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1.} Quantum stochastic processes.

Let 28 be a x-algebra with identity {(usually it wil be a C*- or

& W*-algebra)., A gquantum stochastic process over & indexed by R is

defined by a triple [, (jt)tETR’go} where
-7 is a x—algebra with identity.
=3 : B —/ is an embedding (teR).

- @ is a state on &

Example 1.) Classical real valued stochastic processes.

Let (§, %,P) be a probability space and let Xt : (Q, F,P) — R
(teR) be a real valued stochastic process. By choosing

- 9B = LDQ(JR) = algebra of all complex valued, Borel-measurable functions

on R,
- = L2, #P).
- 3, feB «— 3 (f) =foxt = f(xt) ; (teR) {1.1
- ¢la) = andE ; aegd. ‘.

The triple {s&#, (jt) , @)} is a quantum stochastic process in the

teR
sense defined above. Conversely, one easily sees that to a given a
gquantum stochastic process {4, (jt) ,@} such that &/is an abelian
C*-algebra, one can associate a classical stochastic process, characre-
rized {up to stochastic equivalence) by the property of having the same
finite dimensional correlation. functions as the ini.tial one. Thus,

since the quantum stochastic processes include the classical ones, in

the following we shal only speak of stochastic processes.

Example 2.) (4 "small" guantum system interacting with a "larper" one).

Let H, and F be twoe Hilbert spaces. One might regard H, as the

287

quantum state space of a "small system" interacting with an "extended

N . . . o
system" with state space F {a typical situation is : H, =€ ; F -

" some Fock space); in this case H; @ F will be the state space of the

"composite system". The evolution of the “composite system" is given
by a l-parameter group (Qlt) of unitary operators on H; ®F :

U, € A, ® F) =B(H,) OB(F) (1.2
and there is a natural embedding j, : B(H,) < B{H,) @ B(F) of
the algebra of the "small system" inte the algebra of the composite

system, given by :

o : beB(Hy) < jo(b) = bB1 € A(H,) @ B(F) (1.3
denoting, for each teR and ae B(H )8 B(F) :

- +

ut(a) = %t°a' @lt (1.4

one can define, for each teR, the embedding :

Jp r bEB(He) <= (b} = v (§o(b)) € B(H,®F) (1.5
Usually a state @ on BB(H, ®F) is given (@20 and 6(1H0®1F) = 1)
and, if we are interested only in the time evolution of the "small
system", then all the interesting physical quantities can be expressed

in terms of the correlation functions :

(G, () eeed, () (1.
1 n

where bjeé?(l-{o) (j =1,...,n) and tl,...,tn are real numbers which

need not to be neither time-ordered nor mutually different. Choosing

B= BMH,), - B, 8F), and (j)

cep 9% 10 (1.%), one ocbtains

a quantum stochastic process in the sense defined above.

Remark 1.) Both in examples (1.) and (2.) one could have choosen a

smaller algebra s - for example the norm (in Lm(ﬂ, #,P) or in

A (HB®F)) closure of the x-algebra gensrated by the family

{jt(ﬁ/}’) : teR}. In genersl, if & is generated, algebraically or
topologically, by the family {jt(:??) : teR} , we say that the sto-
chastic process {47, (jt} ,®} is minimal. In the following, unless
explicitaly stated, by "stochastic process" we will mean "minimal

stochastic process",
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Remark 2.) The occurrence of not necessarily time-ordered correlation
functions in (1.6) arises naturally, for example in the computation

of moments of observables of the form

le;ljsk(bk} £ 8, s <S5 bienb € B(H,) |

Usually some commutation or anti-commutation relations (arihsing for
example from Einstein causality) are available, and one is ;.*educed
to time-ordered correlations. Finally, by polarization and eventually

choosing some b_ equal to 1, one verifies that the correlations (1.6}
J

are uniquely determined by the so called correlation Kernels :

7 o . 2 '
Wt ot (bl,...,bn) = g)(ijt (bl)-...-_]t (bn)l ) (1.7
1 n . n
(b e# ; £ eR ; j=1,...,0). In [ 3 ] an abstract characterization
J J

of the correlation Kernels is given, and it is shown that any family
of correlation Kernels defines (uniquely up to stochastic equivalence)

a stochastic process.

2.) The local algebras associated to a stochastic process

Given a stochastic process {.&, (jt) , @) over a*x-algebra

teER
with identity &, one can define, for each sub-set I€IR, the algebra
= i . 2.1
A= N[ 3.8 ¢

where the right-hand side of (2.1) denctes the algebra generated by
the set {jt(,@) : te€l} (we leave unspecified the topology under
which this elgebra is closed : this will be clear, case by case, from

the context). We will use the notations :

&ft] = \égt J'S(gé’) (2.2
.,cf[t "Nt jS(EE) : (2.3
PEERERC (2.4
Clearly

st —= MS] ES dt] (2.5

A family (ﬂs])sE]R of sub-algebras of &, satisfying (2.3), is called

a filtration. Given a family & of sub-sets of R a family (L;fl) of
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sub-algebras of &7 satisfying :

= == c )
I=J >J¥I ._\2?\j (2.6

is called a family of local sub-algebras of &/ or simply a localization

on & based 7.

Example. In the case of a classical stochastic process (X )} = cf.
t'te

the Example (1.} ir Section {1.), the 1local algebras .911 {IER) are
sub-algebras of L™(%, ?I,P), where 9} is the O-algebra generated by
the random variables (X )

t'tel’

Given a family (.« )

=" of local algebras (Sef) a l-parameter group

of autemorphisms {sometimes endomorphisms) of & is called a shift

(with respect to that localization) if :

utdI - LQ{I it i VEER ; ISR ; (covariance) (2.7

for any I<R and t&€R. If the localization (MI) is defined by a

stochastic process through (2.1}, then (2.7) is eguivalent to :

ut.Js =, . ; ¥ os,teR (2.8

Example. Fer a classical stochastic process (Xt), one has

. o , fee)

3 FELT®RY 0 5 () = 1)l (@, £ Py (2.9
X)) = : '

u (fx)) = fO ) 5 s,teR (2.10

A stochastic process (.o, (jt) +9¢} oo Bis called stationary, if there

exists a shift (u t) on & (i.e. a l-parameter automorphisms group of

of satisfying (2.8)) such that :

gru =g iV LeR (2.11

Recall that a conditional expectation from & onto a sub-algebra @

is a linear map E : & — % satisfying :

E(1}) = 1 ; E{ca) = cB{a) ; Vaes ; Vce¥ (2.12

Sometimes (in classical stochastic processes - always for a natural

choice of the local algebras (‘“’I)) for any local algebra &f’z (ISR)

there exists a conditional expectation EI H -~ MI such that

grE =9 (2.13

o
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i.e, compatible with the state ¢ . The family (EI) satisfies

IS == EI-EJ = EI (projectivity) (2.14

and if the state @ is shift-invariant, then :

. = . . 2.15
utEI E ut FR N (

T+t
Any family (EI} of surjective conditional ezpectatiens EI ':fﬁiﬁ—rﬂl'

will be called projective if it satisfies (2.14) and covariant if it

satisfies (2.15), In particular, in case of a filtration (a locali-
zation based on the 'past half-lines" {{-®,r] : t € R} )} conditions
{(2.143 and (2.15) become :

L= E =E 2.16
s s1'E) = B (

u - *E =

. 2.17
t sl Es—f—t} Y ¢

3.) Markov processes and dilations.

A markovian stucture on a *-algebra 4 is defined by the assignment

of :
- a "past-filtration'" (mt])t cer " E= 2
- a "future-filtration™ (,si[s)S e O K-
- for each t € R - an "algebra at time t", .ﬁft such that :
o = k=4 3.1
t t] N [t (.
- A projective system of conditional expectations Et‘} -4 -—nﬂt]
i.e.
st ="E +*E . =F 3.2
: SO ‘
enjoying the Markov property :
Cof ;¥ teR (3.3

Eti(d[t)* t
Tf the localization {(.Mt]) ) (.M{t) , (Mt)} admits a shift ( ut),i.e.

u = e U e T Frapr Fovt = A (3.4

and if the family (Et ) of conditional expectations is covariant, i.e,

]

+F =F . .
Yy s] s+t ] Uy (3.5

then we speak of a covariant markovian structure .

Example Let Xt : (8, FP) — R (t€R) be a classical Markov processi
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let Si]’ «9‘1, -9"_[': be respectively the past, present and the future

c-algebras; denote

EARHCE I RIAES N CE AN

P
and let Et] = E (* |9°'t]) be the P-conditional .expectation on @t}.
Clearly these objects define a markovian structure on &. - a covariant

markovian structure if the process (Xt) is stationary.
The connection between markovian structures and semi-groups is
made precise by the following

Theorem {(3.1) Let (ES } be a family of maps {not necessarily condi-

]

tional expectaticns) satisfying conditions (3.2) - pmjectivity — and

-(3.5) - covariance. Denote MG the vector space generated by the family:

E . +E t £z20 .

{ o] Ut O](&fo) } (3.6

(‘Mo = o in the markovian case), and define

t ~

P =E - f & teR (3.7
o] t o

then the family (P) is a semi-group of J into itself.
o

Proof. For aOE % and s5,t€R one has :
s_t
PP (ao) B Eo] Us Eo] ut(ao) B Eo}Es] Uy (ao) -

s+t
= Eo] usi-t:(ao) = F (ao)

If the maps (Et ) are completely positive, identity preserving,

]

C
(e.g. conditional expectations) then the semi-group (P} is completel
p ¥

positive identity preserving. Any such a semi-group will be called a

markovian semi-group on MF;O. If _g;; is a non-commutative algebra, one
alsc speaks of a quantum dynamical semi-group.

In the following we shall only consider the markovian case, i.e.
,g%:] = ._gafo . Thus, denoting % = Mo and j, = the identity embedding
'mfo ¢ g , one obtains the commutative diagramme :

P R Yol o
. -1
JUJ jo (3.8
2 - %
P
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-1
where jo denotes the left inverse of jo'

Definition (3.2) Let % be a %¥*-algebra (with identity) and (Pt) -

t
a markovian semi-group on #. A %¥*-dilation of the pair {#, (P )}
iz a quadruple {&, 3y Eo’]’ (ut)} making commutative the diagramme
(3.8) and such that jo: A “— & is a ¥ *-embedding; .('_Irltr) is a

l-parameter automorphisms group of &; E : & — o is a norm-one
o :

]
projection satisfying : )
Epru 3, (B)) ey (B) v tz0 (3.9

If, moreover, denoting & - the algebra generated by

lt

{Us'jo(.@) : szt} one has :
-1

E ey oF _» - i .

o] e o e |M[t Eo]l‘“’[t itz t(3 10

then we speak of a (covariant)} markovian dilation of {4, (P}}

Finally if there exists a state (weight) ¢ on & satisfying :
B = H U = R .
4 t] P P . @ 0 (3.11

t
then we speak of a stationary markovian dilation of {2, (P )}

Remark One easily sees that there is a one-to-one correspondence
t
between covariant markovian dilations of {#, (P )} and covariant
markovian structures (as defined at the beginning of this section) with
t
o =B and E »u *+j =P
o o] t “o
A beautiful classification theory of dilations of completely positive
gsemi-groups has been developed by B. Kummerer and W. 'Schroder. In the
classical case, i.e. when & is abelian we know that :
t

i) any markovian semi-group {P ) on £ has a covariant markovian

dilation (obtained threough the well known Daniell-Kelmogorov

construction).

t

ii) (P") has a stationary markovian dilation if and only if there exists

a state (weight) ¢ on # such that

= o eP" ° (3.12
P N .
In the quantum case the situation is more complicated and only recently
R. Hudson and K.R. Parthasarathy [ 6 ] have shown that the statement
(i} holds; while A, Frigerio [ 5 ] (cf. also the paper by A. Frigerio

and V. Gorini [ &4 ]) has found the correct guantum analogue of the
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statement (ii),
In the following sections we will describe the main technical tools
-through which the solution of the above mentioned problems has been

achieved.

4 Perturbations of semi-group : the Feynman—Kac formula.

[}
Let (&, (mft]), (). (&f[t), {uds (Et])}

be a given covariant markovian structure, and let be given a covariant

family of local algebras {of ) (sst ; s,tEIR+) such that

[s,t]

[ .
o) € AN 41
A markovian cocycle (with respect to the structure defined above) is
a l-parameter family (M ) of elements of & such that :

0,88 20

M € o ¥ t20 ; (markovianity) (4.2
o, [o,t] .
M =M . M H 1 .
o, t+s s uS( O,t) (cocycle property) (4.3

Denoting, for s<t, M = u (M
s,t s o,
(M )s<t is such that :
s,t

1

¢ S), then the two parameter family

M E o ; ¥sst (4.4
s,t [s,t]

. <M =M ; r<s<t (4.5
r,s s,t r,t
ut(Mr,s) = Mr+t,s+t (4.6

and the three conditions above are those which, in classical probability

theory, define the so-called multiplicative functionals associated to

a given family { & } of o-algebras. Typical examples are given by :

[s,t]

A = Lm(ﬂ, F,P) 3 (R, %F,P) — a Wiener probability space; (W )

~ a
t'tz0

real valued Wiener process;
_ Lot t _
Ms,t =exp ¥ { fs V(Wr)dr + Is a(wr)dwll (4.7

with V,2 : R — R - sufficiently regular functions.

Theorem (4.1} Let (MO S)S> be a markovian cocycle and define, for
, o

>0
Pa)=E (M -u%a )M )2 cw
o o] o,t t g o,t” " o o

(4.8
It follows that (Pt) is a semi-group & — & .
o o
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Proof. For a € of and s,tER+, one has :
—_— o o

PtPs(ao) - Eo](Mo,t[ uz.{Eo](MO,S. u:(ao)‘M:,s)}].Mz,t) =
= Eo](Mo,t. Et]{ uf(Mo,S). r'!ZH:{acu). u:(Mo,s)-l-]lMZ,t) -
= Eo].Et](Mo,t. “2(Mo,s)' u:+t(ao) ’ uz(Mo,s)+. M:,t) '=_
= Eo](MO,Hs.ut+s(ao)-MZ,t+s) - Ft+s(ao)

Any semi-group (Pt) defined as above, will be called a Feynman—Kac

t Q
perturbation of the semi-group PO =FEF ,* ug (t>0).

o]
Formula (4.8) will be referred to
as the Feynman-Kac formula.This formula generalizes several known
constructions :

1.) The classical Feynman—Kac formula. This is obtainad by choosing,

in the notations of formula (4.7)
t
M = -1 V(W )d 4.9
ot - FXP zfo (W_)ds (
where V is a suitably regular function {e.g. measurable bounded below).

2.) The interaction representation ., This is obtained by choosing the

markovian structure to be trivial (i.e. all the local algebras are

egual to & and E is the identity map on &), and the cocycle
o

]
t
M LS U . to be unitary. In this case, writing . instead of P~ the
a, o,
Feynman-Kac formula becomes :
U {a) =U ; aEcs (4.10
t o, t

The cecycle property then assures that (ut) is a l-parameter auto-

Q +
e Uplaiy

morphisms group of & (cf. the proof of Theorem (4.1), with all cthe
conditional expectations equal to the identity).

The pair {( uz), (UG t)} where ( uz) is a l-parameter automorphisms
group and (UO t) is a’ unitary .(markovian) (u:)—cocycle is called an

H

interaction representation for the I-parameter automorphisms group

( Ut) defined by {(4.10}. The connection with the notion of interaction

representation usually met in physics is given by the following formal

considerations : let (u:) be of the form :

o ol 0 + )
ut(a) =0]Ita OZ/t ; acs (4.11
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o
with %t = exp itH, - a unitary in &/, and let HIEJZ? be a self-adjoint

operator. Define

: o} o] O+,

H = = @ Y s B

I{t:) ut(HI) U ; teR (4.12
and let (UQ t) be defined by :

d ! )
-~ = iU eH P U =

dto,t * o,t I(t) ' To,0 01 (4.13
then (UG t) is a unitary { ut)—cocycle {(markovian in an appropriate
1ocaiization) and

w =v A

T a,t t
is a l-parameter unitary group in & satisfying the formal equaticn
g_t %t = i%t'[Hn + HI] (4.14
In many concrete examples either H0 + HI or Hl(t) are not well defined
as operators so that. equation (4.13) or (4.14) has no rigorcus meaning.
But we will see that in many cases it is still possible to define, using
quantum stochastic calculus, & markovian cocycle (Uo,t) and a l-parameter

unitary group (%t) having all the properties of the formal solutions

of the equations (4.13) and (4.14) (cf. Secrion (6.) in the following).

3.) Perturbations of the identity semi-group. Consider a markovian
structure as in the beginning of this section, and let & bhe of the
form :

o/ = B(H,) SH(F) = B(H, OF) (4.15
where H, and F are complex separable Hilfert spaces. Assume that the

a
shift (ut) as the form :

o o
=&, %X V
up o N {4.16
o
where ¢, is the identity map on QB(HD) and (Vt) is a l-parameter auto-
morphisms group of #{(F). In this case the semi-group Pt = Eo}‘ ui is
o

the identity semi-group on .ﬂ’oé’ .@(Hﬂ)@l, and its Feymman—Kac pertur-
bation with respect to a unitary markovian cocycle (U t) has the form:
D’

L +
Pia) = ca .
kao) Eo](Uo,t % Uo,.t) (4.17

A semi-group of this form will be called a Feynman—Kac perturbation

of the identity semi-group.

Theorem (4.2} (cf. R. Hudson - K.R. Parthasarathy [ 6 ] , A. Frigerio,

V.Gorini [ 4 ] ,A. Frigerio [ 3 1 ). Let H, be a complex separable
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Hilbert space. Any markovian semi-group on #(H;) admitting a Lindblad
generator has a covariant markovian dilation which is & Feynman-Kac

perturbation of the identity semi-group.

5.} Perturbation of stochastic process .

In the preceeding section we have shown that any markovian coéycle
gives rise to a perturbation of a markovian semi-group. In this section
we show that any unitary markovian cocycle gives rise to a perturbation
of a covariant markovian structure which is still a covariant markévian
structure. This is a purely quantum-probabilistic phenomenon, since
in the abelian case unitary markovian cocycles give rise only to tri-
vial (i.e. identity) perturbations. _

Let (), (at) (o) ot 00 Cu) s (B )

be as in Section (5.); let (UO t) be a unitary markovian cocycle, and
'

define
u (a) =0 = up(a)'U+ s aesf (5.1
t o,t ot o, t
Then ( ut) is & l-parameter antomorphisms group of &/ and defining :
- . _ 5.2
'@g = MQ 3 '@t th( Jgg) < ﬂ[ O,t] (
one easily verifies that for each ac &
. = E . a) (5.3
Y Es] (a) s+t Ui (a) .
thus the family {Et]) is also covariant for the evelution ut) defined
by (5.1).
Define now, for t =z 0
= = (5.4
gg[t \é;t us(ga) \ézt us(ﬂo)
and sdmilarly for gj’t]_Remark that :
+
c T 2| : (5.5
'@[t— Uo,t [t o,t

‘whence, due to the Markev property of (Et) :
+ +
== +F U CU = U = () = & (5.6
Et}(‘@[t) Uo,t t}(‘d[t) o,b - o,k Tt o, Mg t
Thus i (E .) is markovian also with respect to the localization (@t]),
r

!
(égt),(z@[t) or equivalently, defining :

- 7
% = \/teIRJrut(ﬁ") (5
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the family {4, (.@t]), (%t), (ﬁ[t}, {ut), (Et])} is still a covariant

markovian structure. In particular, for any state 930 on é&o = ..e’fo,

defining @ = ¢ EO] (state on # ) ; j, = the identity embedding
— B .3 = *j¢ (tz 0), the tri i i

.9?0 i, u o {(tz 0) e triple {7, (Jt)tg O,gv} is a

(markovian) stochastic progess.over Mo, in the sense defined at the
beginning of Section (1.). A= shown by A. Frigerio and V. Gorini [4],
[5]; (in the case of boson dilations) the process will be stationary
if and only if the asscciated semi-group satisfies a detailed balance
conditions. More generally, in the framework of local algebras, it can
be shown that the stationarity of the process is related to the behaviour

of the semi-group under appropriate "time reflections” (ef. [1], [2]}.

6.} The Wigner-Weisskopf atom .

In this section I will cutline some results obteined in collaho-
ration with D. Appliebaum and which will be published elsewhere. For
the description of the Wigner-Weisskopf model we follow the exposition
given by W. ven Waldenfels in [9] and we also refer to this paper for
a more complete discussion of the physical limits of this approximation,
In its simplest version the medel describes a 2-levels atom in inter-
action with an electro-magnetic field. In the "rotating wave approxi-
mation" the system is described on the Hilbert space
# - cogc ) vels, . 7, (6.1
vhere A is a finite set (indexing the frequencies of the EM field),
[Al  denctes the cardinality of ! and, for each A€A, f)\; T'(C) is
the Fock space over the Hilbert space € {with scalar product <u,v> = uv;

u,ve ). On each space 5’7')\ the creation and annihilation operators

+
B)\’ B)\ are defined in the usual way and they satisfy the commutation

relations :
+ + +
[B)\ 3 B)\|] :6)\}\| 3 [B}\ 3 BA'] = [BA s B)\'] =0 (6.2
Intreducing the spin matrices :
_ @0 . (01 i -1 0
=0 o 59 =0y g 50 =%, ) (6.3

The hamiltonian of the system in the rotating wave approximation is :
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= +H,. +H
Htot. Hat. HEM I

-+
1B B ] +
(wos @ D+ 1) (w +w0)18B8 ]

- +
B . +g.083)]
* 1) 5 en(80,®8, 7088 _
where +ua_is the frequency of the )-th osciliator and gArls the
- Q .
coupling constant of the atom with ©he A-th oscillator. Rewriting Fhe
hamiltonian as

+
- = 14 1 @B
Hor. =y vy ~w o0l 9 10BB, I+

BB + ®B_ + G®B)}
L cpley 1 @85, g0 @B, + 80

and remarking that H and H1 commute, we we reduce ourselves to the
o N

consideration of the single term

H =H 0+H_[Z)\ ml®BB]+[Z}\6A(gko+®Bk+g)\o @B)]

"
and H, is described in interaction representation using Hlo as ''free

part'" and H as "interaction part". This leads to the unitary cocycle

U =1 defined by the equation
t o,t

U =—iUH(t} U =1
- t t o]
X ) B'(t)
= B E ®B (t) + 0 ®B (t
K0 = ) (80,08, + o 6B -0 aB, -5
where
i,k
= B . 3
3, (0 erﬂg)ﬂ@ P N
The commutator between B (t) and Bg(s) is :
-iw (t -5
[B,(6) , By(s)] =) g - X, (t-s)

while all the other commutators vanish. .

Introducing on HB(F (EJ I)} the quasi-free state & characterized by
= ey -
B - 6 »
= &
cé’(B)\Bu) 6)41 N
(BA a physical constant), one finds

£(8,(t)B () = &L = 0
£ (8, ()81 (=)) Dgllm + 8007

The Wigner-Weisskopf approximation is obtained, from the rotating wave

It

approximation, by replacing :
KA(t—s) = x+*8(t-s) {xe()

- KT
6 -8 = exp( hmO/ )

1 - exp(—hm%/KT)
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This means that one substitutes for B (t) and BT (t) two operators F(t),
F (r) satlsLylng :
(R L R(s)] = [FT(o) , F(s)) = 0 (6.4
[F(t) , F'{s)] = x&(t-s) - (5.5
and on the algebra generated by the family {F{t), F {t)} one 1ntroduces
the quasi-free state characterized by

é(F(t)'F(s)) = &(F‘(t)'F (8)) =0 (6.6
EF(E)F ()Y = (1 +8) &(t-s) (6.7
With these approximations the equation for the unitary cocycle becomes
d

EEﬁ Ut = -iUt'H(t) ; Uo =1 (6.8
B(t) = ¢ F(t) +0_ ®F () (6.9
Equation (6.8) is purely formal because, due to (6.5), (6.7) and (6.9),
H{t) is not a well defined operator but an operator valued distribution.
In analogy with the classical procedure von Waldenfels [9] introduced
to metheds for the solution of equation (6.8) :

I.) The "Stratonovich method”, corresponding to the "singular coupling
limit method" in the physical literature, consisting in three steps :
i) regularize the covariance with the substitution, in (6.3) and (6.7)

§{t-8) ——s Kg(t—s) for some smooth function KE(').
ii) solve the corresponding ordinary differential equation, finding
a cocycle UE(O,t).
iii} determine the limit of UE{O,t) ~- and of the associated process

{Section (5)) as € —» 0 and Ke(t—s) — 6(t-8).

I1.) The "multiplicarive Ito integrel method", (corresponding to the
approximation methods in classical probability) in which - instead of
the covariance - you regularize rhe fields. This can be done in several
ways. In [ 9 ] one considers for each fixed T EﬁR+ a partition
z = {0=t < t1< L < tn=T} of the idnterval [0,T] and introduces the

o
piecewise constant fields :

Ftys —— | k+F(T)dT = F{y : <t
z tkﬂ b (t Eyr k+1]) k k+1

One then solves the ordinary differential equation :
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d

=— U (t) = -il0 (t)«H (¢t

U (0) = -0 (6)eR (1)

and studies the limit of U (t)} (and of the corresponding process) as
z

iz = maxk(t +1_tk) — O .

k

For the Wigner-Weisskopf model the existence of the limiting
cocycle (and of the corresponding process) was established .by v‘c?ln
Waldenfels [9] in both cases (I.) and (II.). A third possibility, is
to interpret (6.8) as a quantum stochastic differential equation ‘and
use the results of R.Hudson and K.R. Parthasarathy [6] to estab—
lish the existence, unigqueness and unitarity of the cocycle U{t).
Namely, one considers the Hilbert space
MR, de)) 8T (2 R ,de)7) = #
where I'(H} denotes the (boson) Fock space of H and H denotes the
cenjugate Hilbert space of H. On this Hilbert space one considers the
representation of the CCR with creation and annihilation operators
given by :

F(g) =1/\-(ccsh<13'a()(ta’t])®l +l/*?sinh®'1 ®a+(f )

{o,t]

[o,t]) ®1 + ﬁ_sinhé-l ®a()_([0,t])

where a(+) and a (*) are the annihilation and creation operators over

F+(t) = /fcosh¢°a+(x

F(LZGR+)), and by definition, y= 2 Rex, and :

1 g exp{-wy /KT) _
By ——— b = =0
cosh’® = 1 = exp(—w /KT) ° sinh 1 - exp(—wo/KT)
o

With these notations the unitary (markevian) cocycle Ut is defined as
the sclution of the quantum stochastic differential equation
+

dUt = Ut { (-1 G+® ¢F(t) - ic ®dF () -

z i .10

- v/, {cosh ¢G+a_®1 + sinlfd 0_0+®1)dt {6
Dencting E the conditional expectiation characterized by :
o

] -
B, x@(YOr) e B(C*) 8 BI(L*R NOIL'R ) )} —

°! —— (x®1®1)<R, YR, 20>

where (@ (resp, § ) denotes the Fock vacuum in T(L? GR+)) (resp.
r{L? (R+)_)) and applying the theory outlined in Secticn (4 }, one
obtains a semi-group on Z(L?) = {2x2 matrices} via the prescription:

%€ BC?) ——E_ (U (x®1 ®1)U:) € B(CHBLO1= B(C?)

]

whose generator is :
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L) = -l COSthI)-y{O“Loi_,x} + COShZCD-Y-o-I--X.U” +

—1/2 Sinhzq)'Y{G_O_i_,X} + Sinhzq)oy-o_.x.o-*-

(x € B(C2)). Referring the .algebra of 2x2 complex matrices; B(L?) :o

the standard basis, we find for L the matrix :

-Yé y(8+1) 0 0

Y8 -y{8+D) 0 0

0 0 “U(28+l)y  C (6.11
0 0 0 YA(20+1 )y

which is exactly the formula found by von Waldenfels via the "maltipli-
cative Ito method" [9] (in his notations v = 2 Rex). To obtain the
formula found by von Waldenfels wvia the "Stratonsvich method” instead
of (6.10) one has to look for the solution of the quantum stochastic
.differential equation :
dUt = Ut-{— io+®dF(t) - ig_ ®dF+(t) - [v/, (COShZ(I)O'_FO;@l +

- sinh2¢0_0+®l)}dt - ig/, (26+l){cosh2<po+g_® 1+ sinh’@qo{_@ l]dtJ
where, in von Waldenfels notations: ¥ = 2Rex, B = 2Imx. The connection
between the npultipiicative Ito (i.e. singular coupling) methed and
quantum stochastic differential equations was suggested by Frigeric
and Gorini (4] and the explicit form of the semi-group obtained In the
Wigner-Weisskopf model in the "multiplicative Tto" case (i.e.
correspending to equation (10)) has been independently obtained by H.

Maassen [8].
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ABSOLUTELY CONTINUOUS INVARIANT MEASURES FOR SOME
MAPS OF THEE CIRCLE

P, M. Blecher and M. V. Jakobson

1. Statement of results., We consider the two-parameter

family of maps on the circle

fy,u @ XD Xtwt(g/2m) - sin 2mx , xcs' - m/z
r

and we find a set M = {{g,w)} of positive Lebesgue meas-
ure such that (g,w) €M 4implies the stochastic behaviour

of fq'm + We present analytical and numerical results which
describe the structure of M as follows.

There exists a segquence of points Ak = (qk,wk} ; KEW

converging to the limit A = (d,r,) , where g =
= 1,169701..., w, = q_/2r , satisfying
Theorem 1. For any k there exists a set M c:mz of

k
positive Lebesgue measure, such that A, 1is the density

point of M, and if (q,0) € Mk then the map f‘;I W' S1+S1
I
has an absclutely continuous invariant probability measure

U . The map £ cyclically permuites k adjacent in-
dre (1) I k=1, (1) 1
tervals (£ r LE€[0,k-71 , U £ = 5 . The support of
ot =0 37w
. , i i
“q,m consists of k intervals Sq,m o Eq'w of equal meas-
ure. For any i the map fg o is an exact endomorphism on
r
the measure space (S(l} ) ) , and its natural extension
g,w gt

is a Bernoulli automorphism.

In order to prove Theorem 1 for a given Xk it suffices
to verify some conditions of non-degeneracy, see Sect. 3.
For k=1 these conditions are verified analytically. For
2<¢k<7 they were verified with the help of a computer.




