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The pharmacological inhibitors of
poly(ADP-ribose) polymerase-1 (PARP-
1) have reached the first milestone toward
their inclusion in the arsenal of anti-cancer
drugs by showing consistent benefits
in clinical trials against BRCA-mutant
cancers that are deficient in the homol-
ogous recombination repair (HRR) of
DNA double strand breaks (DSB) (1,
2). PARP inhibitors (PARPi) also poten-
tiate therapeutic efficacy of ionizing
radiation and some chemotherapeu-
tic agents (1). These effects of PARPi
were initially linked to inhibition of the
role of PARP-1 in base excision repair
(BER) of DNA damaged by endoge-
nous or exogenous agents, resulting in
accumulation of single strand breaks
(SSB), which upon conversion to toxic
DSB lesions would kill cancer cells defi-
cient in DSB repair (1, 3, 4). However,
PARPi lethality in HRR-deficient cancers
can also be explained by other mech-
anisms not involving a direct effect of
PARPi on BER [reviewed in Ref. (5,
6)]. In addition, therapeutic benefits
of PARPi with agents such as carbo-
platin in HRR-proficient and -deficient
tumors [reviewed in Ref. (1, 7)], simply
cannot be explained by BER inhibitory
effect of PARPi. Therefore, PARPi are
like magic bullets that can kill can-
cer cells under different circumstances,
but to comprehend their global scope
and limitations, here we discuss the full
range of their targets and the possible
impact of broad specificity of current
PARPi during prolonged therapy of cancer
patients.

MECHANISMS OF ACTION OF PARPi IN
CANCER THERAPY: MAGIC BULLETS
BUT MOVING TARGETS
It is not surprising that the mechanism
of action of PARPi in killing cancer cells
still remains an open question, because
its principal target PARP-1 is a multifunc-
tional protein implicated in various cellular
responses to DNA damage ranging from
different pathways of DNA repair and cell
death to stress signaling, transcription, and
genomic stability (8, 9), all of which could
be affected by PARPi and thus influence
outcome of cancer therapies. Following are
various possibly overlapping mechanisms
for the anti-cancer effect of PARPi.

BER/HRR NEXUS FOR SYNTHETIC LETHALITY
OF PARPi IN BRCA-MUTANT CANCERS
It was first demonstrated by two teams
(3, 4) that two individually non-lethal
conditions, i.e., PARPi-mediated inhibi-
tion of PARP-1 and BRCA mutation-
induced HRR deficiency in cancer cell,
would become synthetic lethal when com-
bined in a single cell [reviewed in Ref.
(1, 5, 10, 11)] (Figure 1A). This model
focuses on the role of PARP-1 in BER, the
pathway that repairs abasic sites and SSB
that are constantly created in the mam-
malian genome by endogenous oxidants.
When PARPi suppress the role of PARP-1
in BER, the unrepaired SSB would accumu-
late and collapse the DNA replication fork
to form potentially lethal DSB. The normal
cells would survive by repairing these DSB
by HRR, but the HRR-deficient BRCA-
mutants would die due to unrepaired DSB
or possibly due to excessive reliance on the

error-prone non-homologous end-joining
(NHEJ) repair pathway to remove DSB
(Figure 1A). This model also covers minor
variations of the central theme as reviewed
recently (1, 10) (Figure 1A). For example,
tumors with other conditions that cause
HRR deficiency or “BRCAness” phenotype
would also be susceptible to PARPi. It per-
mits inclusion of PARP-2 and its role in
BER as target of PARPi, because most cur-
rent PARPi also inhibit PARP-2 (10). It also
explains the potentiating effect of PARPi in
the combination therapy with radiation or
chemicals, such as temozolomide, irinote-
can, or topotecan, because DNA damage
caused by these agents is also repaired
by BER.

ALTERNATIVE TARGETS OF PARPi IN
BRCA-MUTANT CANCERS
However, the above mechanism is inade-
quate to explain all the effects of PARPi
seen in BRCA-mutant cancers, which could
be explained by the effect of PARPi on
alternate targets, as reviewed earlier (5,
6, 10) (Figure 1A). In brief, (i) PARPi
could be trapping PARP-1 or PARP-2 to
SSB with resultant PARP-SSB complex that
would be more toxic than unrepaired SSB
or even knockdown of PARPs (5, 12). (ii)
PARPi could act via upregulation of NHEJ
pathway, which would presumably cause
genomic instability and eventual lethality
(13). (iii) PARPi could suppress the role
of PARP-1 in reactivating DNA replica-
tion forks (5). Thus, apart from BER/HRR
nexus, there could be NHEJ/HRR or DNA
replication/HRR nexus to explain PARPi
lethality in BRCA-mutant cancers.
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FIGURE 1 | Different mechanisms for therapeutic efficacy of PARPi in cancers. (A) BER/HRR model:
this model focuses on the role of PARP-1, the principal target of PARPi, in BER that removes abasic sites
and SSB created constantly in the mammalian genome by endogenous oxidants (steps 1A). During BER,
the binding of PARP-1 to SSB leads to stimulation of its catalytic activity of forming polymers of
ADP-ribose (PAR) from its substrate NAD+. The PAR and PARP-1 interact with and recruit the key BER
scaffold protein XRCC1, whereas PAR-modified PARP-1 loses its affinity to bind to SSB and vacates the
site for BER to continue. When PARPi suppress the role of PARP-1 in BER (step 2), the unrepaired SSB
would accumulate and collapse the DNA replication fork to form potentially lethal DSB (step 3). The
normal cells would survive by repairing these DSB by HRR (step 4), but the HRR-deficient BRCA-mutants
would die due to unrepaired DSB (step 5) or possibly due to excessive reliance on the error-prone NHEJ
repair pathway to remove DSB (step 6). This BER/HRR nexus also explains the effectiveness of
combination therapy of PARPi with drugs that cause DNA damage that is repaired by BER (step 1B).
Since PARP-2 is also known to play a role in BER, and since current PARPi are also known to inhibit
PARP-2, the effect of PARPi may also be mediated by targeting of the functions of PARP-2 in BER, as
shown on the target board along with PARP-1. In addition, the inhibitory effect of PARPi on other PARPs
could also influence therapeutic efficacy of PARPi (see target board), although their contribution to
BER/HRR mediated therapeutic effect of PARPi is not yet fully assessed. (B) Other targets of PARPi that
can confer therapeutic benefits of PARPi: PARPi could also be effective anticancer agents by targeting
the role of PARP-1 in other DNA repair pathways, such as NER; or other cellular pathways, such as control
over cell cycle, tumor angiogenesis, transcription, epithelial-mesenchymal transition (EMT), stress
survival response, vasodilation, or tumor-promoting secretome.

EXPANDING UNIVERSE OF POTENTIAL
TARGETS OF PARPi
Therapeutic effectiveness of PARPi seen
with some drugs cannot be explained
by any of the above models, e.g., the
potentiating effects of PARPi on the
platinum-based drugs such as carbo-
platin, cisplatin, or oxaliplatin on HRR-
deficient or -proficient tumors [reviewed in

Ref. (1, 7)] (Figure 1B). These observa-
tions were further supported by recent
studies showing the potentiating effect of
PARPi veliparib on carboplatin treatment
of patients with BRCA-mutant breast can-
cers (14) or carboplatin and phosphoinosi-
tide 3-kinase mTOR inhibitor treatment
of mouse xenografts of BRCA-competent
triple negative breast cancer cells (15).

Since platinum compounds cause DNA
damage that is largely repaired by the
nucleotide excision repair (NER) pathway
and not BER, we need to think beyond
BER for an explanation. Moreover, BER
was shown to mediate toxicity of cisplatin
by competing with the repair of cisplatin
inter-strand cross-links and DSB caused
by these links (16). Therefore, if PARPi
effect was mainly via inhibition of BER,
we should have observed less and not more
toxicity of cisplatin.

One possible explanation is that PARPi
could be causing vasodilation (Figure 1B)
to improve intra-tumoral delivery of plat-
inum drugs (1), although it needs to
be confirmed if this generalized effect
could also potentiate other drugs. On
the other hand, recently discovered roles
of PARP-1 in improving the efficiency
of NER-mediated removal of UV-induced
DNA damage (17–19) provides a more
handy explanation for the PARPi-induced
potentiation of platinum compound-based
drugs, which also cause DNA damage that
is repaired by NER (Figure 1B). This NER
targeting effect of PARPi alone can account
for death of HRR-proficient tumors, as
seen in clinical trials [reviewed in Ref.
(1, 7)] and supported by in vitro results
showing that PARP-1 depletion (20) or
inhibition (19) decreases clonogenic sur-
vival of UV-exposed human skin fibrob-
lasts with no reported HRR-deficiencies.
Of course, PARPi could have an additional
effect in this model due to suppression
of the role of PARP-1 in HRR pathway
(21). In addition, in the PARPi-treated
BRCA-mutant HRR-deficient tumors, the
unrepaired DNA damage by platinum
drugs could collapse the DNA replica-
tion fork to form DSB and cause lethal-
ity. Thus, the NER effect alone or NER-
HRR nexus could be possible explanations
for the lethality of PARPi/platinum com-
pounds in HRR-proficient or -deficient
tumors.

The clinical and preclinical studies have
also revealed other targets of PARPi in can-
cer therapies that are linked to various roles
of their multifunctional target PARP-1 in
following cellular processes (Figure 1B).
(i) Transcriptional control of drug-target
genes: PARPi have been shown to increase
toxicity of topoisomerase II-poison dox-
orubicin in vitro (22) or in xenografted
tumors in mice (23). This effect could be
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due to doxorubicin-induced decrease in
expression and activity of PARP-1 (24) or
PARPi-mediated increase in expression of
topoisomerase II, because the transcrip-
tion activator Sp1 loses its affinity for the
topoisomerase II-promoter region upon
modification by polymer of ADP-ribose
(PAR) created by the activated PARP-1
(22). (ii) Mitotic checkpoint: the beneficial
effects of PARPi with microtubule stabiliz-
ing mitotic inhibitor paclitaxel in patients
with recurrent metastatic gastric cancers
with BRCAness phenotype (25) could be
linked to suppression of the role of PARP-1
in maintaining the mitotic checkpoint via
PARylation of itself or the mitotic check-
point protein CHFR (26, 27). An abro-
gation of mitotic checkpoint would kill
cancer cells, because they will be forced
to divide before resolution of the damage.
(iii) Tumor-promoting secretome: PARPi-
mediated suppression of the role of PARP-
1 in elaborating tumor-promoting secre-
tome containing cytokines and growth fac-
tors has been suggested as a cause for
decreasing the resistance to another mitotic
inhibitor docetaxel (28). (iv) Angiogenesis:
the role of PARP-1 in promoting angiogen-
esis that fuels the growth of tumors can
also be target of PARPi, because PARP-1
depletion or PARPi reduce vessel formation
(29) and expression of markers of angio-
genesis in melanoma (30) or endothe-
lial cells (31). (v) Epithelial-mesenchymal
transition (EMT) and metastasis: PARPi
or PARP-1 depletion-induced reduction in
aggressiveness and growth of metastatic
melanoma in animal studies (30, 31) along
with decreased markers for EMT (31, 32)
suggest that the increase in progression-
free survival of PARPi-treated patients
could be due to reduction in the prolif-
eration rate of the primary tumor and
repression of its metastatic potential. (vi)
Stress survival response: finally, cancer cells
respond to any therapy by elaborating var-
ious stress responses to survive; and PARP-
1 and its product PAR play key roles in
these stress responses (9). Hence the sup-
pression of pro-survival stress responses
could explain the effectiveness of PARPi
with any anti-cancer drug. An expand-
ing list of potential targets of PARPi pro-
vides us with a much larger vision of
the future applications of PARPi in cancer
therapy.

BROAD SPECIFICITY OF PARPi: A KEY
ISSUE FOR THE FUTURE OF PARPi
THERAPY
There are two basic issues arising from the
broad specificity of current PARPi.

(a) PARPi can inhibit more than one
PARP (“they are bazookas not bul-
lets”): many of the current PARPi
in clinical trials display strong bind-
ing to PARPs 1–4 (33), and inhibit
both PARP-1 and 2 at clinically rele-
vant concentrations (10). Most stud-
ies assume that the effect of PARPi
on both PARP-1 and 2 is important
for therapy; however, this may not be
the case. In fact, some studies using
specific knockdown of PARPs showed
that only the knockdown of PARP-
1, but not PARP-2, replicates: (i) the
synthetic lethal effect of PARPi on
BRCA2 mutant cells (3); (ii) potenti-
ation of cisplatin by PARPi in BRCA-
proficient triple negative breast can-
cer cells (34); and (iii) sensitization
of melanoma cells in vitro to temo-
zolomide (35). On the other hand, the
effect of PARPi on gemcitabine in the
above breast cancer cells was replicated
by PARP-2 knockdown and not PARP-
1 knockdown (34). In contrast, the
siRNA for PARP-1 could specifically
prevent the growth of BRCA-deficient
ovarian cancer cell-derived tumors in
mice (36). Since the double knock-
out of PARP-1 and PARP-2 is embry-
onic lethal (37), we must verify the
assumption that gratuitous inhibition
of unrelated PARPs has no effect on the
end-results.

(b) Indiscriminate inhibition of all the
roles of a given PARP by PARPi
(“we are nuking the entire PARP-
landscape”): PARP-1, the principal tar-
get of PARPi, is a multifunctional pro-
tein that is implicated not only in
DNA repair but also in various forms
of cell death, transcription, epigenetic
control of gene expression, and chro-
matin remodeling (8, 38). Hence even
if we were to develop novel PARPi
to specifically inhibit only PARP-1,
it will still shut down most if not
all the functions of PARP-1. Similar
arguments can be made for PARPi-
mediated suppression of different roles

of PARP-2. Although adverse genomic
consequences of PARPi therapy have
not yet been reported, we need to
consider that prolonged PARPi ther-
apy may cause genome instability
because PARP-1−/− mouse embryonic
fibroblasts have a tendency to become
tetraploid (39, 40), and the suscep-
tibility of PARP-1−/− female mice
to develop mammary carcinoma is
enhanced if p53 is also mutated, a phe-
nomenon frequently observed in can-
cers (41). In effect, PARPi are the magic
bullets, but instead of doing precision
targeting with them for the desired
effect, we are simply nuking the entire
spectrum of functions of that target
PARP, which could result in unin-
tended consequence during mainte-
nance (prolonged) therapy with PARPi
including survival of damaged can-
cer cells, development of secondary
tumors as a consequence of genomic
instability and resistance to PARPi.
Thus, while the current broad speci-
ficity PARPi work properly for short-
term cancer therapy, there is a need
for development of new and more spe-
cific PARPi that are unique not only
for a given PARP but also for a given
function of that PARP related to its
anti-cancer effect.

It is heartening that PARPi have
shown some clinical benefit for BRCA-
mutant cancer patients in clinical trials as
monotherapy or as a combination ther-
apy, but we need to do a lot more to
understand the therapeutic effect of PARPi
to establish them firmly in the arsenal
of anti-tumor agents against variety of
cancers.
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