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Abstract. Controlling the size of the solution of a (deterministic, stochastic or quantum
stochastic) differential equation, by minimizing an appropriate cost functional, is very im-
portant in classical and quantum engineering. Of particular importance is the case of linear
differential equations and quadratic cost functionals, since in that case the control processes
can be explicitly calculated. In this paper we review some basic aspects of the classical
theory and we present our results in the quantum case, obtained over the past few years.

1. Classical Linear Control

1.1. Deterministic Control. In the classical deterministic case we consider a system whose
evolution over a finite time interval is modelled by the solution x = {xt : t ∈ [0, T ]} ∈
C([0, T ],Rn)} of an ordinary differential equation of the form [38]

dxt = (Axt + ut) dt(1.1)

x0 = x, t ∈ [0, T ](1.2)

where A ∈ B(Rn), the space of bounded linear operators on Rn, and u ∈ L∞([0, T ],Rn) or
L2([0, T ],Rn). Although we consider here the finite-dimensional case, the concepts and the
results can be extended from Rn to any Hilbert space H.

We assume that we can interfere with the performance of the model by choosing the
”control process” u = {ut : t ∈ [0, T ]} so as to minimize a certain ”performance (or cost)
functional” J(u). There is a wide variety of such functionals designed for specific models.
However, the most computationally accessible one is the ”quadratic” performance functional
of the form

J(u) =
∫ T
0

(< xt, Q xt > + < ut, ut >) dt+ < xT ,ΠxT >(1.3)

where < ·, · > denotes the usual inner product in the Euclidean space Rn, Π ∈ B(Rn),
Q ∈ B(Rn), Π ≥ 0, Q ≥ 0. If the size of x = {xt : t ∈ [0, T ]} is small, the performance
functional (1.3) can serve as an approximation to many other functionals which are more
adapted to the specific problem considered but also more computationaly complex. Before
one looks for the optimal control process, the system to be controlled must be ”observable”,
”controllable”, and ”stabilizable”. The definition of these concepts is as follows [35, 36, 38]:

Observability: Since the state xt of the system may only be accessible through an obser-
vation process yt = P xt, where P ∈ B(Rn), we must be able to recreate xt (or equivalently
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x0) from yt. If P = 1 we speak of a ”completely observable” system. Otherwise the system
is only ”partially observable”.

Controllability: Given an initial state x0, we should be able to choose the control process
u = {ut : t ∈ [0, T ]} so that the system will be steered in a finite time t1 ∈ [0, T ] to a desired
state x1.

Stabilizability: In order to consider large terminal times T , we need the system to exhibit
good long-run behavior i.e to eventually settle down to some steady-state behavior. From
the mathematical point of view, this amounts to the asymptotic stability of the initial state
of x = {xt : t ∈ [0, T ]} or, equivalently, to the existence of a ”feedback” control ut = K xt,
where K ∈ B(Rn), for which the system (1.1)-(1.2) is asymptotically stable.

The performance functional (1.3) is particularly useful in the case when a system must
operate at or near a particular state, chosen here to be the origin. We can think of the first
term of (1.3) as a penalty for being too far away from the origin on (0, T ), the second as a
penalty for using too much control and the third as a penalty for being too far away from
the target at the final time T . The main result in the completely observable, classical case
is the following:

Theorem 1. The performance functional (??) associated with the system (??)-(??) is min-
imized by the feedback control process

ut = −Πt xt(1.4)

where {Πt : t ∈ [0, T ]} is the solution of the Riccati differential equation

d
dt

Πt + A∗Πt + ΠtA+Q− Π2
t = 0(1.5)

ΠT = Π(1.6)

If we restrict to ut = −K xt, i.e to feedback controls with a time-independent coefficient,
then equations (??)-(??) are replaced by the ”algebraic” Riccati equation

A∗Π + ΠA+Q− Π2 = 0(1.7)

1.2. Stochastic Control. In this case we consider systems whose time evolution is affected
by noise. We assume that the noise can be accurately described by Brownian motion.
Specifically, we consider systems whose time-evolution is described by the solution x = {xt :
t ∈ [0, T ]} of a stochastic differential equation of the form

dxt = (Axt + ut) dt+ C dBt(1.8)

x0 = x, t ∈ [0, T ](1.9)

where A and u are as in (??)-(??) with the added assumtion that u is a stochastic process,
C ∈ B(Rn), and B = {Bt : t ≥ 0} is a vector (in this case n-dimensional) Brownian motion.
The performance functional (??) takes the form
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J(u) = E(
∫ T
0

(< xt, Q xt > + < ut, ut >) dt+ < xT ,ΠxT >)(1.10)

where E denotes mathematical expectation.
For completely observable systems, Theorem 1 remains true in the stochastic case. For

partially observable systems, i.e when x = {xt : t ∈ [0, T ]} is available only through an
observation process y = {yt : t ∈ [0, T ]} satisfying

dyt = H xt dt+ dWt(1.11)

where H ∈ B(Rn), and W = {Wt : t ∈ [0, T ]} is a vector (in this case n-dimensional)
Brownian motion independent of B = {Bt : t ∈ [0, T ]}, the main result is as follows:

Theorem 2. The performance functional (??) associated with the system (??)-(??) and
(??) is minimized by the feedback control process

ut = −Πt x̂t(1.12)

where {Πt : t ∈ [0, T ]} is the solution of the Riccati equation

d
dt

Πt + A∗Πt + ΠtA+Q− Π2
t = 0(1.13)

ΠT = Π(1.14)

and x̂ = {x̂t : t ∈ [0, T ]} is the minimum mean-square estimate of x = {xt : t ∈ [0, T ]}
given {ys : s ≤ t}, obtained through the Bucy-Kalman filter [36, 38, 39].

The field of classical deterministic and stochastic control is very well developed. For proofs,
details and more information we refer to [34, 35, 36, 38, 39].

2. Quantum Evolutions and Langevin Equations

In the Schrödinger picture of quantum mechanics, the state of a quantum system is de-
scribed (in Dirac’s notation) by a time dependent ket vector |ψt〉 evolving in accordance to
Schrödinger’s equation

i ~ d
dt
|ψt〉 = Ht |ψt〉(2.1)

where Ht is the Hamiltonian of the system. Quantum mechanical observables are rep-
resented by time independent self adjoint operators X0 acting on the state space. In the
Heisenberg picture, the state of the system is represented by a time independent state vector
|ψ0〉 and it is the observables Xt that vary with time. The connection between the two
pictures is provided by the unitary ”time evolution operators” Ut that satisfy

Xt = jt(X0) = U∗t X0 Ut(2.2)
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and

|ψt〉 = Ut |ψ0〉(2.3)

In the conservative (i.e time independent Hamiltonian) case

Ut = e−
i
~ tH(2.4)

The differential equation satisfied by the Ut’s is called an ”evolution” equation, while the
one satisfied by the Xt’s is called a Langevin equation. In general, the Hamiltonian operator
is a sum of ”creation”, ”annihilation” and ”number” operators and the above mentioned
equations contain noise terms defined in terms of such operators. In what follows we will
consider systems and noises represented as operators acting on a Hilbert space H and Boson
Fock space Γ(L2(R+,K)) respectively. The Boson Fock space Γ = Γ(L2(R+,K)) can be
defined as the Hilbert space completion of the linear span of the ”exponential vectors” ψ(f)
under the inner product

< ψ(f), ψ(g) >= e<f,g>(2.5)

where f, g ∈ L2(R+,K). The set K will be C or l2(N) depending on what kind of noise we
consider. Noise will be defined as time dependent operators on the Fock space Γ(L2(R+,K))

with differentials defined in terms of the Hida white noise functionals a†t and at.
For f ∈ L2(R+,K) and an adjointable linear operator F on L2(R+,K), the ”annihilation”,

”creation” and ”conservation” operators A(f), A†(f) and Λ(F ) respectively, are defined on
the exponential vectors of Γ by

A(f)ψ(g) =< f, g > ψ(g)(2.6)

A†(f)ψ(g) = ∂
∂ε
|ε=0ψ(g + εf)(2.7)

Λ(F )ψ(g) = ∂
∂ε
|ε=0ψ(eεFg)(2.8)

where F must be such that the exponential eεF is defined.
The Itô multiplication table associated with A(·), A†(·) and Λ(·) is

· dA†t(f1) dΛt(F1) dAt(f1) dt

dA†t(f2) 0 0 0 0

dΛt(F2) dA†t(F2f1) dΛt(F2F1) 0 0
dAt(f2) < f2, f1 > dt dAt(F

∗
1 f2) 0 0

dt 0 0 0 0.

2.1. First Order White Noise. The first order (Hudson-Parthasarathy) quantum stochas-

tic differentials dAt, dA
†
t , and dΛt are defined by
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dAt = A(χ[t,t+dt])(2.9)

dA†t = A†(χ[t,t+dt])(2.10)

dΛt = Λ(χ[t,t+dt])(2.11)

In terms of white noise, the basic noise differentials are

dAt = at dt, dA
†
t = a†t dt, dΛt = a†t at dt.(2.12)

Quantum evolutions in the tensor product H⊗ Γ(L2(R+,K)) have the form

dUt = −((iH + 1
2
L∗L) dt+ L∗W dAt − LdA†t + (1−W ) dΛt)Ut(2.13)

t ∈ [0, T ], U0 = 1(2.14)

where H, L, W are in B(H), with U unitary and H self-adjoint. The corresponding
Langevin equation is

djt(X) = jt(i[H,X]− 1
2
(L∗LX +XL∗L− 2L∗XL)) dt(2.15)

+jt([L
∗, X]W ) dAt + jt(W

∗ [X,L]) dA†t + jt(W
∗XW −X) dΛt

j0(X) = X, t ∈ [0, T ](2.16)

2.2. Square of White Noise. The square of white noise (SWN) commutation relations
are a functional extension of the sl(2;R) commutation relations

[B−, B+] = M, [M,B+] = 2B+, [M,B−] = −2B−(2.17)

where

(B−)∗ = B+, M∗ = M(2.18)

Following ”renormalization”, the SWN noise differentials are initially defined by

dB−t = a2t dt, dB
+
t = a†t

2
dt, dMt = a†t at dt(2.19)

A representation of the sl(2;R) Lie algebra on l2(N) is defined by

ρ+(B+nMkB−
l
) em = θn,k,l,m en+m−l.(2.20)

where em, m = 0, 1, 2, · · · is any orthonormal basis of l2(N),

(2.21) θn,k,l,m := H(n+m− l)
√
m− l + n+ 1

m+ 1
2k(m− l + 1)n(m+ 1)(l)(m− l + 1)k,
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H(x) is the Heaviside function (H(x) = 0 for x < 0; H(x) = 1 for x ≥ 0),

00 = 1, (B+)n = (B−)n = Nn = 0, for n < 0,

and ”factorial powers” are defined by

x(n) = x(x− 1) · · · (x− n+ 1)

(x)n = x(x+ 1) · · · (x+ n− 1)

(x)0 = x(0) = 1

Using this representation we obtain

dMt = dΛt(ρ
+(M)) + dt(2.22)

dB+
t = dΛt(ρ

+(B+)) + dA†t(e0)(2.23)

dB−t = dΛt(ρ
+(B−)) + dAt(e0)(2.24)

To obtain a closed Itô multiplication table we use as basic SWN differentials

dΛn,k,l(t) = dΛt(ρ
+(B+nMkB−

l
))(2.25)

dAm(t) = dAt(em)(2.26)

dA†m(t) = dA†t(em)(2.27)

where n, k, l,m ∈ {0, 1, ...}, with Itô multiplication table

dΛα,β,γ(t) dΛa,b,c(t) =
∑

cλ,ρ,σ,ω,εβ,γ,a,b dΛa+α−γ+λ,ω+σ+ε,λ+c(t)(2.28)

dΛα,β,γ(t) dA
†
n(t) = θα,β,γ,n dA

†
α+n−γ(t)(2.29)

dAm(t) dΛa,b,c(t) = θc,b,a,m dAc+m−a(t)(2.30)

dAm(t) dA†n(t) = δm,n dt(2.31)

where

cλ,ρ,σ,ω,εβ,γ,a,b =(2.32) (
γ
λ

)(
γ−λ
ρ

)(
β
ω

)(
b
ε

)
2β+b−ω−εSγ−λ−ρ,σa

(γ−λ)(a+ λ− 1)(ρ)(a− γ + λ)β−ωλb−ε,

Sγ−λ−ρ,σ are the Stirling numbers of the first kind and
∑

in (2.28) denotes the finite sum

γ∑
λ=0

γ−λ∑
ρ=0

γ−λ−ρ∑
σ=0

β∑
ω=0

b∑
ε=0

All other products of differentials are equal to zero.
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Quantum evolutions are of the form

dUt = ((−1
2

(D∗−|D∗−) + iH) dt+ dAt(D−)(2.33)

+dA†t(−r(W )D∗−) + dLt(W − I))Ut

U0 = 1(2.34)

while Langevin equations are of the form

djt(X) =(2.35)

jt(i [X,H]− 1
2
{(D∗−|D∗−)X}+ (r(W )D∗−|X r(W )D∗−)) dt

+jt(dA†t(D∗−X − r(W ∗X ◦W )D∗−))

+jt(dAt(X D−l(W
∗ ◦XW )D−))

+jt(dLt(W ∗X ◦W −X))

j0(X) = X, t ∈ [0, T ].(2.36)

where H is a bounded self-adjoint system operator, W is a ◦-product (see (2.44) for the
definition of the ◦-product) unitary operator and D− =

∑
mD−,m⊗ em, where the Dm’s are

bounded system operators.
In equations (2.33)-(2.34) and (2.35)-(2.36) we have used

(i) evolution coefficients:

D+ =
∑

nD+,n ⊗ en(2.37)

D− =
∑

mD−,m ⊗ em(2.38)

D1 =
∑

α,β,γ D1,α,β,γ ⊗ ρ+(B+αMβB−
γ
)(2.39)

E1 =
∑

a,b,cE1,a,b,c ⊗ ρ+(B+aM bB−
c
)(2.40)

where the left hand sides of the tensor products corespond to bounded system operators

(ii) module operators A, A† and L genericaly defined by:

A(a⊗ ξ) = a⊗ A(ξ)(2.41)

A†(a⊗ ξ) = a⊗ A†(ξ)(2.42)

L(a⊗ T ) = a⊗ Λ(T )(2.43)

and

(iii) basic operations:
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D1 ◦ E1 =
∑

α,β,γ,a,b,c

∑
cλ,ρ,σ,ω,εβ,γ,a,b D1,α,β,γE1,a,b,c ⊗ ρ+(B+a+α−γ+λMω+σ+εB−

λ+c
)(2.44)

(D∗−|D+) =
∑

n D−,nD+,n ⊗ 1(2.45)

r(D1)D+ =
∑

n,α,β,γ D1,α,β,γθα,β,γ,n−α+γD+,n−α+γ ⊗ en(2.46)

l(E1)D− =
∑

n,α,β,γ D,n+α−γθγ,β,α,n+α−γE1,α,β,γ ⊗ en(2.47)

where
∑

is as in (??). The SWN Ito table can be concisely written as

dAt(D−) dA†t(D+) = (D∗−|D+) dt(2.48)

dLt(D1) dLt(E1) = dLt(D1 ◦ E1)(2.49)

dLt(D1) dA†t(D+) = dA†t(r(D1)D+)(2.50)

dAt(D−) dLt(E1) = dAt(l(E1)D−)(2.51)

For details we refer to [2]-[10], [12], [15]-[24],[26]-[28], [33], [37], [39].

3. Quantum Control

3.1. First order white noise. We consider Langevin equations of the form (??)-(??) as-
sociated with evolution equations of the form (??)-(??). Generalizing from the clasical case,
we consider quadratic cost functionals of the form

Jξ,T (L,W ) =
∫ T
0

[ ‖jt(X) ξ‖2 + 1
4
‖jt(L∗L) ξ‖2 ] dt+ 1

2
‖jT (L) ξ‖2(3.1)

where T is an arbitrary terminal time, ξ = u⊗ψ(f) ∈ H⊗Γ(L2(R+,K)) is arbitrary, and
the system operators L, W are viewed as controls, chosen to minimize Jξ,T (L,W ). This cost
functional is obtained from the cost functional

Qξ,T (u) =
∫ T
0

[< Ut ξ,X
2 Ut ξ > + < ut ξ, ut ξ >] dt− < uT ξ, UT ξ >(3.2)

associated with (??)-(??) as in the classical case, by restricting to feedback controls ut =
−1

2
L∗LUt. The main result is as follows:

Theorem 3. Let X be a system space observable such that the pair (iH, X) is stabilizable
(i.e ∃ K ∈ B(H) such that iH +KX is the generator of an asymptotically stable semigroup
Ft i.e ∃ M > 0 and ω < 0 such that ||Ft|| ≤ M eω t). The quadratic performance functional
Jξ,T (L,W ) is minimized by

L =
√

2 Π1/2W1 (polar decomposition of L)(3.3)

and

W = W2(3.4)
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where Π is the positive self-adjoint solution of the algebraic Riccati equation

i [H,Π] + Π2 +X2 = 0(3.5)

and W1, W2 are bounded unitary system operators commuting with Π. Moreover

minL,W Jξ,T (L,W ) =< ξ,Π ξ >(3.6)

independent of T .

Some early work on the quadratic cost control of quantum processes was done by V.P.
Belavkin [24] who considered evolutions with scalar coefficients, and classical noise without

jumps i.e W was 1, and the coefficents of dAt and dA†t were equal, thus amounting to
stochastic differential equations driven by classical Brownian motion At + A†t .

3.2. Square of white noise. In this case, corresponding to (??)-(??) and (??)-(??), we
consider the cost functional

Jξ,T (D−,W ) =
∫ T
0

[ ‖jt(X) ξ‖2 + 1
4
‖jt((D∗−|D∗−)) ξ‖2 ] dt+ 1

2
< ξ, jT ((D∗−|D∗−)) ξ >(3.7)

where D−, W are the controls, to be chosen so as to minimize Jξ,T (D−,W ). The main
result has as follows:

Theorem 4. Let X be a bounded self-adjoint system operator such that the pair (iH, X) is
stabilizable. The performance functional Jξ,T (D−,W ) is minimized by choosing

D− =
∑

n D−,n ⊗ en(3.8)

and

W =
∑

α,β,γ Wα,β,γ ⊗ ρ+(B+αMβB−
γ
)(3.9)

such that

1
2

(D∗−|D∗−) = (1
2

∑
n D−,nD

∗
−,n) ⊗ 1 = Π,(3.10)

and

[D−,n, D−,m] = [D−,n, D
∗
−,m] = 0(3.11)

[D−,n,Wα,β,γ] = [D−,n,W
∗
α,β,γ] = 0(3.12)

for all n,m, α, β, γ, where Π is the positive self-adjoint solution of the algebraic Riccati
equation
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i [H,Π] + Π2 +X2 = 0(3.13)

Moreover

minD−,W Jξ,T (D−,W ) =< ξ,Π ξ >(3.14)

independent of T .

For proofs and details on the material presented in this section we refer to [1, 3, 11, 13,
14, 25, 29, 30, 31, 32].

4. Appendix: Mathematica algorithms

The calculation of the product of two stochastic differentials, in the case of the square
of white noise, can be made easy with the use of symbolic programming. Following is a
Mathematica algorithm for computing (??)-(??). The algorithm also computes the product
of the Hudson-Parthasarathy differentials (??)-(??) as a special case (rf. [7]).

Algorithm 1. This algorithm computes the, in general, noncommutative products of the
generalized SWN stochastic differentials dΛn,k,l(t), dAm(t) and dA†m(t), where n, k, l,m =
0, 1, ..., and ”time” dt. Each sentence corresponds to a new input. Inputs are separated by
space.

p[x−, y−] = If [x == y == 0, 1, x∧y]

u[x−, n−] = Product[x− i+ 1, {i, 1, n}]
v[x−, n−] = Product[x+ i− 1, {i, 1, n}]
θ[n−, k−, l−,m−] = If [n+m− 1 <
0, 0, Sqrt[(m− l + n+ 1)/(m+ 1)]2∧k v[m− l + 1, n]u[m+ 1, l] p[m− l + 1, k]]

c[β−, γ−, a−, b−, λ−, ρ−, σ−, ω−, ε−] =
Binomial[γ, λ]Binomial[γ − λ, ρ]Binomial[β, ω]Binomial[b, ε] 2∧(β + b− ω −
ε)StirlingS1[γ − λ− ρ, σ]u[a, γ − λ]u[a+ λ− 1, ρ] p[a− γ + λ, β − ω] p[λ, b− ε]
NCM[dΛ[α−, β−, γ−], dΛ[a−, b−, s−]] = Sum[c[β, γ, a, b, λ, ρ, σ, ω, ε] dΛ[a+ α− γ + λ, ω +
σ + ε, λ+ s], {λ, 0, γ}, {ρ, 0, γ − λ}, {σ, 0, γ − λ− ρ}, {ω, 0, β}, {ε, 0, b}]
NCM[dΛ[a−, b−, c−], dA†[m−]] = θ[a, b, c,m]dA†[a+m− c]
NCM[dA[m−], dΛ[a−, b−, c−]] = θ[c, b, a,m]dA[c+m− a]

NCM[dA[m−], dA†[n−]] = KroneckerDelta[m,n]dt

NCM[dA[m−], dA[n−]] = 0

NCM[dA†[m−], dA†[n−]] = 0

NCM[dA†[m−], dA[n−]] = 0
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NCM[dA†[m−], dΛ[α−, β−, γ−]] = 0

NCM[dΛ[α−, β−, γ−], dA[m−]] = 0

NCM[dΛ[α−, β−, γ−], dt] = 0

NCM[dt, dΛ[α−, β−, γ−]] = 0

NCM[dA[m−], dt] = 0

NCM[dt, dA[m−]] = 0

NCM[dA†[m−], dt] = 0

NCM[dt, dA†[m−]] = 0

NCM[dt, dt] = 0

For example, using the above algorithm to compute dΛ4,1,2(t) dΛ1,2,1(t) we obtain

NCM[dΛ[4, 1, 2], dΛ[1, 2, 1]] = 8dΛ[4, 1, 2] + 16dΛ[4, 2, 2] + 10dΛ[4, 3, 2] + 2dΛ[4, 4, 2] +
32dΛ[5, 0, 3] + 32dΛ[5, 1, 3] + 10dΛ[5, 2, 3] + dΛ[5, 3, 3]

while for dΛ4,2,1(t) dA
†
2(t) we obtain

NCM[dΛ[4, 2, 1], dA†[2]] = 48
√

5 dA†[5]
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