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Abstract. Giving meaning to the powers of the creation and annihilation den-
sities (quantum white noise) is an old and important problem in quantum field
theory. In this paper we present an account of some new ideas tleatdtently
emerged in the attempt to solve this problem. We emphasize the connection be
tween the Lie algebra of the renormalized higher powers of quantum wdigte n
(RHPWN), which can be interpreted as a suitably deformed (due tometor
ization) current algebra over tHe-mode full oscillator algebra, and the current
algebra over the centerless Virasoro (or Witt)-Zamolodchikqy-Lie algebras

of conformal field theory. Through a suitable definition of the action on the
vacuum vector we describe how to obtain a Fock representation of aél thes
algebras. We prove that the restriction of the vacuum to the abelian subalge

bra generated by the field operators gives an infinitely divisible proghsse
marginal distribution is the beta (or continuous binomial).

PACS number: 03.70.+k; 11.10.-z

1 Introduction

The Hida (quantum) white noise functional}s(creation density) and; (anni-
hilation density) satisfy the Boson commutation relations

[as,al] = 6(t — s), [a,al] = [ar,as] =0, 1)
wheret, s € R and/ is the Dirac delta function, as well as the duality relation

(as)* = al. )

*The paper was represented at the VIl International Worksimdpe Theory and Its Applications
in Physicsheld in Varna, Bulgaria, 18-24 June 2007.
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Here (and in what follows)z, y] := xy — yx is the usual operator commutator.
For allt, s € R and integers, k, N, K > 0 we have (cf. [6])

n o k n -
[aI af,alNaf] = €k,0€N,0 Z (L) N(L) aI alN LaffL aﬁ( 6L(t _ S)
L>1
K\ (1) N sn=L g 1 L
— €K,0€n,0 Z ) e e ac; a0 (t—s), (3)

L>1

where forn, k € {0, 1, 2, ...} we have used the notatien ; := 1 — ¢, 1, where
Sn.x is Kronecker's delta and) = z(z — 1) --- (z — y + 1) with 2(®) = 1. In
order to consider the smeared fields defined by the higherngaie, andal,
for a test functionf andn, k € {0, 1,2, ...}, we define the sesquilinear form

B = [ f0al" df ae @
R
with involution
(BR()" = Ba(f)- (5)
Forl = 2,3, ...., using the renormalization
sty =7t o), (6)

wherec > 0 is an arbitrary real constant (cf. [6, 8]), by multiplyingtheides of
(3) by test functiong (¢) ¢g(s) and then formally integrating the resulting identity
(i.e. taking [ | ... dsdt of both sides) we obtain the Lie algebra commutation
relations

(KAn)V(kAN)

[BR(9):BE(HI = D> Ou(N,Kin k)" BT (gf),  (7)
L=1

(%2’) — <y) 2(1)7 8)
xr X
we have

K, kN
HL(N,K;’I’L,]C) Z:H(L—l) <€K,0€n,0< Ln)—€]€70€N70< L )), (9)

where, using the notation

where
1 ifz>0
H(x)_{o it o < 0

is the Heaviside function. Commutation relations (7) do adinit a common
(i.e., valid for all n,k, N, K € {0,1,2,...}) Fock space representation. The
proof of the following theorem can be found in [2].
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Theorem 1 Letn > 3 and suppose that an operaterLie sub—algebral of
the renormalized higher powers of white noise (or RHPWN)dlgebra (7)
contains (the basic creator operatoB. Then. does not admit a Fock space
representation.

Theorem 1 leaves us with the following options (exploredasafely in Sec-
tions 2—4 below): (i) Further renormalize commutation relations (i)) Look
for a new renormalization fof!(¢) (iii) Study the sub-algebras of the univer-
sal enveloping algebra (or 1-mode full oscillator algel¥@A(1) generated by

{a,a'}.
2 Further Renormalization of Commutation Relations

Intuitively the constant appearing in the renormalization prescription (6) and
in the commutation relations (7) is equald@). So we can think of as a very
large positive number. Moreover, the commutdtBy, (g), Bi(f)] of (7) is a
polynomial inc of degre€ K An)V (kAN )—1. This justified the consideration in
[5] of the truncation of (7) keeping a certain number of doamitv—terms. This
approach led to Heisenberg—Weyl (CCR) and Renormalize@r&gof White
Noise (RSWN) Lie algebra structures described in Propasitibelow.

Definition: Forn,k, N, K € {0,1,2,...} with (K An)V (kA N) > 1 andd
as in (9) we define the truncated commutators

[BX(9), BE () 1=
n — n— n k
Osc ey (N, K5, ) IEAmVEAN) =1 g 8y G (a ), (10)

i.e, [BN(g), B2(f)]1 is the leading term in the expansion [@% (g), B (f)]
as a polynomial ire, and

[BR(9), B (f)]2 =
n — N+4+n—(KAn kAN
‘9(K/\n)v(kAN)(N>K§n7k) EAmVRAN) 1BK:er7((K2n))\\//((k//\\N))( f)

n — N4n—(K AN kAN
+0(K/\n)\/(k/\N)—1(N7K;n7k)c(K/\ JV(AN) 2BKIk_((K£§))3((k£N))Ill(gf),
(11)

i.e, [BR(9), BR(f)]2 is the sum of the two leading terms in the expansion of
[BX(9), Bp(f)] as a polynomial ire.

In general, the truncated commutatdss]; and |-, -] do not satisfy the con-
ditions of a Lie algebra commutator. However, the followlAgpposition was
proved in [5].
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Proposition 1 (i) For n > 1and1 < k < n, B%(-), BY(-), and B¥(-) generate
a Heisenberg-Weyl type Lie—algebra with respedt td,, i.e.,

1B(g), BL(f))s = nten? / ot) F(t) dt (12)
R
[Bi(f), By (9))1 = n'®) *~ By (fg) (13)
and
[B(g), BE(H)]1 = n®™ =1 BY(gf) (14)

(i) For n > 2, BY(-), BE(-), and Bi(-) generate a RSWN-type Lie algebra
(cf. [8]) with respect td-, ‘]2, i.e.,

B2(g). By ()2 = ! ( JRCIC dt+nc"-23%<gf>) (15)

[Bi(9), B3 ()2 = n By (9f) (16)

and
[By(f), Bi(9)l2 = n By(fg)- (17)

3 A New Renormalization for ()

To overcome the negative result of Theorem 1 we introduce[(deand [2]) the
convolution type renormalization

Sl(t—s)=6(s)d6(t—s), 1=2,3,.... (18)
Then (3) yields
[BE(9), BR(f)] = (exoenok N — €x.0€n0 K n) B%i;j:} (9f)
(KAn)V(kAN)

N+n—I1 L
+ > Ou(n. kN, K)g(0) £(0)af af TF7 (19)
L=2

- . N+n—I -
We eliminate the singular terms), * a5t from (19) by restricting to
test functionsf, g that satisfyf(0) = g(0) = 0. We then arrive to the following
Definition of the RHPWN Lie—algebra commutator.

Definition: For right-continuous step function$ g, such thatf(0) = ¢(0) =
0, we define

[Bi(9), BR (H)lrupwn = (kN — K n) BZiﬁif(gf)- (20)
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We can think of (20) as the second-quantization of the coratiwut relations
By, BRlrupwn = (kN — Kn) Bt ¥~} (21)

with involution
(Bp)" = B}, (22)

which bear a striking similarity (except for the adjointae®ndition) with the
commutation relations of the Virasoro-Zamolodchikoys algebra defined in
the following:

Definition: The centerless Virasoro (or Witt)-Zamolodchikay algebra of
conformal field theory (quantum gravity, high energy phygsief. [20]- [22]) is
the infinite dimensional non-associative Lie algebra spdruy the generators
By, wheren, k € Z with n > 2, with commutation relations

B, BRlu. = (k(N —1) = K (n = 1)) Bifg~> (23)
and adjoint condition
(B;;) = B",. (24)
In particular, o R
[B7, Bilvir == (k — K) Bi, i (25)

are the centerless Virasoro (or Witt) algebra commutatidetions.

We remark that the centerless Virasoro (or Witt)-Zamoldktmirw., algebra is
a special case of the atavistic Lie algebra of Fairlie anchdagcf. [14]).

Definition: For scalar-valued differentiable functiorf$x, y) andg(z,y), the
Poisson bracketf, g} is defined by

A Poisson—brackets representation of (21), (22) and (238),i§ provided in the
following Proposition whose proof can be found in [2].

Proposition 2
(a) Forn, k € Zwithn > 2, let f,, , : R x R — C be defined by

fag(a,y) = eyt (26)

Then
{f’n,k(x7 y)’ fN,K('ra y)} :Z(k(N_l) _K(n_l))fn-&-N—Zk-‘rK(‘ra y) (27)
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and _
Fog(@y) = fa—k(z,y) (28)
(b) Forn,k >0, letg, x : R x R — C be defined by
z+iy\" [z —iy k
i) = () (252 (29)
Then

{gn,k(x7y)agN,K(x7y)} =1 (kN - TLK) gnJerl,knLKfl(xay) (30)

and
gn,k('ray) = gk,n(xvy)' (31)

The following Definition provides the white noise form of the, generators.

Definition: For right-continuous step functiorfsg such thatf(0) = g(0) =0
and forn, k € Z with n > 2, we define

i n—1
. E(ar—al at + a k(gy—al
B (f) :=/Rf(t)e2( t’(—tQ t) es@—a) gr (32

with involution . .
(BE(H) =Bl (33)

In particular,
5o k T at—&-al k T
BY() = [ feboed (2000 ) deceha @4
R

is the RHPWN form of the Virasoro operators. We dé[j(f) the second quan-
tized version ofB}.

The integral on the right hand side of (32) is meant in the sémat one expands
the exponential series, applies the commutation relat{2@¥ to bring the re-
sulting expression to normal order, introduces the rentizatéon prescription
(18), integrates the resulting expressions after mutipion by a test function,
and interprets the result as a quadratic form on the expiaheeictors. More-
over, we may analytically continue the paramétan the definition ofB};( )
to an arbitrary complex numbére C and ton > 1. A detailed proof of The-
orems 2 and 3 below can be found in [1], [2], and [3]. Theorem®ides the
expression of the generators of the analytic continuatidheosecond quantized
wWe, and of the RHPWN Lie algebras in terms of each other.

6
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Theorem 2 If f, g are right-continuous step functions such thigd) = ¢(0) =0
and the powers of the delta function are renormalized by tesquiption (18)
then

[Bi(9), BR(N)] = (k(N —1) = K (n—1)) Bifg (g f),  (35)

i.e., the operators??,? of Definition 3 satisfy the commutation relations of the
We algebra. In particular,

[Bi(9), Bi(f)] = (k= K) B}, k(g f), (36)

i.e., the operators?,ﬁ of Definition 3 satisfy the commutation relations of the
Virasoro algebra.

Theorem 3 (i) Letn > 2 andk € Z. Then for all right-continuous step func-
tions f such thatf(0) =

B = S (S S B ) @

m=0 p=0 ¢=0

M

(ii) If n, k € {0,1,2,...} then

71 1)° 8’)+0 A o] "
B Z Z( )( ) 2p+)a Sopre =0 BETTTITUEO(f).(38)

p=0 o=0

4 Lie x—Sub—Algebras of the 1-mode Full Oscillator Algebra
FOA(1)

The program of studying sub-algebras of the (normally @dgmuniversal

enveloping algebra (or 1-mode full oscillator algebra) KDAgenerated by
{a,a’}, where[a,a’] = 1, was initiated in [5] where the following Proposi-
tion was proved.

Proposition 3 For integersn, k € {0,1,2, ...} define
Ag(n) := N"a" , Ap(n) = (a")* N7, (39)
whereN := af a. Then for ally, v, n, k € {0,1,2, ...}

(A1), Ax(y)] =

v o at+pB+k—1
Z Z S%a S%B {Ea,O €3,0 Z (l>5(l) Z Sa+B+k—1l,m N™

a=0 =0 >1 m=0
a+B+k—L
ﬂ +k m’
— Z < I (a + k)(L) Z Sa+B+k—L,m’ N } (40)
L>1 m/=0
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n m—I
[Ap(v),N"] = Spom €m0 Y (l;) m D" s 1w Ap(w+7)  (41)

1>1

(o]

m= w=0

n m—l
[Nn,Ak(’Y)T] - Z Sn,m 6771,0 Z <I;> m(l) Z Smfl,w Ak(w +’7)T (42)

>1 w=0

3
Il
=)

[Ar(7), A(Y)] =

~ m’ —1
Z Syt m? €m?,0 Z <I;) m' Z Syt n Ag(y + N)

m’=0 >1 A'=0
- Z S ,m €m,0 Z F m(L) mZ_L Sm—L,\ A2k:(’7/ + )‘) (43)
L>1 L A=0 7

[Ax (), Ak( ) =

m'—1
Z S—y m’ €m/’.0 Z < > /@) Z Sm/—1,\ Agk("}’+ )\l)]L

m/= >1 =0
m—L
- Z S'ymfmo Z < >m(L) Z Sm—L,\ Agk(’)/Jr)\)T (44)
L>1 A=0
and
[N’Y’Nn] =0, (45)

wheres,, ;, and S, ; are the Stirling numbers of the first and second kind re-
spectively, withsg g = Soo = 1 andsgp, = sn,0 = Sok = Sn,0 = 0 for all
n,k > 1. Moreover, for fixed: € N, thex—linear subspacd (k) of the FOA (1)
generated by the s¢iN™, Ao (n), A;% (n) : m,n, o € N} is ax—Lie algebra
with structure constants given by (40),..., (45).

To study the current—Lie algebra corresponding to thelie algebral(k) of
Proposition 3 and the renormalization prescription (18)pneceed as follows.

Proposition 4 Fort,s € Randn € {0,1,2,...}

n

()" (as)" = su (af as)* 6" *(t — 5) (46)
k=0
and
at as Z Sn k at )k 5n7k(t - 5)7 (47)

wheres,,  and S, ;, are as in Proposition 3 and’ (¢t — s) := 1.

8
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Proof: Itis well known in the literature (seeg.[19]) that if [b, bT] = 1 then for
n>0

n

(bTD) = Spx (b)* (b)* (48)
k=0
and
(bH)" ( Z Sn. (bTD)F (49)

For fixedt, s € R formally define

ay Qg

b= —— = —— 50
3(t — 5)172’ 3(t — 5)1/2 0)

Then[b, b'] = 1 and so (48) implies
(a] as)" o(t —s)~ Z Sk ( (a))* (as)* 6(t — s)7* (51)

from which we obtain (47). The proof of (46) is similar.

Definition: For a test functiorf as in Definition 3 and for integers & > 0 we
define

£ [ Ny ok (52)
A= [ foal Ny ar (53)
)= [ s Ny (54)
whereN; := a] a;. Notice that by (39) and (2)
(AR =ApDT 5 () = N(f) (55)
while for k = 0 we have
AR(f) = A5 (N = N"(f). (56)

Proposition 5 With the renormalization prescription (18), for all tesnfttions
f as in Definition 3 and for alh, k > 0

Ak (b it >k

Ay (f) ifn<k 7

By (f) :{
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In particular, for k = n using (56) we obtain

By (f)=N"(f) (58)
while for k = 0 andn > 0 we have

B(f) =A%) (59)
whose adjoint is

B (f) = Ay (f)- (60)

Proof: Let f be atest function and let > k. By Proposition 4
F(0) (@)™ (@o)* 8(t = 5) = f(t) (af)"~* (a))* (as)* 6t — s)

k
=" sk F(t) (a])"7F (af ag)™ 0P (- 5). (61)

m=0

Taking [, [ - - - dsdt of both sides of (61) and using the fact that by the renor-
malization prescription (18) and the condition tifavanishes at zero only the
m = k term on the right hand side of (61) survives, we obtain (57hfe> k. If

n < k, then

BE(f) = (BEF)" = (At_ (D) = Af_. (). (62)

Proposition 6 With the renormalization prescription (18), for all testfttions
f as in Definition 3 and for all integers, &k > 0

AR(f) = By (f) (63)
and
AR = BIHR (). (64)

Proof: By Proposition 5

A (f) = Alesny—n(f) = Buii(f) (65)
which is (63). Equation (64) is the adjoint of (65).

The current—Lie algebra corresponding to thelie algebral(k) of Proposi-
tion 3 and the renormalization prescription (18) is destiim the following.

Proposition 7 With the renormalization prescription (18), for all teshfttions
f andg as in Definition 3 and for all integersc, &/, v, v/ > 0

Ky + by + kYA 1) e

/ (66)
(K'y 4+ ky + kAL TR N fg) ik <K

(AL (9). AL(D)' = {

10
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and
147 (). N7 (f)) = Ky AL "N (f ) (67)
N (9), AL = ko AT (F g)! (68)
A, AL ()] = (k' = k) AT (f 9) (69)
AL (D AU = (ko =KV AT (f )] (70)
[NV(f), N (g)] = 0. (72)

In particular, for k = &’ (66), (69) and (70) reduce to

[A7 (9), ALY = k (v ++ + k) N7 1 (1 g) (72)
[AL(F), AL (@) = k(Y —v) AL " (f g) (73)
A7 A =k =AY (g (74)

Proof: We will use Propositions 5 and 6. Fbr> &’ we have
(A7 (9), AL = [BL 410 (9), BI* (Dl rmpwn
Y
=((+K)(v+k) —vy)BI i (f9)
’ ’_ T
= (K v+ kv +EK) AL (fg) (75)

which is the first half of (66). The second half of (66) is prdwa@milarly. To
prove (67) we have

(A7 (9), N ()] = [BY 41 (9), BY () rpwn
= ((f + k)7 =) B k()
=Ky AL N (fg). (76)
Equation (68) is the adjoint of (67). For (69) we have
[47(9), AL ()] = B4 (9). BY o (P rrpw
=(Y(y+k) = (Y +K)7) Bﬁlflliw_l(f 9)
= (kv —vK) AL (f o). (77)

Equation (70) is the adjoint of (69) and equation (71) fokofsom (66) for
k=Fk =0.

11
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In view of Propositions 5, 6 and 7, the study of the Fock regmestion of
the RHPWN Lie algebra of Definition 3 described in the nextisectapplies
equally well to the Lie algebras generated by the operafdbebnition 4.

Note: For anti-normally ordered generators, in the 1-mode @asé] = 1 we
have
n(,t\n,T(m—n) if >
an(a'l')m — {a’ (a ) a ? m=n (78)

an—mam(aT)m ; if n > m.
This leads to the class of generators
By (n) := a*N?; Bl (n)=Nr(a"*; N,=aa’; k,n e {0,1,2,..}. (79)

We have

Bi(n) =Y <Z> a"Nh =3 (Z) Ay (h). (80)

h=0 h=0
A similar expression can be also obtained for thgh). The following proposi-
tion (which gives the well known oscillator representatadrihe Virasoro alge-
bra and whose proof can be found in [13]), shows that inide (see Definition
3) there are strictly smaller Lie sub—algebras. It is noaciéthere are strictly
smaller {.e., not obtained by restricting the powers of the number opetatbe
larger than a fixed numbesg)-Lie sub—algebras.

Proposition 8 For m € N, let

1 1

Ly = —a?™ el = — ¢®"N,. 81

7 7 (81)
Then, the linear space generated by the set
{Lm :m € N}

is a Lie subalgebra of the FOA (1), isomorphic to the Virasalgebra:
[Ly, Lin] = (n—m) Ly ym.

5 Truncated Fock Representation of the  n-th Order RHPWN x—Lie
Algebras L,

Definition: Forn > 1 we define then-th order RHPWNx«—Lie algebras_,,

as follows: (i)£; is thex—Lie algebra generated by} and BY, i.e,, £, is the
linear span of BY, BY, B}. (ii) £ is thex—Lie algebra generated by and
BY, i.e, Ly is the linear span of B3, BY, Bi}. (iii) For n € {3,4,...}, L, is
thex—Lie algebra generated Wy} and BY through repeated commutations and
linear combinations. It consists of linear combinations@ation/annihilation
operators of the fornB?, wherex — y = kn, k € Z — {0}, and of number
operatorsB? with z > n — 1.

12
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Through white noise and norm compatibility consideratjahg action of the
RHPWN operators o was defined in [4] as follows:

Definition: Forn, k € Z and test functiong

0 fn<korn-k<0
Bl (f)® =< By *(f) o ifn>k>0 (82)
A e f)dte ifn=Fk.

Remark: In what follows, for all integers:, & we will use the notatior3}! :=
B} (xr), wherel is some fixed subset @ of finite measure: := p(I) > 0.

Remark: For allt € [0, 400) and for all integers:, & we will use the notation
Bi(t) := Bl?(X[(),t])-

It was shown in [4] that if the RHPWN action ah is that of Definition 5 then
the Fock representation no-go theorems of [6] and [2] extenitie RHPWN
x—Lie algebras’,,, wheren > 3. The generic element of theLie algebras
L,, of Definition 5 is Bf}. All other elements of,, are obtained by taking ad-
joints, commutators, and linear combinations. It thus malense to consider
(B2 (f))" ® as basis vectors for theth particle space of the Fock spagg as-
sociated withZ,,. A calculation of the Fock kernél By)* @, (B} )* ®) reveals
that it is the terms containing3 ™ ® that prevent the kernel from being positive
definite. TheB32™ & terms appear either directly or by applying Definition 5
to terms of the formBy ® wherez — y = 2n. In [4] the Fock kernels were
computed by applying Definition 5 and by truncating singtdéems through the

n—1

following definition of the action of the principal,, number operatoB;, ~; on
the basis vector&B /)F®. Sinces; and£, do not respectively contaif?

andBj , singular terms appear only far> 3. The Fock space®; and.F; are
therefore not truncated.
Definition: In the notation of Remark 5, for integers> 1 andk > 0,
Biot (By) @ = (24 kn(n - 1)) (B @, (83)
n

i.e.,, the number vector3%)* ® are eigenvectors d8”~1 (the principal number

n—1

operator ofz,,) with eigenvalueg2 + kn (n — 1)).
The proof of all Propositions presented in this Section afolind in [4].

Proposition 9 For all k,n > 1
k—1 2 i
B &, (BM)E ®) = klnk pa b, (84)
0 0 2
=0

13
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TheF,, inner product(y,,( f), ¥ (g)). of the exponential vectors

) = H % Bo (x1;) @ ) (85)

where¢ := ", a; X7, is a test function, is therefore given by

(1(f), 1(g))1 = efe T 9Ol (86)

and forn > 2

___ 2 nf1-r?c-1 ¢
(Pt} = & T (1 . f(t)g(t)> “ e

wherelf(t)] < 5/ moegy andlg(t)] < 5 /5o -

The Fock space inner product (86) is associated with theddberg-Weyl alge-
bra and the quantum stochastic calculus of [18]./#ef 2 the Fock space inner
product (87) has appeared in the study of the Finite-Diffeesalgebra and the
Square of White Noise algebra in [9,10,12], and [15].

Definition: Then-th order truncated RHPWN (or TRHPWN) Fock spdeis
the Hilbert space completion of the linear span of the exptalevectorsy,, (f)
under the inner produgt, -),, of Proposition 9. The full TRHPWN Fock space
F is the direct sum of thé,,’s.

A Fock representation of the TRHPWN operators is given in tilewing:

Proposition 10 For all test functionsf := 3", a; x;, andg := . b; xs, With
I;nI; =ofori#j,andforalln > 1

/f (Ot () + 20D D) (grefe®) (€8)

2 Oe
Bg(f)wn(g) = &|5:0wn(g+6f) (89)
Moreover, for alln > 1 and test functiong, g, h
B vt = [ 6 9(0) v (h)
n(n—1) 02

le=p=0 (Un(h+eg+pf(h+eg)?)—¢n(h+efh?+pg))
(90)

2 Oedp

14



Renormalized Powers of Quantum White Noise

Using the prescription

BN N0f) = e (BL0) BE() ~ BR(D BL(9) (@)

and suitable linear combinations, we obtain the repreientaf the By (and
therefore of the RHPWN and centerless Virasoro (or Witt)—dmaichikov-+
commutation relations) on the appropriate Fock spagce

6 Classical Stochastic Processeson  F,

Definition: A quantum stochastic process= {z(t) /t € [0,00)} is a family
of Hilbert space operators. Such a process is said to baadhsdor all ¢, s €
[0,00), 2(t) = z(t)* and[z(t), z(s)] := z(t) x(s) — z(s) z(t) = 0.

The proof of Lemma 4 and Proposition 11 below can be found]in [4

Lemma 4 For eacht € [0, c0) let X (¢) be a random variable with distribution
given by the density

ot—1 t+ix t—ix

pt(I) = 2 B( 2 ) 2 )7 (92)
where
B(a,c) := D) Te) _ /1 2P (1—2)tdr ; Ra>0,Re>0 (93)
T Tlato) o ’ ’

is the Beta function, and for > 2 let

n3(n —1)

Yo (t) = 5

X(t). (94)

Then the moment generating functiont§f¢) with respect to the density

G =p_2n (95)

n3 (n—1)

t )

wheren € {1,2,...},is

<65Yn(t)> _ (Sec (\/n3 (712* 1) 5)) 7B (n-1) . (96)

Proposition 11 (Vacuum moment generating functions)in the notation of
remark 5, for alls € [0, 00)

(s BEOTBYD) § &), — %t (97)
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i.e.,x1(t) := B}(t)+ B} (t) is Brownian motion (cf. [16], [18] ) while forn > 2

2nt
. 3 . 1 n3 (n—1)
(e (BEOHBLD) & o), — <Sec <\/% 5>> , (98)

i.e., x,(t) = By(t) + BY(t) is for eachn > 2 identified with the continuous
binomial/Beta procesg,, (t) of Lemma 4.
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