# On the Fock Representation of the Renormalized Powers of Quantum White Noise Luigi Accardi <br> Centro Vito Volterra, Università di Roma Tor Vergata <br> via Columbia, 2- 00133 Roma, Italy <br> E-mail: accardi@Volterra.mat.uniroma2.it 

Andreas Boukas<br>Department of Mathematics and Natural Sciences, American College of Greece<br>Aghia Paraskevi, Athens 15342, Greece<br>E-mail: andreasboukas@acgmail.gr

## Contents

1 Introduction ..... 3
2 The Boson-Fock Case ..... 4
3 The $q$-Deformed Fock Case ..... 7

Abstract We describe the "no-go" theorems recently obtained by Accardi-Boukas-Franz in [[1]] for the Boson case, and by Accardi-Boukas in [[2]] for the $q$-deformed case, on the issue of the existence of a common Fock space representation of the renormalized powers of quantum white noise (RPWN).

## 1 Introduction

Classical (i.e Itô [[5]]) and quantum (i.e Hudson-Parthasarathy [[6, 3]]) stochastic calculi were unified by Accardi, Lu, and Volovich in [[4]] in the framework of Hida's white noise theory by expressing the fundamental noise processes in terms of the Hida white noise functionals $a_{t}$ and $a_{t}^{\dagger}$ defined as follows. Let $L_{\text {sym }}^{2}\left(\mathbf{R}^{n}\right)$ denote the space of square integrable functions on $\mathbf{R}^{n}$ symmetric under permutation of their arguments, and let $F:=\bigoplus_{n=0}^{\infty} L_{s y m}^{2}\left(\mathbf{R}^{n}\right)$ where if $\psi:=\left\{\psi^{(n)}\right\}_{n=0}^{\infty} \in F$, then $\psi^{(0)} \in \mathbf{C}, \psi^{(n)} \in L_{s y m}^{2}\left(\mathbf{R}^{n}\right)$ and

$$
\|\psi\|^{2}=\|\psi(0)\|^{2}+\sum_{n=1}^{\infty} \int_{\mathbf{R}^{n}}\left|\psi^{(n)}\left(s_{1}, \ldots, s_{n}\right)\right|^{2} d s_{1} \ldots d s_{n}
$$

The subspace of vectors $\psi=\left\{\psi^{(n)}\right\}_{n=0}^{\infty} \in F$ with $\psi^{(n)}=0$ for almost all $n$ will be denoted by $D_{0}$. Denote by $S \subset L^{2}\left(\mathbf{R}^{n}\right)$ the Schwartz space of smooth functions decreasing at infinity faster than any polynomial and let $D:=\left\{\left.\psi \in F\left|\psi^{(n)} \in S, \sum_{n=1}^{\infty} n\right| \psi^{(n)}\right|^{2}<\infty\right\}$. For each $t \in \mathbf{R}$ define the linear operator $a_{t}: D \rightarrow F$ by

$$
\left(a_{t} \psi\right)^{(n)}\left(s_{1}, \ldots, s_{n}\right):=\sqrt{n+1} \psi^{(n+1)}\left(t, s_{1}, \ldots, s_{n}\right)
$$

and the operator valued distribution (cf. [[4]] for details) $a_{t}^{+}$by

$$
\left(a_{t}^{+} \psi\right)^{(n)}\left(s_{1}, \ldots, s_{n}\right):=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \delta\left(t-s_{i}\right) \psi^{(n-1)}\left(s_{1}, \ldots, \hat{s}_{i}, \ldots, s_{n}\right)
$$

where ^ denotes omission of the corresponding variable. The Hida white noise functionals satisfy the Boson commutation relations

$$
\begin{aligned}
{\left[a_{t}, a_{s}^{\dagger}\right] } & =\delta(t-s) \\
{\left[a_{t}^{\dagger}, a_{s}^{\dagger}\right] } & =\left[a_{t}, a_{s}\right]=0
\end{aligned}
$$

In order to consider higher powers of the Hida white noise functionals we will use the renormalization

$$
\delta(t)^{l}=c^{l-1} \delta(t), \quad c>0, l=2,3, \ldots
$$

A complete analysis of the choice of such a renormalization, as well as a discussion of other possible renormalizations can be found in [[4]].

## 2 The Boson-Fock Case

In the Boson case the basic commutation relations, the properties of the Fock vacuum vector $\Phi$, and the duality relations are

$$
\begin{aligned}
{\left[a_{t}, a_{s}^{\dagger}\right] } & =\delta(t-s) \\
{\left[a_{t}^{\dagger}, a_{s}^{\dagger}\right] } & =\left[a_{t}, a_{s}\right]=0 \\
a_{t} \Phi & =0 \\
\left(a_{s}\right)^{*} & =a_{s}^{\dagger} \\
\langle\Phi, \Phi\rangle & =1 .
\end{aligned}
$$

Let $\mathcal{H}$ be a test function space and for $f \in \mathcal{H}$ and $n, k \in\{0,1,2, \ldots\}$ define the sesquilinear form on $D_{0}$

$$
B_{k}^{n}(f):=\int_{\mathcal{R}^{d}} f(t) a_{t}^{\dagger n} a_{t}^{k} d t
$$

with involution

$$
\left(B_{k}^{n}(f)\right)^{*}=B_{n}^{k}(\bar{f}) .
$$

More precisely, for $\phi, \psi$ in $D_{0}$ and $k, m \geq 0$,

$$
<\psi, B_{k}^{n}(f) \phi>=\int_{\mathbb{R}^{d}} f(t)<a_{t}^{n} \psi, a_{t}^{k} \phi>d t .
$$

In particular

$$
B_{0}^{0}(\bar{g} f)=\int_{\mathcal{R}^{d}} \bar{g}(t) f(t) d t=<g, f>
$$

In the following we will use the notation

$$
B_{k}^{n}:=B_{k}^{n}\left(\chi_{[0, t]}\right)
$$

It was proved in [[1]] that for all $t, s \in \mathbb{R}_{+}$and $n, k, N, K \geq 0$

$$
\begin{align*}
{\left[a_{t}^{\dagger^{n}} a_{t}^{k}, a_{s}^{\dagger^{N}} a_{s}^{K}\right] } & =\epsilon_{k, 0} \epsilon_{N, 0} \sum_{l \geq 1} k l N^{(l)} c^{l-1} a_{t}^{\dagger^{n}} a_{s}^{\dagger^{N-L}} a_{t}^{k-L} a_{s}^{k} \delta(t-s)  \tag{1}\\
& -\epsilon_{K, 0} \epsilon_{n, 0} \sum_{L \geq 1} K L n^{(L)} c^{L-1} a_{s}^{\dagger^{N}} a_{t}^{\dagger n-L} a_{s}^{K-L} a_{t}^{k} \delta(t-s)
\end{align*}
$$

Multiplying both sides of (1) by test functions $f(t) \bar{g}(s)$ and formally integrating the resulting identity (i.e. taking $\iint \ldots d s d t$ ), we obtain the commutation relations for the Renormalized Powers of White Noise (RPWN)

$$
\begin{align*}
& {\left[B_{K}^{N}(\bar{g}), B_{k}^{n}(f)\right]} \\
& \quad=\sum_{L \geq 1} b_{L}(K, n) B_{K+k-L}^{N+n-L}(\bar{g} f)-\sum_{l \geq 1} b_{l}(k, N) B_{K+k-l}^{N+n-l}(\bar{g} f) \tag{2}
\end{align*}
$$

where $n, k, N, K \in\{0,1,2, \ldots\}$,

$$
\epsilon_{n, k}:=1-\delta_{n, k}
$$

where $\delta_{n, k}$ is Kronecker's delta and

$$
b_{x}(y, z):=\epsilon_{y, 0} \epsilon_{z, 0} y x z^{(x)} c_{x-1}
$$

where the factorial powers $x^{(y)}$ are defined by

$$
x^{(y)}:=x(x-1) \cdots(x-y+1)
$$

with $x^{(0)}=1$. In what follows we will use the notation

$$
B_{k}^{n}:=B_{k}^{n}\left(\chi_{I}\right)
$$

where $I \subset \mathbb{R}$ with $\mu(I)<+\infty$ is fixed. Moreover, to simplify the notations, we will use the same symbol for the generators of the RPWN Lie algebra and for their images in a given representation.

Theorem 1 (No-Go Theorem for Boson RPWN). Let $\mathcal{L}$ be a Lie *-subalgebra of the RPWN Lie algebra with the following properties:
(i) $\mathcal{L}$ contains $B_{0}^{n}$, and $B_{0}^{2 n}$ where the noise operators are defined on the same interval $I$ and $B_{0}^{0}\left(\chi_{I}\right)=\mu(I)$.
(ii) the $B_{K}^{N}$ satisfy the commutation relations (2).

Then $\mathcal{L}$ does not have a Fock representation if the interval I is such that

$$
\mu(I)<\frac{1}{c}
$$

Proof 1 If a common Fock representation of the $B_{k}^{n}$ existed, one should be able to define inner products of the form

$$
<\left(a B_{0}^{2 n}\left(\chi_{I}\right)+b\left(B_{0}^{n}\left(\chi_{I}\right)\right)^{2}\right) \Phi,\left(a B_{0}^{2 n}\left(\chi_{I}\right)+b\left(B_{0}^{n}\left(\chi_{I}\right)\right)^{2}\right) \Phi>
$$

where $a, b \in \mathbb{R}$, the noise operators are defined on the same interval I and $B_{0}^{0}(I)=\mu(I)$. Using the notation $<x>=<\Phi, x \Phi>$ this amounts to the positive semi-definiteness of the quadratic form

$$
\begin{aligned}
a^{2} & <B_{2 n}^{0}\left(\chi_{I}\right) B_{0}^{2 n}\left(\chi_{I}\right)> \\
& +2 a b<B_{2 n}^{0}\left(\chi_{I}\right)\left(B_{0}^{n}\left(\chi_{I}\right)\right)^{2}>+a^{2}<\left(B_{n}^{0}\left(\chi_{I}\right)\right)^{2}\left(B_{0}^{n}\left(\chi_{I}\right)\right)^{2}>
\end{aligned}
$$

or equivalently of the matrix

$$
A=\left[\begin{array}{cc}
<B_{2 n}^{0}\left(\chi_{I}\right) B_{0}^{2 n}\left(\chi_{I}\right)> & <B_{2 n}^{0}\left(\chi_{I}\right)\left(B_{0}^{n}\left(\chi_{I}\right)\right)^{2}> \\
<B_{2 n}^{0}\left(\chi_{I}\right)\left(B_{0}^{n}\left(\chi_{I}\right)\right)^{2}> & <\left(B_{n}^{0}\left(\chi_{I}\right)\right)^{2}\left(B_{0}^{n}\left(\chi_{I}\right)\right)^{2}>
\end{array}\right] .
$$

Using the commutation relations (2) we find that

$$
A=\left[\begin{array}{cc}
(2 n)!c^{2 n-1} \mu(I) & (2 n)!c^{2 n-2} \mu(I) \\
(2 n)!c^{2 n-2} \mu(I) & 2(n!)^{2} c^{2 n-2} \mu(I)^{2}+\left((2 n)!-2(n!)^{2}\right) c^{2 n-3} \mu(I)
\end{array}\right]
$$

$A$ is a symmetric matrix, so it is positive semi-definite if and only if its minors are non-negative. The minor determinants of $A$ are

$$
d_{1}=(2 n)!c^{2 n-1} \mu(I) \geq 0
$$

and

$$
d_{2}=2 c^{4(n-1)} \mu(I)^{2}(n!)^{2}(2 n)!(c \mu(I)-1) \geq 0 \Leftrightarrow \mu(I) \geq \frac{1}{c} .
$$

Thus the interval I cannot be arbitrarily small.

## 3 The $q$-Deformed Fock Case

In the $q$-deformed case, where $q \in(-1,1), q \neq 0$, we start with the $q$-white noise commutation relations

$$
a_{t} a_{s}^{\dagger}-q a_{s}^{\dagger} a_{t}=\delta(t-s)
$$

and letting, as in the Boson case,

$$
B_{k}^{n}(f):=\int_{\mathcal{R}^{d}} f(t) a_{t}^{\dagger^{n}} a_{t}^{k} d t
$$

we obtain the $q$-RPWN commutation relations

$$
\begin{align*}
& B_{k}^{n}(f) B_{K}^{N}(g)-q^{k N-n K} B_{K}^{N}(g) B_{k}^{n}(f)  \tag{3}\\
= & \sum_{\lambda=1}^{k} c^{\lambda-1} \phi_{\lambda}(k, N ; q) B_{k+K-\lambda}^{n+N-\lambda}(f g)-q^{k N-n K} \sum_{\lambda=1}^{K} c^{\lambda-1} \phi_{\lambda}(K, n ; q) B_{k+K-\lambda}^{n+N-\lambda}(f g)
\end{align*}
$$

where
$\phi_{\lambda}(n, k ; q)= \begin{cases}q^{(n-\lambda)(k-\lambda)} \frac{[k]_{q}!}{[k-\lambda] q!}\left(\delta_{n, \lambda}+\left(1-\delta_{n, \lambda}\right) n \lambda_{q}\right) & \text { if } \lambda \leq n \text { and } \lambda \leq k \\ 0 & \text { if } \lambda>n \text { or } \lambda>k\end{cases}$

$$
\begin{gathered}
{[n]_{q}:=\frac{q^{n}-1}{q-1}, \quad\left([0]_{q}:=0\right)} \\
{[n]_{q}!:=\prod_{m=1}^{n}[m]_{q}, \quad\left([0]_{q}!:=1\right)} \\
n k_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}=\prod_{i=1}^{n-k} \frac{q^{k+i}-1}{q^{i}-1},
\end{gathered}
$$

and for $k=0$ and/or $K=0$ the corresponding sums on the right hand side of (3) are interpreted as zero. The following theorem was proved in [[2]].

Theorem 2 (No-Go Theorem for $q$-RPWN). Let $q \in(-1,1), q \neq 0$ and for a fixed interval $I \subset \mathbb{R}$ and $n, k \geq 0$ let $B_{k}^{n}:=B_{k}^{n}\left(\chi_{I}\right)$ with $B_{0}^{0}=\mu(I) \cdot 1$, the measure of $I$. Let also the "vacuum vector" $\Phi$ be such that $B_{k}^{n} \Phi=0$ whenever $k \neq 0$ and let $\langle x\rangle:=\langle\Phi, x \Phi\rangle$ denote the "vacuum expectation" of an operator $x$. We assume that $\langle\Phi, \Phi\rangle=1$. Define

$$
A(n, q ; I):=\left[\begin{array}{cc}
<B_{2 n}^{0} B_{0}^{2 n}> & <B_{2 n}^{0}\left(B_{0}^{n}\right)^{2}> \\
<B_{2 n}^{0}\left(B_{0}^{n}\right)^{2}> & <\left(B_{n}^{0}\right)^{2}\left(B_{0}^{n}\right)^{2}>
\end{array}\right]
$$

For any choice of $n$ and $q$ the matrix $A(n, q ; I)$ cannot be positive semidefinite for all $I \subset \mathbb{R}$.

Proof 2 Using commutation relations (3) we find

$$
A(n, q ; I)=\left[\begin{array}{cc}
\mu(I) c^{2 n-1}[2 n]_{q}! & c^{2 n-2} \mu(I)[2 n]_{q}! \\
c^{2 n-2} \mu(I)[2 n]_{q}! & \mu(I)^{2} c^{2 n-2}\left(1+q^{n^{2}}\right)\left([n]_{q}!\right)^{2} \\
& +\mu(I) c^{2 n-3}\left([n]_{q}!\right)^{2} \sum_{\lambda=1}^{n-1} q^{(n-\lambda)^{2}} n \lambda_{q}^{2}
\end{array}\right]
$$

$A(n, q ; I)$ is a symmetric matrix, so it is positive semi-definite if and only if its minors are non-negative. The minor determinants of $A(n, q ; I)$ are

$$
d_{1}=\mu(I) c^{2 n-1}[2 n]_{q}!
$$

which is non-negative for all I and

$$
\begin{aligned}
& d_{2}=\mu(I)^{2} c^{4 n-4}[2 n]_{q}! \\
& \left(c \mu(I)\left(1+q^{n^{2}}\right)\left([n]_{q}!\right)^{2}+\left([n]_{q}!\right)^{2} \sum_{\lambda=1}^{n-1} q^{(n-\lambda)^{2}} n \lambda_{q}^{2}-[2 n]_{q}!\right)
\end{aligned}
$$

which, as in the Boson case, is bigger or equal to zero if and only if

$$
\mu(I) \geq \frac{1}{c}
$$

which cannot be true for arbitrarily small I.

## References

[1] Accardi L., Boukas A., Franz U. Renormalized powers of quantum white noise, to appear in Infinite Dimensional Analysis, Quantum Probability, and Related Topics (2005).
[2] Accardi L., Boukas A., Franz U. Higher Powers of $q$-deformed White Noise, to appear in Methods of Functional and Topology (2005).
[3] L. Accardi, A mathematical theory of quantum noise, Proceedings of the first world congress of the Bernoulli Society, Ed. Prohorov and Sazonov, vol. 1 (1987)
[4] L. Accardi, Y.G. Lu, I.V. Volovich, White noise approach to classical and quantum stochastic calculi, Lecture Notes of the Volterra International School of the same title, Trento, Italy, 1999, Volterra Center preprint 375.
[5] Ito K., On stochastic differential equations, Memoirs Amer. Math. Soc. 4 (1951).
[6] K. R. Parthasarathy, An introduction to quantum stochastic calculus, Birkhauser Boston Inc., 1992.

