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Using the closed It6’s table for the renormalized square of white noise, recently obtained
by Accardi, Hida, and Kuo in Ref. 4, we consider the problem of providing necessary
and sufficient conditions for the unitarity of the solutions of a certain type of quantum
stochastic differential equations.

1. Introduction

The renormalized square of white noise (or SWN) x-algebra is generated by oper-
ators By, B;{ and Ny satisfying the commutation relations

{vaB;] :20<fag>+4Nfg, [NfaB;] — 2B}‘Fga [Nf’Bg] = _2Bfg7 (11)

[Bf, By = [Bf,Bf] = [N;,N,] =0, BsQ=N;Q=0, (1.2)

where f, g € L?’NL*(R), 2 is the vacuum vector, ¢ > 0 comes from renormalization,
and (f,g) = [g f(t)g(t)dt. It was shown in Ref. 2 that the quantum stochastic
calculus associated with the SWN operators is included in the representation free
calculus of Ref. 3 and satisfies the basic semimartingale inequalities. As shown in
Ref. 3, this is sufficient to guarantee the existence and uniqueness theorem for
stochastic differential equations with bounded coefficients, driven by the SWN. A
similar result could also be established by using the representation of the SWN in
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terms of usual quantum white noise as in Refs. 6 and 7. On the other hand, Accardi,
Hida and Kuo in Ref. 4 proved that the SWN differentials

dB(t) = BX[t,t+dt)’ dB+(t) = B;_[tyﬂrdt)? dN(t) = NX[t,t+dt) (13)
satisfy weakly on the SWN exponential vectors the following closed Ité’s table:

l dB*(t) dN(t) dB(t)

dB(t) |atdt+ BTdBt(t) +vTdN(t) o dt+ 8° dB*(t) +v2dN(t) aZdt+B-dB*(t) + Y~ dN(t)
dN(t) | afdt+ B dBT(t) + v dN(t) agdt + B3dBY (1) +43dN(t) oy dt + By dB™T(t) + vy dN(t)

+ + +
dBT(t) | aldt+ BTdBT(¢) + YfdN(t) ol dt + BdB™ (1) + Y3 dN (t) e dt+BLdBY(t) + v, dN(t)

where

o = 8ck(97)?, AL =16k(07)%0,, v = 8k(8;)%,

af = 64ck(87)302, o =2+48k8,0f, i = 64k(8})%2,

ol = (2c—32¢(8;8,)> BT = 168702k, vt = (4 - 64(8;6,)2
+128¢(8;8;)3)k, +128(0;9,)3)k,

o = 64c(9;)?02k, BY = 80; 6k, v9 = 64(8;)302k,

of = 32¢(878;)2k, B = 48;k, 7§ = 32(8:0,)2k,

o = 64c(8;)%03k, B = 2% + 802k, 70 = 64(8;)%03k,

o = 128¢(8;8,)3k, By = 165;‘3?19, vI = 128(8:8,)3k,

ag = 64c(0f)*d}k, Bo = 807k, Yo = 64(0;)0}k,

aZ = 8c?k, B= = 1663E, vZ = 802k,

where .k = W, 0; and 9 are the Hida derivative and its adjoint and, for an
analytic function F(z,y) = Zm,nZO am,ne™y" and any operator M in the algebra
generated by By, BJJ[ and Ny, the sesquilinear form M F(8;,8;) is defined by

MEOF,0)@():%(9)) = D amnfO)™g(t)"(¥(f), Mip(g))

= F(f(t),9()(%(f), My(g)). (1.4)
Similarly
MF @, 7)®%(f),%(9) = D amng®)™F(&)"(@(F), Mp(g))
= F(g(t), F(0)) (%(f), My(g)), (15)

where 9(f), 1(g) are SWN exponential vectors. Notice that, by construction,
MF(0f,0;) = F(8;,0;) M in the sense of equality of sesqilinear forms. Moreover,
[0, 0f] = 0. We denote by F the adjoint form of F. By avoiding test functions
f>g for which the denominator vanishes we can extend definition (1.4) to more
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general rational functions F(9;,8;), for example of the form F(9;,0;) = 1/9;0;.
This possibility will be used freely in the following, in particular in the example of
Sec. 4.

It is therefore natural to combine the above-mentioned results and to try to
obtain the unitarity conditions for stochastic differential equations driven by the
square of white noise. Since the SWN It6 table involves “operators” of the form
(1.4), (1.5), it is also natural to expect that the coefficients of an equation, admitting
a unitary solution, will depend on such “operators”. This means that, as already
discussed in Ref. 1, such equations must be interpreted as ordinary differential
equations on sesquilinear forms and only a posteriori one has to prove that these
quadratic forms are induced by unitary operators.

In this note we derive these unitarity conditions. However we prove, by providing
a counterexample, that the SWN differentials (1.3) are not linearly independent
on the algebra generated by the sesquilinear forms (1.4), (1.5). This implies that,
without additional information, one cannot conclude that the sufficient conditions
for unitarity, deduced from the SWN It6 table in Sec. 2 below, are also necessary.

In fact we are able, by explicit calculations, to determine the form-coefficients
of the stochastic equations satisfied by the SWN analogue of the Poisson process
(which includes the SWN Weyl operators). These processes are unitary by construc-
tion, but we prove that their coefficients do not satisfy the sufficient conditions of
Sec. 2. Finally we construct an example of an equation which satisfies the above-
mentioned sufficient conditions.

2. Unitarity Conditions for Evolutions Driven by the SWN

Let Hy be a complex separable Hilbert space and let S = span{¢(f)} and £ =
Hy ® S. We consider stochastic evolutions of the form

dU (t) = (A(t)dt + B(t)dB(t) + C(t)dB*(t) + D(t)dN(¢))U (%) (2.1)
and its adjoint
dU*(t) = U(t)* (A*(t)dt + B*(t)dB* (t) + C*(t)dB(t) + D*(t)dN(t))  (2.2)
with initial conditions
0= UM0r=1,.- 0 £ th< +ma,

where the solution U = {U(t),0 < t < t9 < +oo} is defined as a sesquilinear
form on € x &, for each t the coefficients \A(t), B(t),C(t) and D(t) are, in general,
finite linear combinations of elements of the form R(t) ® F(9f,0;) where R(t) is a
bounded linear operator on Hy and F(9;,0;) is as above, and for X € {B, Bt, N}
we define dX = I ® dX where [ is the identity on Hy and the dX on the right is
defined on S = span{y(f)} in the standard way.

The above form of the coefficients is suggested by the SWN It6 table. For such
coefficients the stochastic differentials (1,3) are not linearly independent in the sense
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that the equation
A1(t) ® a1(0f, 8 )dt + As(t) ® 0n (87, 0)dB(t) + As(t) ® a3(F, 0;)dB* (1)
+ A4(t) ® 48], 8,)dN (¢) = 0 (2.3)
meant in the sense of sesquilinear forms, does not imply
Ai(t) ® i (85,0;) =0 (2.4)
for all t and ¢ = 1,2, 3,4. To see this let A1(t) = As(t) = A3(t) = Ay(t) =T for all

t and, assuming that, for each § — 1,2,3,4,

@ (0;,8:) = Y a*grmak,

n,k=0

choose ag’k = ocg’o = ag’k = 0 for all n,k = 0,1,..., and for all n,k =1,2,...
choose ap* ™! 4 o~k | 207 *1 = 0, for example

n,k—1 - 1

. nl(k — 1)1’

n—1,k 1

a = —
# (n— 1)k’

n-1k-1 1 1 1
% T 2 \RGE-D T e )

Then, using (1.4), (1.5) and Proposition 2.1 of Ref. 2 to compute the matrix ele-
ments, we see that (2.3) is satisfied but (2.4) is not.
To obtain unitarity conditions for U we start with

UQOU*®) =U*@OU®) =1,  U0)=U"0) =1 (2.5)
which are equivalent to
dUU*(t)) = dU$)U*(t) + U(£)dU*(¢) + dU (£)dU* () = 0 (2.6)
and
AU (BU (1)) = dU*($)U (£) + U (£)dU (t) + dU* (£)dU (£) = 0 (2.7)

and then using the It6 table and equating coefficients of the time and noise differ-
entials to zero we obtain:

Theorem 2.1. If for each t
A+ A" + BB*at + BC*a~ + BD*a® + CB*af + CC*a} +CD*af
+DB*af + DC*ay + DD*ad =0, (2.8)

B+C*=0, (2.9)
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C+B*+ BB + BC*6Z + BD*A +CB*6f +CC*B7 + @)
+DB*Bf +DC*By +DD*BY =0, (2.10)

D+D" + BB + BC*yZ + BD*® +CB*yf +CC*y7 + CD*y0
+DB* Yy +DC* vy +DD*Y) =0, (2.11)

A"+ A+ B*Bol + B*Caf + B*Dal +C*Ba~ +C*Cat + C*Dal
+D*Bag +D*Caf +D*Da =0, (2.12)

B* +C+B*BB; + B*COT + B*DBY. + C*BA= +C*CB +C*DR°
+D*BB, +D*CBf +D*DEY =0, (2.13)

D* +D+B"Byy + B*Cy} + B*DyY +C*By~ +C*Cyt + Cc*Dy°
+D*Byy +D*Cvi +D*Dyd =0, (2.14)

then the solution U = {U(t): 0 < ¢ < t, < +o0} of the initial value problem (2.1)
18 unitary.

It should be pointed out that in conditions (2.8)-(2.14), o2, ¢, Ve, g6 €
{+,—,0} stand for I ® aZI,I ® ,BEI,I ® 'yg’ respectively, where I is the identity
on H().

For a detailed exposition of how existence, uniqueness and unitarity of solu-
tions of quantum stochastic differential equations driven by nonlinear noise can be
formulated in the language of sesquilinear forms, we refer to Ref. 1.

3. Examples of Unitary SWN Stochastic Evolutions

In this section, we obtain the quantum stochastic differential equation (QSDE)
satisfied by the SWN Weyl operator. It will be seen that it is a QSDE of the type
considered in Sec. 2 above. For ¢ > 0, \EcRand 2 € Cwith 24+ 3+ k # 0 let
A(t) = M + zB(t) + zBi(t) + kN (t) and consider U(t) = ¢'4® . Notice that A(t)
can either be viewed as acting on the noise space only or, by looking at e.g. zB(t)
as zI ® B(t), on the tensor product of an initial Hilbert space and the noise space.
Computing the differential of I (t) we find

dU(t) = d(e*4®)
= etA(t+dt) _ iA(t)

— HAED+A®) _ LiA(r)

= M) IAD) _ ¢id®) (by the commutativity of A(dt) and A(t))
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. eiA(t) [eidA(t) - I]

Ut) i‘ GadB) (3.1)

n!

n=1
With a{,,@f,'yg, i,j € {+,—,0} as in Sec. 1, let
o = 220" + zzot + zka® + Zzal + (2)%af + zka) + kzag + kzod + k%,
B = 220 + 2281 + 2k + 2201 + (2)26L + zkBY + k2B + kzB5 + K260,
y =22y + 22yt + 2k + 22y (2)29T + zk) +kayg + kzyd + kY,
o =af+at+af, Pu=BL+BL+AT, m=9F+vL+
ap=a® +al +ay,  Pa=p2+pL+05, =72+ +1-
Using Itd’s table we obtain
(At + zdB(t) + 2dB' () + kdN (¢))(zdt + ydB' (t) +wdN(t))

= (z+ 2+ k)((yoa +waz)dt + (ybr + whs)dB (1) + (ym1 + wy2)dN(?)) - (3.2)

Thus
dA(t) = Adt + zdB(t) + 2dB'(t) + kdN (8), (3.3)

(dA())? = adt + BdB (t) +vdN () (3.4)

and by repeated use of (3.2) we find that for n > 3, in standard matrix notation

with (1 x 1) matrices identified with their entries,

(AR = (z+Z+R)"2(B 1) (ﬁ 3)

X KZ:) dt + (g;) dBt(t) + @:) dN(t)] . (3.5)
By (3.3)~(3.5), (3.1) implies that
dU(t) = U(2) ((m = 92‘— 5 Ma> dt +izdB(t) + (ii = g 3 Mﬁ> dB'(t)

t (-3 + M,) dN(t)> , (3-6)

U)=1,
where the (1 x 1) matrices Mo, Mpg, M, are defined by

a1 _ 1 M. :M(ﬂh),
Ma:M<a>, Mﬁ_M(ﬁz)’ p b

2
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and the (1 X 2) matrix M is defined by

M=(z+z+k)" %8 7){expli(z+i+k) (51 71)}
B2 e

—I—i(z+Z2+k) AL m +(z+2+k)2 B om\ (B m\"
Pz 2 B v Bz 72

with the exponential and the inverse defined weakly on the exponential vectors.
We note that the coefficients of (3.6) do not satisfy the unitarity conditions of
Theorem 2.1 which therefore are not necessary. This is due to the linear dependence
of the SWN differentials. By suppressing the tensor product notation, the above
work transfers word by word to show that if E(t) = A®tI +2® B(t) + 2 ®
B (t) + k ® N(t), where )\, k, z and its dual Z are commuting operators (such that
z + Z + k is invertible and )\, k are self-adjoint) acting on an initial Hilbert space,
then U(t) = *F®) also satisfies (3.6).

4. The Sufficient Conditions: An Example

We will show how one can obtain an example of coefficients A, B,C, D satisfying
the unitarity conditions of Theorem 2.1. In what follows we use small letters for
sesquilinear forms on S derived from analytic functions as described in (1.4), (1.5)
and capital letters for operators on Hy. Let the coefficients C and D in Theorem 2.1
be of the form

C=L®k, (4.1)
D=W&am, (4.2)
where m = m. Then (2.9) and (2.8) imply respectively
B=-L*"®k, (4.3)
A+ A* = (L*)? ®@k*aZ + L*®k*af — L*L @ kkat — LL* ® kka,
+ L*W* @ kma® + WL ® mkaf — LW* ® kma$.
— WL* @ mkag — WW* @ m?a]. (4.4)
Replacing (4.4) in (2.12) and using o® = o ,a = of , we obtain
[L*, L] ® kkaZ + [L*,ReW| ® 2kmog + [ReW, L] ® mkag
+ W, W*] @ m®ad =0 (4.5)
which is satisfied if
[L*, L] = [L*,ReW] = [ReW, L] = [W, W*] = 0, (4.6)
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where [z,y] = 2y — yz and Re denotes the real part. Returning to (4.4) we notice
that if
Lo J (4.7)

and k is chosen so that ka® = ko, i.e.

|
l

= (4.8)

then

3

2 *
A+ A =12 @k ((g—t) o +af - (g—i) (at + a;)) - WW*®@m?a. (4.9)

If A,B,C,D satisfy (4.1)~(4.3) and (4.9), then conditions (2.8) and (2.9) are
satisfied. Replacing (4.1)~(4.3) and (4.9) in (2.10) and using the fact that

Bt =5, (4.10)
k8-
T 1, (4.11)
kgt
R = 1, (4.12)
kB — kB = KBy — kG (4.13)

(2.10) becomes
(LW*+WL)©m(kBl —kB%) + WW* @ m?89 = 0 (4.14)
which is satisfied if we choose m, L, W so that

EO_k.O
kB ks

3 ; (4.15)
LW*+WL=WW*. (4.16)

An easy computation shows that indeed m = . Using
) -k =kyg — kvt =0 (4.17)

condition (2.11) becomes
(W +W") @ m+L2®@(—k*y= — K2y + kky* + kD) + WIW* @ m240=0 (4.18)
which is satisfied if we choose W, m so that
W+W*=WW*=1L?, (4.19)
m+m?yQ = —k°y~ — B2y + kkyT + kkrys (4.20)
Let
0 =0,0; . (4.21)
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Using (4.15), dividing by k and then using (4.8), (4.20) implies

Y
Bg 5B
T el (P n a (B, PR
FE o B R
: 1440 W
—80; (1 + 20 + 802)
and by (4.15)
2
_ 1t 40)(1 +40) ' (4.23)
160(1 + 20 + 862)
Using (4.22) and (4.23), (4.9) implies
A+ A =L2®ca(b:,0}), (4.24)
where :
1+40)2%(—1+ 40 + 640
a(0,0;) = ( it = ) (4.25)
320(1 1 20 + 802)
Moreover, (4.19) implies that
ReW = 2WW™ (4.26)
from which, using [W, W*| = 0, we obtain
2
(ImW)? = Rew;z(f{eﬂ — L2 _41* (4.27)
which implies
W = (L2 — 4L/ (4.28)
provided that
o= A 2 (4.29)

We may now prove the following:

Theorem 4.1. Let L, H be self-adjoint operators in Hy such that L? < I/4, let
a(0y, 05), k(0,05 ), m(8y, 0f) be sesquilinear forms on S defined by (4.25), (4.22),
(4.23), and let h(0:, 0f) be a sesquilinear form on S such that h = h. Then the
solution U = {U(¢): 0 <t < tg < +oo} of the initial value problem
dU(t) = {(L® ® ca(d;, 0;) + iH ® h(8, 8;))dt — L ® k(8;,;)dB(t)
+ L ® k(8,07 )dBt () + (2L2 +4(L? — 4L4)'/?)
® m(9, 95 )dN ()}U(¢), (4.30)
()=

18 unitary.
Proof. Conditions (2.8)—(2.11) are obviously satisfied since (4.30) was constructed

to satisfy them. Direct substitution of the coefficients of (4.30) into (2.12)—(2.14)

shows that they are also satisfied and the result follows by Theorem 2.1. O
\
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