈N

]
is in fact

a Hopf sub(super)algebra of Za[[ ℓ−1]] . In particular, it is a (totally even) Hopf algebra over Za .

If now k is any (unital, commutative) Za–algebra as above, then La,k := k⊗Za Za

[{
ℓ±ak}

k∈N

]
=:

k
[{
ℓ±ak}

k∈N

] (
⊆ k⊗Za Za[[ ℓ−1]]

)
belongs to (salg)k = (salg) , and in addition it is a (commu-

tative) Hopf algebra over k .
Let Pa := Spec

(
La,k

)
be the affine scheme associated to La,k : as La,k is a Hopf algebra, Pa

is indeed an affine group-scheme, which we can also see as a (affine) supergroup. As usual, we
shall identify Pa := Spec

(
La,k

)
with its functors of points, namely Pa = Hom(salg)k

(
La,k ,—

)
.

Similarly, we identify U := Spec
(
k
[
ℓ , ℓ−1

])
with its functor of points, so that for any A ∈

(salg)k we have that U(A) = Hom(salg)k

(
k
[
ℓ , ℓ−1

]
, A

)
is the set of units of A0 . Then the natural

embedding of k
[
ℓ , ℓ−1

]
into La,k = k

[{
ℓ±ak}

k∈N

]
yields a (super)group morphism πa : Pa−→ U .

Given A ∈ (salg)k , any φ ∈ Pa(A) = Hom(salg)k

(
La,k , A

)
— an algebra morphism from La,k

to A — is uniquely determined by a double sequence in ∈ A , namely t :=
(
t+k , t

−
k

)
k∈N with

t±k := φ
(
ℓ±ak)

; as t∓k =
(
t±k

)−1
, just one half of this double sequence is actually enough to

determine φ . Similarly, any ϕ ∈ U(A) is uniquely determined by t := ϕ(ℓ) . Via these identifica-
tions, the morphism πa : Pa−→ U is described by πa

((
t+k , t

−
k

)
k∈N

)
= t+0 .

Note that when a ∈ Z one has Pa = U , by the very definitions, and πa is the identity.

N.B.: In some cases, φ ∈ Pa(A) is uniquely determined by its image πa(φ) in U(A) ; under
mild assumptions, this may happen for all elements of Pa(A) so that πa turns out to be injective
and Pa(A) identifies with a subgroup of U(A) . Indeed, given φ ∈ Pa(A) and t := πa(φ) ∈ U(A) ,

let Â be the (t−1) –adic completion of A , and let A
jt−→ Â be the natural morphism from A to Â .

Then there exists a unique morphism φ′ : k[ ℓ− 1] −→ A given by φ′( ℓ− 1) = t− 1 ; in turn, this

uniquely yields φ̂ : k[[ ℓ− 1]] −→ Â such that φ̂( ℓ− 1) = t− 1 : finally, the restriction of φ̂ to La,k

necessarily coincides with the composition jt ◦ φ : La,k
φ−→A

jt−→ Â . Thus t = πa(φ) uniquely
determines jt ◦ φ : in particular, if φ,ψ ∈ Pa(A) and πa(φ) = t = πa(ψ) , then jt ◦ φ = jt ◦ ψ .

Thus if in addition A
jt−→ Â is injective, then φ = ψ , i.e. t := πa(φ) is enough to determine φ .

Notation 4.8. In the following, we shall identify any φ ∈ Pa(A) by its corresponding double
sequence t (as above) and any ϕ ∈ U(A) by t := ϕ(ℓ) : thus we shall write t for φ and t for ϕ .

Given A ∈ (salg)k and t ∈ Pa(A) , for any z(a) =
∑

k zka
k ∈ Z[a] we shall use notation

tz(a) :=
∏

k

(
t+k

)zk
— which is just φ

(
ℓz(a)

)
= φ

(∏
k

(
ℓa

k)zk)
if t = φ , with ℓz(a) :=

∏
k

(
ℓa

k)zk
.

12



Remarks 4.9. (a) By (4.5) it is easy to see — using notation of §2 — that for any A ∈ (salg)
one has Pa(A) ⊇

(
1 +N(A0)

)
⊇

(
1 +A 2

1

)
.

(b) It is clear that Pa(C) = C∗= U(C) , with C∗ := C \ {0} . Now assume K = C and A =
C[x1, . . . , xm, ξ1, . . . , ξn] , where the xi’s and the ξj ’s respectively are even and odd indeterminates.
Letting (ξ1, . . . , ξn) be the ideal generated by the ξi’s, one has Pa

(
C[x1, . . . , xm, ξ1, . . . , ξn]

)
=

C∗ + (ξ1, . . . , ξn)
2
; in particular, Pa

(
C[x1, . . . , xm, ξ1, . . . , ξn]

)
= U

(
C[x1, . . . , xm, ξ1, . . . , ξn]0

)
.

By the same argument, one has also Pa(A) = U(A) — that is, πa is the identity — for all
those A ∈ (salg)C such that U(A) = C∗+N(A0) , where N(A0) is the nilradical of A0 . ♢

Now let V =
⊕

µ∈h∗Vµ and M be as above. For any H ∈ hZ[a] := SpanZ[a]
(
H1,H2, H3

)
,

A ∈ (salg) and t ∈ Pa(A) , the formula

h
[a]
H (t) := tH =

∑+∞
n=0 ( t−1)

n
(
H
n

)
with t := t+0

yields a well defined element of GL
(
Vk(A)

)
, whose action is h

[a]
H (t).v := tµ(H) v for all v ∈

Vµ , µ ∈ h∗ : Vµ ̸= {0} (this makes sense, since µ(H) ∈ Z[a] ). In particular, we shall write

h
[a]
i (t) := h

[a]
Hi

(t) for i = 1, 2, 3 ; thus if H =
∑3

i=1 zi(a)Hi ∈ hZ[a] := SpanZ[a]
(
H1,H2,H3

)
—

with zi(a) ∈ Z[a] for all i — one has h
[a]
H (t) = h

[a]
1 (t)h

[a]
2 (t)h

[a]
3 (t) for all t ∈ Pa(A) .

Definition 4.10. Let H ∈ hZ[a] as above. Consider the morphism ĥ
[a]
H : Pa −→ GL

(
Vk

)
given

on objects by Pa(A)
ĥ

[a]
H (A)
−−−−→GL

(
Vk(A)

)
, t 7→ h

[a]
H (t) (its definition on arrows then should be

clear). We define the supergroup functor h
[a]
H from (salg) to (groups) as being the image of ĥ

[a]
H :

in particular it is given on objects by A 7→ h
[a]
H (A) :=

{
h
[a]
H (t) := tH

∣∣ t ∈Pa(A)
}
.

Remark 4.11. Representability of the functors h
[a]
H .

By construction, the kernel Ka := Ker
(
ĥ

[a]
H

)
of ĥ

[a]
H (notation as above) is the closed subgroup

of Pa defined by the ideal I(Ka) given as follows. If µ ∈ h∗ and µ(H) =
∑

k zµ,k a
k ∈ Z[a] for

some zk ∈ Z , then I(Ka) =
({∏

k

(
ℓa

k)zµ,k− 1
∣∣ µ ∈ h∗ : Vµ ̸= {0}

})
. As the functor Pa is

represented by La,k , it follows that its quotient h
[a]
H
∼= Pa

/
Ka is represented by the Hopf algebra

La,k
co-I(Ka) :=

{
f ∈ La,k

∣∣ (∆(f)− f ⊗ 1
)
∈ La,k⊗ I(Ka)

}
of right I(Ka)–coinvariants of La,k . In

particular, the supergroup functor h
[a]
H is representable, hence it is itself an affine supergroup.

In the following we shall call the h
[a]
H ’smultiplicative one-parameter (super)subgroups of a–type.

4.5 Construction of Chevalley supergroups

In order to define our Chevalley supergroups, we first need the definition of a suitable algebraic
group G0 associated to g = D(2, 1; a) and V .

First, for each A∈ (salg) consider the subgroup G′
0(A) :=

⟨
hH(A) , xα(A)

∣∣∣H ∈ h0Z , α∈∆0

⟩
generated in GL

(
Vk(A)

)
by the one-parameter supersubgroups hH(A) and xα(A) — H ∈ h0Z ,

α ∈ ∆0 . Overall, this yields a group functor G′
0 defined on (salg), which clearly factor through

(alg) = (alg)k , the category of unital commutative k–algebras. This G′
0 is a presheaf (cf. [6],

Appendix, Definition A.5), hence we can define the functor G′
0 as the sheafification of G′

0 : on
local algebras — in (alg) — the functor G′

0 coincides with the functor of points of the classical

Chevalley group-scheme associated with the semisimple Lie algebra g0 — isomorphic to sl(2)
⊕3

— and the g0–module V : in particular, G′
0 is representable. Inside G′

0 , the hH ’s generate the
subgroup T ′(A0) :=

⟨
hH(A)

∣∣H ∈ h0Z ⟩ , yielding another supergroup functor which also factors
through (alg) = (alg)k ; its sheafification T′ coincides with T ′ itself, and is a maximal torus in G′

0 .
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Second, we consider the subgroup T (A) :=
⟨{

h
[a]
H (A)

∣∣∣ H∈hZ[a] }∪
T ′(A)

⟩
of GL

(
Vk(A)

)
,

which for various A in (salg) yields another (sub)group functor T : (salg) −→ (groups) — also
factoring through (alg) : like above, we can consider also the sheafification T of T .

For later use, note that T′ ≤ G′
0 ≤ GL

(
Vk

)
and T′ ≤ T ≤ GL

(
Vk

)
, with G′

0 ∩T = T′ .

4.12. Description of T [a] . Let us spend a few more words in order to describe T and T : indeed,
we shall show that T is representable, so that T = T .

Let us write T [a] :=
⟨
h
[a]
1 , h

[a]
2 , h

[a]
3

⟩
for the (supersub)group functor generated by h

[a]
1 , h

[a]
2

and h
[a]
3 , so that T =

⟨
T [a] ∪ T ′ ⟩ . It is clear by construction that T [a] is a direct product

T [a] ∼= h
[a]
1 × h

[a]
2 × h

[a]
3 , just like T ′ ∼= U × U × U , and both these groups commute with each

other inside GL
(
Vk

)
; also, it is clear that the morphism πa : Pa −→ U uniquely induces a similar

morphism πa : H[a] −→ T ′ . It follows that T =
⟨
T [a] ∪ T ′ ⟩ can be seen as the fibered product

T×
T ′T

′ of T [a] and T ′ with respect to the pair of morphisms T [a] πa−−→ T ′ idT ′←−−T ′ . We shall now
realize this fibered product in concrete terms.

Take on T [a]×T ′ the direct product structure. Recall that T is representable, hence it coincides
with its sheafification T; similarly we see by construction that T [a] is representable too, so for its
sheafification T[a] we have T[a] = T [a] . It follows that T [a] × T ′ = T[a] ×T′ is representable too.
The fibered product T [a]×

T ′ T
′ is a quotient of the above direct product. Indeed, let K(A0) :={(

x, y
) ∣∣x ∈ T [a](A0), y ∈ T ′(A0), πa(x) = y−1

}
for any A ∈ (salg) , so that A 7→ K(A0) defines

— on (salg), through (alg) — a (normal) subgroup functorK of T [a]×T ′ : then we have a (functor)

isomorphism T ∼=
(
T [a]× T ′)/K . In addition, let K denote the sheafification of the functor K .

We see now that K as a subgroup of T [a]× T ′ is closed. To begin with, recall that — by

construction — the group multiplication provides isomorphisms h
[a]
1 ×h

[a]
2 ×h

[a]
3
∼= T [a] and hH2ε1

×
hH2ε2

×hH2ε3

∼= T ′ : thus we can write the A–points (for A ∈ (salg)) of T [a]×T ′ as pairs of triples

of the form
(
( t1, t2, t3) , (τ1, τ2, τ3)

)
with t1, t2, t3 ∈ Pa(A) and τ1, τ2, τ3 ∈ U(A) — with a slight

abuse of notation: we are identifying h
[a]
i (ti) with ti and hH2εj

(τj) with τj , for all i and j .

Recall the identities H2ε1 = H2 , H2ε3 = H3 , H2ε2 = 2H1 − (1 + a)H2 − aH3 which hold
inside h ; in turn, these yield, for every t ∈ Pa(A) with ϑ := πa(t) ∈ U(A) , formal identities

hH2ε1
(ϑ) = ϑH2ε1 = tH2 = h

[a]
H2

(t) = h
[a]
2 (t) , hH2ε3

(ϑ) = ϑH2ε3 = tH3 = h
[a]
H3

(t) = h
[a]
3 (t)

hH2ε2
(ϑ) = ϑH2ε2 = t2H1−(1+a)H2−aH3 = h

[a]
2H1

(t) · h[a]−(1+a)H2
(t) · h[a]−aH3

(t)

which in shorter notation read

(ϑ, 1, 1) = πa(1, t , 1) , (1, 1, ϑ) = πa(1, 1, t ) , (1, ϑ, 1) = πa
(
t2, t−(1+a), t−a

)
(4.6)

Now consider the condition πa(x) = y−1 for a pair (x, y) to belong to K(A), rewritten as
y πa(x) = 1 : we want to read it for any pair (x, y) :=

(
( t1, t2, t3) , (τ1, τ2, τ3)

)
as above.

By the previous analysis, it corresponds to the three equations which in turn correspond to
the three conditions in (4.6). Recall that the group T [a]× T ′ is represented by the algebra

O
(
T [a]×T ′) ∼= O(T [a]

)
⊗O

(
T ′) : the left-hand tensor factor is a quotient of O

(
P×3
a

) ∼= O(Pa)
⊗3 ∼=

3⊗
i=1

k
[{
ℓ±ak

i

}
k∈N

]
, while the right-hand one is O

(
T ′) ∼= O(U×3

) ∼= 3⊗
i=1

k
[
z±1
i

]
(cf. §4.7). Then

first two conditions in (4.6) correspond to the equations z1 ℓ2 = 1 , z3 ℓ3 = 1 in O
(
T [a]× T ′) .

As to the third condition, we can handle it as follows. For any t ∈ Pa(A) , let t̂ :=
(
t1, t2, t3

)
∈

Pa(A)
×3

with t1 =: p1
(
t̂
)
= t , where p1 is the projection of Pa(A)

×3
onto its leftmost factor,

and consider the (functorial) “diagonalisation map” Pa
∆3−−→Pa(A)

×3
, t 7→

(
t, t, t

)
; then ∆3 ◦ p1

is a (group functor) morphism, and πa
(
t2, t−(1+a), t−a

)
=

(
ℓ̂ 2
1 , ℓ̂

−(1+a)
2 , ℓ̂ −a

3

)(
t̂
)

where ℓ̂i :=

ℓi ◦∆3 ◦ p1 ∈ O
(
P×3
a

) ∼= k
[{
ℓ±ak

1 , ℓ±ak

2 , ℓ±ak

3

}
k∈N

]
. The outcome is that the third condition in
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(4.6) corresponds to the equation z2 ℓ̂
2
1 ℓ̂

−1
2 ℓ̂ −a

2 ℓ̂ −a
3 = 1 . To sum up, we get that K is the closed

subgroup of T [a]× T ′ defined by the ideal I(K) =
(
z1 ℓ2 − 1 , z3 ℓ3 − 1 , z2 ℓ̂

2
1 ℓ̂

−1
2 ℓ̂ −a

2 ℓ̂ −a
3 − 1

)
.

Finally, as T [a]× T ′ is representable (hence it is an affine group scheme) and its subgroup
K is closed, we argue that K = K , that the latter is also representable and hence the quotient

T ∼=
(
T [a]× T ′)/K is representable too: in particular, T = T as well.

We can now introduce the algebraic group G0 we were looking for:

Definition 4.13. For every A ∈ (salg) , we letG0(A) be the subgroup G0(A) :=
⟨
G′

0(A)
∪
T (A)

⟩
of GL

(
Vk(A)

)
. We denote G0 : (salg) −→ (groups) the supergroup functor which is the full

subfunctor of GL
(
Vk(A)

)
given on objects by A 7→ G0(A) ; we denote G0 : (salg) −→ (groups)

the sheafification functor of G0 . Note that both G0 and G0 factor through (alg) .

Proposition 4.14. The supergroup functor G0 is representable, hence — as it factors through
(alg) — it is an affine group.

Proof. We argue much like we did above (cf. §4.12) to describe T , so we can be more sketchy.

The groups G′
0 and T are subgroups of GL(Vk) , and their mutual intersection is G′

0 ∩ T = T ′ :
thus G0 is a fibered product of G′

0 and T over T ′ , that we can describe it in down-to-earth terms.

Fix A ∈ (salg) . Inside GL(Vk)(A0) , the subgroup T (A0) acts on G
′
0(A0) by adjoint action, so

G0(A0) , generated by T (A0) and G
′
0(A0) , is a quotient of the semi-direct product T (A0)nG′

0(A0) .
Indeed, let J(A0) :=

{(
j−1, j

) ∣∣ j ∈ T (A0) ∩ G′
0(A0) = T ′(A0)

}
, so that A 7→ J(A0) defines —

on (salg), through (alg) — a normal subgroup functor of T n G′
0 : then we have a (functor)

isomorphism G0
∼=

(
T nG′

0

)/
J . Thus G0

∼=
(
T nG′

0

)/
J as group functors, hence (forgetting

the group structure) also G0
∼=

(
T×G′

0

)/
J as set-valued functors. Taking sheafifications, as both

T and G′
0 are representable, we infer that T ×G′

0 is representable too. In addition, if J is the
sheafification of the functor J , we see that J as a subgroup of T×G′

0 is closed.
To see all this in detail, let us revisit our construction. We started with a representation of

A ⊗k Uk(g) on Vk(A) := A ⊗k Vk (cf. §4.1). By construction, G′
0 is just the algebraic group

associated to g0 and V (as a g0–module) by the classical Chevalley’s construction: indeed, g0 ∼=
sl2⊕ sl2⊕ sl2 where the three summands are given by sl2–triples associated to positive even roots
2 εi (cf. §2.3), and G′

0
∼= H1 × H2 × H3 where Hi ∈

{
SL2 ,PSL2

}
for each i . Each Hi is

represented by O(SL2) = k
[
a,b, c,d

]/(
ad−bc−1

)
if Hi

∼= SL2 , and by the unital subalgebra of

O(SL2) generated by all products of any two elements in the set
{
a,b, c,d

}
if Hi

∼= PSL2 . Then

the torus T = T ∼= U×3 is embedded in ×3
i=1Hi via (τ1, τ2, τ3) 7→

((
τ1 0

0 τ−1
1

)
,
(

τ2 0

0 τ−1
2

)
,
(

τ3 0

0 τ−1
3

))
,

hence it is the closed subgroup of G′
0 defined by the ideal I(T ) =

(
b1 ,b2 ,b3 , c1 , c2 , c3

)
.

Now the description of the subgroup J of T × G′ goes much along the same lines as for
describing the subgroup T′ of T [a]×T ′ in §4.7 above. Then by the same arguments one eventually
finds that J = J is a closed in T×G′

0 , as claimed.
A similar analysis works too when some Hi’s (possibly all of them) are isomorphic to PSL2 .

Finally, as T×G′
0 is representable (so it is an affine group scheme), its quotient by the closed

normal subgroup J is representable too, hence the same holds for the isomorphic functor G0 .

We can now eventually define our Chevalley supergroups:

Definition 4.15. Let g and V be as above. We call Chevalley supergroup functor, associated to
g and V , the functor G : (salg) −→ (grps) given by:
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— if A∈Ob
(
(salg)

)
we let G(A) be the subgroup of GL

(
Vk(A)

)
generated by G0(A) and the

one-parameter subgroups xβ(A) with β ∈ ∆1 , that is

G(A) :=
⟨
G0(A) , xβ(A)

∣∣∣ β ∈ ∆1

⟩
=

⟨
T (A) , xδ(A)

∣∣∣ δ ∈ ∆
⟩

where the second identity follows from the previous description of G0 .

— if ϕ ∈ Hom(salg)

(
A ,B

)
, then Endk(ϕ) : Endk

(
Vk(A)

)
−→ Endk

(
Vk(B)

)
(given on matrix

entries by ϕ itself) respects the sum and the associative product of matrices; then Endk(ϕ) clearly
restricts to a group morphism GL

(
Vk(A)

)
−→ GL

(
Vk(B)

)
. The latter maps the generators of

G(A) to those of G(B), hence restricts to a group morphism G(ϕ) : G(A) −→ G(B) .

We call Chevalley supergroup — associated to g = D(2, 1; a) and V — the sheafification G of
G (cf. [6], Appendix). Thus G : (salg) −→ (grps) is a sheaf functor such that G(A) = G(A) if
A ∈ (salg) is local. To stress the dependence on V , we shall also write GV for G and GV for G .

Remarks 4.16. (a) For a ∈ Z , a construction of Chevalley supergroups of type D(2, 1; a) was
given in [6]: it coincides with the present one, because Pa(A) = U(A0) if a ∈ Z — for A ∈ (salg) .

(b) An alternative definition of Chevalley supergroups can be given letting the subgroup
(functor) Up : A 7→ Up(A0) play the role of Pa , where Up(A0) :=

(
1+N(A0)

)
is the subgroup of

U(A0) of all unipotent elements of A0 (and N(A0) is the nilradical of A0). All our arguments and
results from now on still stand valid as well. Nevertheless, using the subgroup functor Up one does
not recover the construction of [6] for a ∈ Z , which instead is the case with Pa , see (a) above.

4.6 Chevalley supergroups as affine supergroups

Our definition of the Chevalley supergroup G does not imply (at first sight) that G is repre-
sentable, so that it is indeed an affine supergroup scheme. In this section we prove this fact.

Definition 4.17. For any A ∈ (salg) , we define the subsets of G(A)

G1(A) :=
{∏n

i=1 xγi(ϑi)
∣∣∣ n ∈ N , γi ∈ ∆1 , ϑi ∈ A1

}
G±

0 (A) :=
{∏n

i=1 xαi(ti)
∣∣∣ n ∈ N , αi ∈ ∆±

0 , ti ∈ A0

}
G±

1 (A) :=
{∏n

i=1 xγi(ϑi)
∣∣∣ n ∈ N , γi ∈ ∆±

1 , ϑi ∈ A1

}
G±(A) :=

{∏n
i=1 xβi(ti)

∣∣∣ n∈N , βi∈∆±, ti∈A0∪A1

}
=

⟨
G±

0 (A) , G
±
1 (A)

⟩
Moreover, fixing any total order ≼ on ∆±

1 , and letting N± =
∣∣∆±

1

∣∣ , we set

G±,<
1 (A) :=

{ ∏N±
i=1 xγi(ϑi)

∣∣∣ γ1 ≺ · · · ≺ γN± ∈ ∆±
1 , ϑ1, . . . , ϑN± ∈ A1

}
and for any total order ≼ on ∆1 , and letting N :=

∣∣∆∣∣ = N+ +N− , we set

G<
1 (A) :=

{∏N
i=1 xγi(ϑi)

∣∣∣ γ1 ≺ · · · ≺ γN ∈ ∆1 , ϑ1, . . . , ϑN ∈ A1

}
By the way, note that N± = 4 and N = 8 for g = D(2, 1; a) .

Similar notations will denote the sheafifications G1 , G
±, G±

0 , G
±
1 , etc.

We begin studying commutation relations among generators of Chevalley groups. As a matter of
notation, when Γ is any group and g, h ∈ Γ we denote by (g, h) := g h g−1 h−1 their commutator.
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Lemma 4.18.

(a) Let α ∈ ∆0 , γ ∈ ∆1 , A ∈ (salg) and t ∈ A0 , ϑ ∈ A1 . Then there exist cs∈Z such that(
xγ(ϑ) , xα(t)

)
=

∏
s>0 xγ+s α

(
cs t

sϑ
)
∈ G1(A)

(the product being finite). Indeed, with εk = ±1 and r as in §3.4, part (2),(
1 + ϑXγ , xα(t)

)
=

∏
s>0

(
1 +

∏s
k=1 εk ·

(
s+r
r

)
· tsϑXγ+s α

)
where the factors in the product are taken in any order (as they do commute).

(b) Let γ, δ∈∆1 , A∈(salg) , ϑ, η∈A1 . Then (notation of Definition 3.1)(
xγ(ϑ) , xδ(η)

)
= xγ+δ

(
−cγ,δ ϑ η

)
=

(
1−cγ,δ ϑ ηXγ+δ

)
∈ G0(A)

if δ ̸= −γ ; otherwise, for δ = −γ , we have(
xγ(ϑ) , x−γ(η)

)
=

(
1− ϑ ηHγ

)
= h

[a]
Hγ

(
1− ϑ η

)
∈ G0(A)

(c) Let β ∈ ∆ , A ∈ (salg) , u ∈ A0∪A1 . Then

hH0(t) xβ(u) hH0(t)
−1

= xβ
(
tβ(H0) u

)
∈ Gp(β)(A) ∀ H0 ∈ h0Z , t ∈ U(A0)

h
[a]
H (t) xβ(u) h

[a]
H (t)

−1
= xβ

(
tβ(H) u

)
∈ Gp(β)(A) ∀ H ∈ hZ[a] , t ∈ Pa(A0)

where p(β) := s , by definition, if and only if β ∈ ∆s .

Proof. Like for [6], Lemma 5.13, these results follow directly from the classical ones and simple

calculations, using the relations in §3.4 and the identity (ϑη)
2
= −ϑ2 η2 = 0 . In addition, for (b)

in the present case we have also to take into account that (1− ϑ η) ∈
(
1 +N(A0)

)
⊆ Pa(A) for

all ϑ, η ∈ A1 , so h
[a]
Hγ

(
1− ϑ η

)
is well-defined and equal to

(
1− ϑ ηHγ

)
.

Now, with our definition of Chevalley groups at hand and the commutation rules among their
generators available – as given in Lemma 4.18 above — one can reproduce whatever was done in [6],
§5.3. Just some minimal changes are in order, due to a couple of facts: first, the presence among
generators of the multiplicative one-parameter supersubgroups of type a, which are handled like
the classical ones using Lemma 4.18; second, several shortcuts and simplifications are possible, as
the structure of g = D(2, 1; a) is much simpler than that of the general classical Lie superalgebra.
Thus in the following I shall bound myself to list the results we get (essentially, the main steps in
the line of arguing of [6]), as the proofs can be easily recovered from [6], §5. The first result is:

Theorem 4.19. For any A ∈ (salg) , there exist set-theoretic factorizations

(a) G(A) = G0(A) G1(A) , G(A) = G1(A) G0(A)

(b) G±(A) = G±
0 (A) G

±
1 (A) , G±(A) = G±

1 (A) G
±
0 (A)

(c) G(A) = G0(A)G
<
1 (A) , G(A) = G<

1 (A)G0(A)

Claim (a) above is a group-theoretical counterpart for G of the splitting g = g0 ⊕ g1 — a
super-analogue of the Cartan decomposition for reductive groups — while (b) is a similar result
for G+ and G− . Claim (c) improves (a): like in [6] (Theorem 5.17), it follows from Theorem 4.19
just reordering the factors in G1(A) by means of the commutation rules in Lemma 4.18.

With a more careful analysis, one improves the previous results to get the following, key one:
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Theorem 4.20. The group product yields isomorphisms of set valued functors

G0 ×G−,<
1 ×G+,<

1

∼=−−→ G , G0 ×G−,<
1 ×G+,<

1

∼=−−→ G

as well as those obtained by permuting the (−)-factor and the (+)-factor and/or moving the (0)-
factor to the right. All these induce similar functor isomorphisms with the left-hand side obtained

by permuting the factors above, like G+,<
1 ×G0 ×G−,<

1

∼=−→ G , G−,<
1 ×G0 ×G+,<

1

∼=−→ G , etc.

The same technique used to prove Theorem 4.20 also yields the following:

Proposition 4.21. The functors G±,<
1 : (salg) −→ (sets) are representable: they are the functor

of points of the superscheme A0|N±
k , with N± =

∣∣∆±
1

∣∣ . In particular G±,<
1 = G±,<

1 .

Indeed, this holds since natural transformations Ψ± : A0|N±
k −→ G±,<

1 exist, by definition,

given on objects by Ψ±(A) : A0|N±
k (A) −→ G±,<

1 (A) , (ϑ1, . . . , ϑN±) 7→
∏N±

i=1 xγi(ϑi) — and
obvious on morphisms. One then proves that these Ψ± are isomorphisms of (set valued) functors.

Finally, we can prove that the Chevalley supergroups are affine:

Theorem 4.22. Every Chevalley supergroup G is an affine supergroup.

Indeed, this is a direct consequence of the last two results, as they imply that the group functor
G is isomorphic (as a set valued functor) to the direct product of three representable group functors,
hence in turn it is representable as well, which entails that it is an affine supergroup.

Another immediate consequence is the following, which improves, for Chevalley supergroups, a
more general result proved by Masuoka (cf. [13], Theorem 4.5) in the algebraic setting.

Proposition 4.23. For any Chevalley supergroup G , there are isomorphisms

O(G) ∼= O(G0)⊗O
(
G−,<

1

)
⊗O

(
G+,<

1

) ∼= O(G0)⊗ k
[
ξ1, . . . , ξN−

]
⊗ k

[
χ1, . . . , χN+

]
of commutative superalgebras, where N± =

∣∣∆±
1

∣∣ , the subalgebra O(G0) is totally even, and
ξ1, . . . , ξN− and χ1, . . . , χN+ are odd elements.

Finally, one has the following result for any A ∈ (salg) which is the central extension of the
commutative algebra A0 by the A0–module A1 :

Proposition 4.24. Let G be a Chevalley supergroup functor, and let G be its associated Chevalley
supergroup. Assume A ∈ (salg) is such that A2

1 = {0} , and let N± =
∣∣∆±

1

∣∣ .
Then G+

1 (A) , G
−
1 (A) and G1(A) are normal subgroups of G(A) , and we have

G±
1 (A) = G±,<

1 (A) ∼= A0|N±
k (A) , G1(A) = G−

1 (A) ·G
+
1 (A) = G+

1 (A) ·G
−
1 (A)

G1(A) ∼= G−
1 (A)×G

+
1 (A)

∼= G+
1 (A)×G

−
1 (A)

∼= A0|N−
k (A)× A0|N+

k (A)

(where “ ∼=” means isomorphic as groups), the group structure on A0|N±
k (A) being the obvious one.

In particular, G(A) ∼= G0(A) n G1(A) ∼= G0(A0) n
(
A0|N−

k (A) × A0|N+

k (A)
)
, the semidirect

product of the classical group G0(A0) with the totally odd affine superspace A0|N−
k (A)×A0|N+

k (A) .

Similar results hold with a symbol “G” replacing “G” everywhere.

5 Independence of the construction, Lie’s Third Theorem

In this section, we discuss the dependence on V of the Chevalley supergroups GV , and a
super-analogue of Lie’s Third Theorem for GV and its converse. Here again, we follow [6], §§5.4–5.
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5.1 Independence of Chevalley and Kostant superalgebras

The construction of Chevalley supergroups depend on the finite dimensional, rational g–
representation V fixed from scratch, and on an admissible Z–lattice M in V . I show now how
it depends on V : as a consequence, one finds that it is in fact independent of M . Once again, I
stick to statements, as the proofs follow the same arguments as in [6], §§5.4–5.

Let G′ and G be two Chevalley supergroups obtained by the same g , possibly with a different
choice of the representation. We denote with Xα and with X ′

α respectively the elements of the
Chevalley basis in g identified (as usual) with their images under the two representations of g .

Our first result is technical, yet important:

Lemma 5.1. Let ϕ : G −→ G′ be a morphism of Chevalley supergroups such that for all local
superalgebras A we have ϕA

(
G0(A)

)
= G′

0(A) and ϕA
(
1 + ϑXβ

)
= 1 + ϑX ′

β for all β ∈ ∆1 ,
ϑ ∈ A1 . Then Ker(ϕA) ⊆ T , where T is the maximal torus in the group G0 ⊆ G (see §4.5).

Let LV be the lattice spanned by the weights in the g–representation V . The relation between
Chevalley supergroups attached to different weight lattices is the same as in the classical setting:

Theorem 5.2. Let G and G′ be two Chevalley supergroups constructed using two representations
V and V ′ of the same g over the same field K (as in §4.1). If LV ⊇ LV ′ , then there exists a
unique morphism ϕ : G −→ G′ such that ϕA

(
1+ϑXα

)
= 1+ϑX ′

α , and Ker (ϕA) ⊆ Z
(
G(A)

)
,

for every local algebra A . Moreover, ϕ is an isomorphism if and only if LV = LV ′ .

As a direct consequence, we have the following “independence result”:

Corollary 5.3. Every Chevalley supergroup GV is independent — up to isomorphism — of the
choice of an admissible lattice M of V considered in the very construction of GV itself.

5.2 Lie’s Third Theorem

In the present context, the analogue of “Lie’s Third Theorem” concerns the question of whether
the tangent Lie superalgebra of our supergroups G is g = D(2, 1; a) . We shall now answer it.

Let now k be a field (N.B.: this assumption makes the discussion simpler, but it may be
dropped, if one acts as in [9], §4.6). Let GV be a Chevalley supergroup scheme over k, built out
of a g = D(2, 1; a) and a rational g–module V as in §4.5. In §4.1, we have constructed the Lie
superalgebra gk := k⊗Za gV over k starting from the Za–lattice gV . We now show that the affine
supergroup GV has gk as its tangent Lie superalgebra.

It is well-known that one can associate a Lie superalgebra to a supergroup scheme, in a functorial
way. Let us remind it quickly (and refer to [4] for further details).

Let A ∈ (salg) and let A[ϵ] := A[x]
/(
x2

)
be the superalgebra of dual numbers, in which ϵ := x

mod
(
x2

)
is taken to be even. We have that A[ϵ] = A⊕ ϵA , and there are two natural morphisms

i : A −→ A[ϵ] , a
i7→ a , and p : A[ϵ] −→ A , (a+ ϵ a′

) p7→ a , such that p ◦ i = idA .

Definition 5.4. For each supergroup scheme G , consider G(p) : G(A(ϵ)) −→ G(A) . Then there
is a supergroup functor Lie(G) : (salg) −→ (sets) given on objects by Lie(G)(A) := Ker (G(p)) .

One shows that the functor Lie(G) is represented by a super vector space, which can be identified
with (the functor of points of) the tangent (super)space at the identity of G . Then by an abuse of
notation one denotes by the same symbol both the functor and its representing super vector space.
One also proves that the functor Lie(G) takes values in the category (Lie-alg) of Lie k–algebras
(this is equivalent to saying that the super vector space representing it is a Lie k–superalgebra).

Now we compare with g = D(2, 1; a) the Lie superalgebra Lie(GV ) of any of our Chevalley
supergroups GV : the outcome is (like in [6], Theorem 5.35, with the same proof):

19



Theorem 5.5. If GV is a Chevalley supergroup built upon g and V , then Lie(GV ) = g as
functors with values in (Lie-alg) .

Remark 5.6. In the proof of Theorem 5.5 above, one uses also the fact that the (classical) group
Pa : (alg)→ (groups) has the functor Lie(Pa) : (alg)→ (Lie-alg) , A 7→ A , as tangent Lie algebra.
The same also holds for the group Up : (alg)→ (groups) , which is relevant for Remark 4.16(b).
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