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Abstract We describe the ”no-go” theorems recently obtained by Accardi-
Boukas-Franz in [[1]] for the Boson case, and by Accardi-Boukas in [[2]] for
the q-deformed case, on the issue of the existence of a common Fock space
representation of the renormalized powers of quantum white noise (RPWN).

1 Introduction

Classical (i.e Itô [[5]]) and quantum (i.e Hudson-Parthasarathy [[6, 3]]) stochas-
tic calculi were unified by Accardi, Lu, and Volovich in [[4]] in the framework
of Hida’s white noise theory by expressing the fundamental noise processes
in terms of the Hida white noise functionals at and a†t defined as follows. Let
L2
sym(Rn) denote the space of square integrable functions on Rn symmetric

under permutation of their arguments, and let F :=
⊕∞

n=0 L
2
sym(Rn) where

if ψ := {ψ(n)}∞n=0 ∈ F , then ψ(0) ∈ C, ψ(n) ∈ L2
sym(Rn) and

‖ψ‖2 = ‖ψ(0)‖2 +
∞∑
n=1

∫
Rn

|ψ(n)(s1, . . . , sn)|2ds1 . . . dsn

The subspace of vectors ψ = {ψ(n)}∞n=0 ∈ F with ψ(n) = 0 for almost
all n will be denoted by D0. Denote by S ⊂ L2(Rn) the Schwartz space of
smooth functions decreasing at infinity faster than any polynomial and let
D := {ψ ∈ F |ψ(n) ∈ S,

∑∞
n=1 n|ψ(n)|2 < ∞}. For each t ∈ R define the

linear operator at : D → F by

(atψ)(n)(s1, . . . , sn) :=
√
n+ 1ψ(n+1)(t, s1, . . . , sn)

and the operator valued distribution (cf. [[4]] for details) a+t by

(a+t ψ)(n)(s1, . . . , sn) :=
1√
n

n∑
i=1

δ(t− si)ψ(n−1)(s1, . . . , ŝi, . . . , sn)

where ˆ denotes omission of the corresponding variable. The Hida white
noise functionals satisfy the Boson commutation relations

[at, a
†
s] = δ(t− s)

[a†t , a
†
s] = [at, as] = 0.
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In order to consider higher powers of the Hida white noise functionals we
will use the renormalization

δ(t)l = c l−1 δ(t), c > 0, l = 2, 3, ....

A complete analysis of the choice of such a renormalization, as well as a
discussion of other possible renormalizations can be found in [[4]].

2 The Boson-Fock Case

In the Boson case the basic commutation relations, the properties of the Fock
vacuum vector Φ, and the duality relations are

[at, a
†
s] = δ(t− s)

[a†t , a
†
s] = [at, as] = 0

at Φ = 0

(as)
∗ = a†s

〈Φ,Φ〉 = 1.

Let H be a test function space and for f ∈ H and n, k ∈ {0, 1, 2, ...}
define the sesquilinear form on D0

Bn
k (f) :=

∫
Rd f(t) a†t

n
akt dt

with involution

(Bn
k (f))∗ = Bk

n(f̄).

More precisely, for φ, ψ in D0 and k,m ≥ 0,

< ψ,Bn
k (f)φ >=

∫
Rd f(t) < ant ψ, a

k
t φ > dt.

In particular
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B0
0(ḡf) =

∫
Rd ḡ(t) f(t) dt =< g, f > .

In the following we will use the notation

Bn
k := Bn

k (χ[0,t]).

It was proved in [[1]] that for all t, s ∈ R+ and n, k,N,K ≥ 0

[a†t
n
akt , a

†
s

N
aKs ] = εk,0εN,0

∑
l≥1

klN (l)cl−1 a†t
n
a†s
N−L

ak−Lt aks δ(t− s) (1)

− εK,0εn,0
∑
L≥1

KLn(L)cL−1 a†s
N
a†t
n−L

aK−Ls akt δ(t− s)

Multiplying both sides of (1) by test functions f(t)ḡ(s) and formally in-
tegrating the resulting identity (i.e. taking

∫ ∫
. . . dsdt), we obtain the com-

mutation relations for the Renormalized Powers of White Noise (RPWN)

[BN
K (ḡ), Bn

k (f)]

=
∑
L≥1

bL(K,n)BN+n−L
K+k−L (ḡf)−

∑
l≥1

bl(k,N)BN+n−l
K+k−l (ḡf) (2)

where n, k,N,K ∈ {0, 1, 2, ...},

εn,k := 1− δn,k
where δn,k is Kronecker’s delta and

bx(y, z) := εy,0 εz,0 yx z
(x) cx−1

where the factorial powers x(y) are defined by

x(y) := x(x− 1) · · · (x− y + 1)

with x(0) = 1. In what follows we will use the notation

Bn
k := Bn

k (χI)

where I ⊂ R with µ(I) < +∞ is fixed. Moreover, to simplify the no-
tations, we will use the same symbol for the generators of the RPWN Lie
algebra and for their images in a given representation.
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Theorem 1 (No-Go Theorem for Boson RPWN). Let L be a Lie ∗–sub–
algebra of the RPWN Lie algebra with the following properties:

(i) L contains Bn
0 , and B2n

0 where the noise operators are defined on the
same interval I and B0

0(χI) = µ(I).

(ii) the BN
K satisfy the commutation relations (2) .

Then L does not have a Fock representation if the interval I is such that

µ(I) <
1

c
Proof 1 If a common Fock representation of the Bn

k existed, one should be
able to define inner products of the form

< (aB2n
0 (χI) + b (Bn

0 (χI))
2)Φ, (aB2n

0 (χI) + b (Bn
0 (χI))

2)Φ >

where a, b ∈ R, the noise operators are defined on the same interval I and
B0

0(I) = µ(I). Using the notation < x >=< Φ, xΦ > this amounts to the
positive semi-definiteness of the quadratic form

a2 < B0
2n(χI)B

2n
0 (χI) >

+ 2ab < B0
2n(χI)(B

n
0 (χI))

2 > +a2 < (B0
n(χI))

2(Bn
0 (χI))

2 >

or equivalently of the matrix

A =

[
< B0

2n(χI)B
2n
0 (χI) > < B0

2n(χI) (Bn
0 (χI))

2 >
< B0

2n(χI) (Bn
0 (χI))

2 > < (B0
n(χI))

2 (Bn
0 (χI))

2 >

]
.

Using the commutation relations (2) we find that

A =

 (2n)!c2n−1µ(I) (2n)!c2n−2µ(I)

(2n)!c2n−2µ(I) 2(n!)2c2n−2µ(I)2 + ((2n)!− 2(n!)2)c2n−3µ(I)

 .
A is a symmetric matrix, so it is positive semi-definite if and only if its

minors are non-negative. The minor determinants of A are

d1 = (2n)!c2n−1µ(I) ≥ 0

and

d2 = 2c4(n−1)µ(I)2(n!)2(2n)!(c µ(I)− 1) ≥ 0⇔ µ(I) ≥ 1

c
.

Thus the interval I cannot be arbitrarily small.
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3 The q-Deformed Fock Case

In the q-deformed case, where q ∈ (−1, 1), q 6= 0, we start with the q-white
noise commutation relations

at a
†
s − q a†s at = δ(t− s)

and letting, as in the Boson case,

Bn
k (f) :=

∫
Rd f(t) a†t

n
akt dt

we obtain the q-RPWN commutation relations

Bn
k (f)BN

K (g)− qkN−nK BN
K (g)Bn

k (f) (3)

=
k∑

λ=1

cλ−1 φλ(k,N ; q)Bn+N−λ
k+K−λ (f g)− qkN−nK

K∑
λ=1

cλ−1 φλ(K,n; q)Bn+N−λ
k+K−λ (f g)

where

φλ(n, k; q) =

{
q(n−λ)(k−λ) [k]q !

[k−λ]q ! (δn,λ + (1− δn,λ)nλq) if λ ≤ n and λ ≤ k

0 if λ > n or λ > k

[n]q :=
qn − 1

q − 1
, ([0]q := 0)

[n]q! :=
n∏

m=1

[m]q, ([0]q! := 1)

nkq :=
[n]q!

[k]q! [n− k]q!
=

n−k∏
i=1

qk+i − 1

qi − 1
,

and for k = 0 and/or K = 0 the corresponding sums on the right hand
side of (3) are interpreted as zero. The following theorem was proved in [[2]].
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Theorem 2 (No-Go Theorem for q-RPWN). Let q ∈ (−1, 1), q 6= 0 and for
a fixed interval I ⊂ R and n, k ≥ 0 let Bn

k := Bn
k (χI) with B0

0 = µ(I) · 1,
the measure of I. Let also the ”vacuum vector” Φ be such that Bn

k Φ = 0
whenever k 6= 0 and let 〈x 〉 := 〈Φ, xΦ〉 denote the ”vacuum expectation” of
an operator x. We assume that 〈Φ,Φ〉 = 1. Define

A(n, q; I) :=

 < B0
2nB

2n
0 > < B0

2n (Bn
0 )2 >

< B0
2n (Bn

0 )2 > < (B0
n)2 (Bn

0 )2 >

 .
For any choice of n and q the matrix A(n, q; I) cannot be positive semi-

definite for all I ⊂ R.

Proof 2 Using commutation relations (3) we find

A(n, q; I) =


µ(I) c2n−1 [2n]q! c2n−2µ(I) [2n]q!

c2n−2µ(I) [2n]q! µ(I)2 c2n−2 (1 + qn
2
) ([n]q!)

2

+µ(I) c2n−3 ([n]q!)
2 ∑n−1

λ=1 q
(n−λ)2 nλ2q

 .
A(n, q; I) is a symmetric matrix, so it is positive semi-definite if and only

if its minors are non-negative. The minor determinants of A(n, q; I) are

d1 = µ(I) c2n−1 [2n]q!

which is non-negative for all I and

d2 = µ(I)2 c4n−4 [2n]q! ·

·

(
c µ(I) (1 + qn

2

) ([n]q!)
2 + ([n]q!)

2

n−1∑
λ=1

q(n−λ)
2

nλ2q − [2n]q!

)

which, as in the Boson case, is bigger or equal to zero if and only if

µ(I) ≥ 1

c

which cannot be true for arbitrarily small I.

8



References

[1] Accardi L., Boukas A., Franz U. Renormalized powers of quantum white
noise, to appear in Infinite Dimensional Analysis, Quantum Probability,
and Related Topics (2005).

[2] Accardi L., Boukas A., Franz U. Higher Powers of q-deformed White
Noise , to appear in Methods of Functional and Topology (2005).

[3] L. Accardi, A mathematical theory of quantum noise, Proceedings of the
first world congress of the Bernoulli Society, Ed. Prohorov and Sazonov,
vol.1 (1987)

[4] L. Accardi, Y.G. Lu, I.V. Volovich, White noise approach to classical and
quantum stochastic calculi, Lecture Notes of the Volterra International
School of the same title, Trento, Italy, 1999, Volterra Center preprint
375.

[5] Ito K., On stochastic differential equations, Memoirs Amer. Math. Soc.
4 (1951).

[6] K. R. Parthasarathy, An introduction to quantum stochastic calculus,
Birkhauser Boston Inc., 1992.

9


