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1. INTRODUCTION

.. A general definition of a second-order homogeneous differential operator acting on a (vector)
space F(E,G) of mappings of a locally convex space E into a locally convex space G can be
formulated as follows (see [6-9] and the references therein). Let v be a linear mapping from a
subspace of the space L(E(L(E,G)) of (continuous) linear mappings from the space E to the
space L(E, G) of (continuous) linear mappings from E to G; then by a second-order homogeneous
differential operator on F(E, G) related to v we mean the mapping of F(E, G into itself denoted

by A” and defined by
(A7) =~ (f"(=)).

If G = Rand if v is a positive functional on L{E, G), then (A7(f)) is called a Laplacian; if, for the
same G, the functional v vanishes on the elements of £L(E, G) having finite-dimensional range, then
the operator (A7(f)) is called a Levy Laplacian (for the Volterra(-Gross) Laplacians, see [6, 8]).
A special case of Levy Laplacian was introduced and studied by P. Lévy in his famous book
[1]. This operator, which we denote by Ay, is defined on a space of real-valued functions on a
(separable) Hilbert space H by

1 < 8
AL:]\}EHOOHNMT;@; (1.1)

82
here B2 for each n € IV, stands for the second derivative along the direction defined by the nth

element of a sequence {e,} in H; thus, in this case we have E=H, G =R, L(E(L(E,G)) =H

and .
W(Zanen) = 1\;1_13100% Zan.
L0 n=1

~ We call this operator the Léuvy Laplacian associated with the sequence {e,}. If {e,} is an
- orthonormal basis, then the operator Ay is the classical Lévy Laplacian (see the appendix).

In a similar way one can define the Levy Laplacian for matrix-valued functions; namely,

1 oL, &

" where tr stands for the trace in the space of matrixes. ‘
"The most important application of Levy Laplacians, namely, that to the theory of gauge fields,
- was discovered in [2-4] (see also [5]); in these papers it has been shown that gauge fields satisfying

-+ Yang-Mills equations are harmonic functions with respect to the Levy Laplacians defined on proper
spaces of vector-valued functions. In particular, it has been proved in these papers that a connection

“on RY satisfies the Euclidean Yang-Mills equations if and only if the associated parallel transport
- Uy, when regarded as a function of the curve + along which the parallel transport takes place, is a
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2. ENTIRE FUNCTIONS OF 8-EXPONENTIAL GROWTH

Let #: Ry — Ry be a continuous, convex, increasing function satisfying the condition
lim #(2)Z = +o0 and #(0) =0. (2.1)

T—00
uch a function is called a Young function and admits the representation

harmonic function for the Levy-Laplace equation

AplUy, =0. (1.3)
On the flat manifold R¢, the parallel transport U, is a matrix valued function with domain given
by ar appropriate function space, namely, the space of paths. Thus, the study of the Yang-Mills

equations is equivalent to the study of a Levy-Laplace equation with respect to a matrix-valued
function.

On the other hand, Schrédinger equations. and.heat_equations-involving Levy Laplacians-are —

X
8(z) = f p@)dt,  n>0,
related to some problems of quantum statistical physics; finally, there exist interesting relations _ 0
between the Levy Laplacian and the squared quantunuyhit&noise,(seewpg,M9,WI-O}and{l_s_h&referqp_(;esﬁm

-..therei) — _
-........However, the study. of fixed points-for the-heat semigroup-generated by Ay,

“where id stands for the identity matrix of size d X d, we see that the study of the most general class

- kernels A(z,y). Then we interpret equation (1.6) as an equation on the kernels and solve it by the

~..... Theorem 1 below) is of independent interest; for the definition of countably normed spaces, see (30]
... and Remark 1 below.

~ appendix can help to put the results of the paper into a more general frame.

p: {0, +oof— [0, +o0] has the following properties:

pis
MU, =U,, VYit>0, : (1.4)

constitutes a generalization of equation (1.3). Since the construction of the heat semigroup exptAp,
is equivalent to the solution of the Levy heat equation .

QUL () = ALU.,, (1.5)
U’)‘(O) = Ed, .

i} right continuous,
il) increasing,
iii) p(0) >0,
iv) limy_, o p(%) = co.

-F Young function 8 we write
o R TOR 6% (z) = sup{tz — 0{z)}. (2.2)
20

The function #* is called the polar function associated with . One can show that ¢* is again a
Young function and that (6*)* = 8.

iti . A function
Definition 1. Let X be a locally convex space over the field C of complex numbers :
f: Xe—-> C is said to be a Gdteauzr entire function if, for each £, h € X, the C-valued function of

one complex variable, ¢ — F(E+¢n),

i i i 4 i i : C is said to be an entire
is holomorphic at every point ¢ € C. A Gateaux entire function f: X — _ _ /
function ifpit is continuous on X, or, equivalently if it is locally bounded, i.e., every point of X is

contained in a neighborhood on which f is bounded.

Consider now a complex Banach space (B, || ||). We classify entire functions on B by means of
their growth rate at infinity. Let # be a Young function. An entire function f: B — C is said to
have #-exponential growth of finite type m > 0 if

WS llo,m = sup [£(¢)[e 00D < 400, | (2.3)
(eB

of solutions of equation (1.3) naturally leads to the problem of constructing the heat semigroup for
matrix-valued functions

U (t,y) € R x {Path space} — U,(t} € Linear operators on R¢

In a similar way one can define a Levy-type Laplacians acting on functions of two (infinite-
dimensional} variables; if those functions are symbols (in some sense) of linear operators, then one
can regard these Levy-type Laplacians as acting on operators and investigate the corresponding
Levy heat equations, which one can call Levy heat equations with respect to ‘operators. This is just
the aim of the present paper.

Recently, using functions on a nuclear space, Accardi-Ouerdiane [11] solved a heat equation
associated with the Lévy Laplacian by means of an analytic one parameter semi-group, see also
Accardi-Smolyanov and Accardi—Roselli—Smolyanov [6-9], Saito— Tsoi [28], and Obata [29].

In the present paper, employing the recent framework of infinite-dimensional holomorphic funec-
tion due to GammounkHacha,ichimOuerdiane—Rezgui [16], the theory of operators defined on a space
of holomorphic functions due to Ben Chnouda-Querdiane and the convolution calculus studied by
Ben Chouda-El Oued-Ouerdiane, we investigate the operator version of Lévy Laplacian A?, ie.,

a Af acting on a infinite-dimensional algebras of operators (in the sense described above). As was
already mentioned above, our method to solve the Cauchy problem

%‘4 = A%4,

A(0) = Ao, (1.6)

where the initial condition Ay is a linear operator on the nuclear space F, is the following. We
consider a space of operators which are in one-to-one correspondence with their (distribution)

Let exp(B,f,m) be the space of all such functions; this space becomes a Banach space when
equipped with the norm { - ||g 1.

2.1. Entire Punctions on Nuclear Spaces in Two Variables

f all entire

For two Banach spaces (B, |- ||1) and (Ba, [ - ||2), denote by H(B, x Bs) the space o |

func(zions on By x By, i.e., of all continuous functions f: B; x By — C such that the mapping
(C1; G2} — flar + by, ap 4 Coby)

is an entire function on € x C for every a1, b; € By and a3, by € B. For a given pair of functions
(8, ) and a pair of positive numbers m; > 0, my > 0, introduce the Banach spaces

exp(B1 X B, (0,¢), (m1,me)) = {f € H(B1 x Ba), Ifll(6,p).tm1.ma) < 0},
eXP(BlaHaml) = {f = H(Bi)a “f”ﬁ’,ml < 00}7

Fourier transform method. If the kernel of Ag is the Fourier transform of a measure y on E’ (E’
stands for the strong dual of a nuclear space E) which is invariant under a certain shift operator,
then a solution of (1.6) can explicitly be obtained by the method of Accardi-Roselli-Smolyanov [7].
Thus, one can say that the main results of the paper are related to solving the Cauchy problem (1.6)
in some new spaces of entire functions (introduced in {15]). An example of a nuclear Fréchet space
with a continuous norm, which is not a countably normed space in the sense of Gelfand-Shilov (see

where fma |z 2=l
—@ma|lz1il1 —wma||z2]|2
”f”(@,tp),(ml,mz) = zfggl |f(21,22)|€ = 3

€8z
I T — —fmy|lz|ly
" In the appendix we give a review of some general properties of Levy Laplacians; though the £ llo.m, = zs; 115?1 |[f(2)le

results of the appendix are not used in the main art of the paper, the acquaintance with the : . .
pp P bab 4 We now introduce new spaces of entire functions of two variables.
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Let M and N be two-nuclear countably Hilbert spaces in the sense of [30] {cf. the comments at
the end of this section) with the defining Hilbertian norms {|-lap} and {|-|n )}, respectively. For
cach p 2> 0, let M, (N,) denote the Hilbert space obtained by completing M (N) relative to |- |
(to | -|n,p, respectively). Then T

p—0oo

o0
M = limproj Mp( = ﬂ M, as sets),

p=0
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: Theorem 1. There i3 no sequence of pairwise compatible norms on E defining the topology 7.

~ Proof. First, let us show that, if s, sp € N, and s; # s, then the norms ps, .and Ps, are
ot compatible. Indeed, let so > s;; then there exists a sequence {ip;} of functions in E having
he following properties: {y;} is the Cauchy sequence with respect to both norms p,, and ps,,

51 (‘Pj) — 0, and Qog(tngg) — o # 0. ~
(Then ; — 0 in Epsz_ and @; — @ #0in Em; ).

Now let @ = {¢,} be any sequence of norms on E defining the same topology 7. o
Tt ¢ € @ Then there exists a p;, € P such that ¢; < ¢p;, for some ¢ > 0; for simplicity, here

' oo
N = limproj N, ( = () N, as Sets\
i VR ) M ey

“Detiote by M_, (N_,) the dual space of My (Np, respectively). By.the general duality theory,
the strong dual spaces M’ and N’ can be obtained by

M’ = limind M~p( = U M., as sets) ;

p—oo
pEN

N’ =limind N_p( =|J Ny as sets).
peN

Remark 1. According to [30], a nuclear, countably Hilbert space is a nuclear Fréchet space N

whose topology can be defined by an increasing sequence of Hilbert semi-norms (pn) satisfying the
following properties: '

(i) for each n, the embedding

TLGNQ (N,pn+l) '*TLGNQ (N:pn)

has a Hilbert-Schmidt extension (nuclearity),
(ii) the Hilbert-Schmidt extension mentioned in (i) is injective (countably Hilbert). Equiva-
lently, if a Cauchy sequence for Pr+1 cOnverges to zero in the p,-norm, then it also con-

verges to zero in the p,yi-norm (in this case the norms p, and p,4; are usually said to be
compatible).

The following counterexample shows that there exists a nuclear Fréchet space whose topology
can be defined by a sequence of Hilbert norms which cannot be chosen to be compatible.

Let E be the vector subspace of Dyp,1j consisting of all functions v € Dyp,1) whose supports do
not intersect the set {0,1}. :

Let t, = 2 for any n € N, and let {n¥ : k,i € N} be a set of elements of [0,1]; we assume that
0o :
U{tn;" :je€N}={t,:ne N}
k=1 .
and that B
{tn;,; :jGN}ﬂ{tn? tjEN}=@
for any k,i € N, k 5 i (we identify sequences of pairwise different elements (in [0,1]) with the sets
of their elements). '

__ Let E be the space of all infinitely differentiable functions on [0,1], and let, for any r € N, the
Hilbert norm p, on E be defined by

T 1 r 00
e =3 [ e P@Pa+ 30 S Gl )P,
k=1"0 k=1 i=1
where ¢l = 27",
“Then py <p2 < ps <..., but those norms are not compatible: '
" Let 7 be the locally convex topology on E defined by the sequence P = {p;,ps, ...} of norms,
and let E be the completion of (B, 7). Then the space E is a nuclear Fréchet space. Below we denote
(continuous) norms on E and continuous extensions of these norms to £ by the same symbols.
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below, we assume that ¢ and some other similar constants are equal to one.
- Further, there exist ¢» € ¢ and p;, € P such that

9 S Ps) S Ps1+1 K G2 K Py

Then one can find (by using the definition of the norms p,) a sequence {@;} C E having the
“following properties.
: 1. {v;} is a Cauchy sequence with respect to p,,, Ps;4+1, and ps,;

2. ps,(5) = 0;

3. p31+1(90j) 7L> 0.
Then
(1) {;} is a Cauchy sequence with respect to both ¢, and g2,
(2) () =0,
(3") a2lps) # 0.
The theorem is proved.
The space of entire functions on M’ x N’ of (8, ¢)-exponential growth of minimal type is defined
b;
Y Feo (M’ x Ny = limproj exp(M_, x N_p,(8,¢), (m1,mz}).

[ oo

my>0,mp>0

Similarly, the space of entire functions on M x N of {8, p)-exponential growth of finite type is
defined b
omea G,y (M x N) = ligrliorgd exp(M, x Np, (9, ¢), (m1, m2).

My, My=—00
Proposition 1. 1) A function f: (M xN)' — C belongs to Fg,,\ (M’ x N') which. is isomOfphz'c
to Fo.o) (M & N)') if and only if

sup | f(w, O)]e~0mlwin—p)—e(m|Cin—p) o
yEM o
CEM

for any pair p 2 0 and m > 0.

2) A function g: M x N — C belongs to Gg (M X N} if and only if there exist a pair p = 0 qnd

m > 0 such that o
Slelg (Q(QJ, C)le_g(mlwlM’P) w{m|¢|n,p) < 0.

ceM
Theorem 2. There exists o unique topological isomorphism
Flo.) (M & NY) = Fo(M)QFp(N')
which extends th)e»correspondence ‘

&M et @e”; £€ M andne N,
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where the ezponential function ¢ = £®n jg defined by
@ M x N - ¢,
i) = €M (w, mY(w, ) = exp({w, €+ (¢, 7)),

and where
Fp(M') = limproj exp(M_,, 8, m)
S 1ok
m—0Q
and

We aiso use the notation
el80) —. et el —. 7

The main property of the exponential Junctions & (ef, and e") is that they are dense in the

space Fp o) ((M & NY') (in the spaces Flo.o) (M & NY), and Fo(N'), Fo(M'), respectively) and
linearly independent. :

... This enables one to extend the notion of Laplace transform to these spaces and to prove its
invertibility. - '

Theorem 3. Let M and N be compler nuclear Fréchel spaces, and let 0 and ¢ be Younyg
functions. Then the Laplace transform

L: fg‘,@(M’ & N') — G(o+ o) (M & N),
T — LT =T,
defined by X
T(€,m) = (T, ),
is a topological isomorphism.

Proof. This can be established by direct calculations.

3. CHARACTERIZATION OF OPERATORS

We denote by L{Fy, ) the algebra of continuous linear operators acting on Fo(N’) and
equipped with the topology of bounded convergence.

Definition 2. The symbol of an operator A € L(F4,Fp) is a complex-valued function denoted
by o(A) and defined by '

o(A)Em) = A(e)(e") = (A%, e"); e N, neN.

‘Remark 2. This definition of symbol differs from that used in the theory of pseudodifferential
operators. .

- 'By the Grothendieck-Schwartz kernel theorem, if we take two nuclear Fréch

et spaces X and D,
then the canonical correspondence A4 € L(X,D) — A¥ given by

{(Au,v) = (AX u @) u € X, ve D', Ae[L(X,D),
yields a topological isomorphism between the spaces L(X, D) and
X'&D = X'§D" = (X&D'Y

(¢ [34] concerning these identifications for nuclear Fréchet spaces). In particular, if we take X =
D= Fy(N"), which is a nuclear Fréchet space, then

L{(Fo(N'), Fo(N")) = Fg&Fy.

mmmﬁmww e RUSSIAN. JOURNAL OF MATHEMATICAL PHYSICS Vol. 10 No.4 2003

LEVY LAPLACIAN ACTING ON OPERATORS ' 365

Proposition 2. The symbol o(A) of an operator A € L(Fy,Fo) is the Laplace transform of the
rnel A¥, !
a: o(A)G€) = AMeg®by) (€N, (€N,

nd the symbol mapping yields a topological isomorphism between L(Fo, Fo) and Fo(N" )G~ (N).
More precisely, we have the following isomorphisms:

L{Fy, Fo) > FoRGo- é'-SEFQQ?)CJ@,
A= a(ANGE = D lo1m: (P @ &™) = & = (om)im>o-

Lm0

roof. This can be checked by direct calculations.
" Theorem 4. The symbol mapping A — A= o(A) is a topological isomorphism
L(Fo(N"), Fg(N")) = Gor,0+ (N & N) = G- (N)&Gg- ().

i i = for every test
k 3. The Dirac mass §;, for every ¢ € N, is deﬁned-by ((Cz,cp)_) <p(z) Ty
fﬁnl;{::i}:rlla; € Fp(N"); for the'funciz:ion ¢ — 8¢ we have the following expansion in power series:

Se =1+ ; (€N
¢ n! 230

4. ELLIPTIC OPERATORS OF LEVY TYPE

Let E; and E» be two real nuclear Fréchet spaces as before. A function E: F; x Ey — R is called

- a function of class C2(E) x F3) if there exist two continuous mappings

(1,&) — F'(£1,&) € Ef X E)

“and

(€1,62) — F"(&1,6) € L(Ey X E, E] x EY)

such that

F((€1,&2) + (m,m2)) = F(é1 +m), (&2 +m2)) = F(§1,&2)
+ (F'(€1,62), (1, m0)) + % (F"(&1,&2)(m,m2), (mym2)) + €(n1,m2),

where the error term satisfies the condition

e(tm,t
Hm ( 7?12 ?72) -0
t—0 t

for any (11,m2) € Ey x Ea; applying the kernel theorem, we use the common symbol F”(¢1, flg) for
all

(F"(€1,&)(m,m2)s (mom2)) = (F (€1, &2), (m ® 1,12 @ M2))
= F,I(£11€2)((n1:n2)a (nla 7]2)) = D(m,ﬂz)D(mmz)F(Sh&2)-:

where Dy, ,,) is the derivative in the direction (11,72}, i.e.,

(D) ) 52)- = lim P&t 2m, & +A)\772) —Flné) _ % (F{& @ & + t(m @ m2))i=0-
.72 ? AsO

Let {en, EB.f;bz} nen be a sequence in Fy & Eo.
B nyEN
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. F U Ey @ By — C be an element of C2 (E1 + E2). Then the elliptic operator

wne - . Lemma 2. For any fized sequence {e fro } C E1 ® Fo, we have the following equality:
associated with the sequence {e,, ® Jng }men is defined by § v 1 ten, © foz ) 15 Y Jollowing equality
L no €N

Ny Ng
: i 1 . 1 .
ai @ azll7 = llasl £ +llazll3 L +2 (leinoo A (Z (ahenl)))) (NI;LHOOE (Z <a2?fn2))) :

BeB)Gnt) = Jim me ( D D P 6,6, (en, @ £2)®2) (5.1)

nr=1ns=1

n1=1 =1

Proof. Indeed, using (5.2), we have

8 liniit exists for every & € Fy and &, € F,.

o -
.1
_Na ol = Jim o= (Z > (far,en,) + <az,fn2>2+2<a1,em><a2,fn2>)),

Ng—o0 ni=1n,=1

¥ B b I e oYy 5
e L Ly = UL, tnen the elliptic Levy operator-AL- defined by (5.1 mceides with
Lévy Laplacian associated with {e,, }. i v (5:1) coque.s szth the

- Proof. Indeed, if we set Ez = {0} therein, then we see that : laz @ azllZ

' B @B, — 1 Ny N2 N N2

| 1@ By = By, where F(§1,&2) = F(&;,0) is denoted by F(&), = lim NN [Nz Z (a1, en, )2 + Ny Z {ao, Frg)? + 2 (Z (al,em)) (Z (az,fnz))jl

which implies that Moo T m=t ra=1 =l ne=l

| = lim i-fxae 24+ tim gﬁ Fra)?
(BLF)E) = 1 A Tz Ny LI TR, e £ 10 I
= im % ny= -
PN =, n e (5 3P e 0c)). ( i g
+2| lim — - (al,en)) ( lim - (ag,fnz)) ,
Since f, = 0 for every integer ns, it follows that Ni—oo Ny ni=1 Nz=so0 Na nz=1

which proves the lemma.

N .
- 1 - 1 oo R k4. 1)Ifg= 0 € E,, th
ALF() = Jim o (N2Z<F”(&%em®em>)= lim == 3" (F(E), en, ® eny). emark 4. 1) 1fa =0 &0€ 5, then

Nowoo ny=1 Ni—oo Nl ny=1

leli7 = lle1llZ = llealff ., andif a=0@az then

lallZ, = lla2lif, = lla2li3 .-

Definition 4. 1) We denote by ((E1 @ E2)® (B, @ Ey))", the set of all elements ¢ € (E] @ Ef)®2

for which the limit 2} If the sequence {e,, ® fn,} defining the Lévy operator Ay, is “diagonal,” i.e.,

0 if 1 =,é N9
N1 Ny en1®fn = Ony,n (8n @fn)z{ .
(ﬂ.)L = <(a1 & 022) R (ai &5] a’é))L = Nlicho N]:ZV (Z Z <a, (enl S fﬂ2)®2> 2 1,12 1 2 €n D fn lf ] = Na =N,
Ny—oo SHYZ ST T then we obtain the following identity:
N N
o 1 1 2 1 Nz No
T MN ( Zl Zl<a1 D a2, €n, ® fr)(0] © 0, en, ® fm,)) lox @ aslff =+ Jim | = {Z > (ar,en,) + (a2, fu,)I°
o ni1=1lrng= No—voo n;=1n2=1
' N N ‘ N
= lim -1 ZI‘ZZ:((@ €ny) + {ag, fn,))({a] ; T 2 2 49
xl_“” N N» = 1> &ny 23 Jng (alaenl) + (az,fn2>) = Nllinoom ' Z ((a‘lﬁeﬂ:1> + <a27fﬂ1> + <alﬂen1><a23fﬂ1>)
3o 1=lng= ny=1
exists. - lail2 + llooll3 +2 lim & i (a1, €n, (a2, fay)
= i ES » Eng ydna/.
2) Lot (Ey @ By), be the set of all a = a1 @ ay € E] @ Ej such that the limit ! - LT N —oo N = b Ena A2, Jn

3) If the sequence e,, @ fn, C F1 @ Ex is of the form e,, &0 or 06 f,,, then, for any partition

(a@a}r ={(01®a)® (a1 ®a
2) ® (o1 2L My UNs of N, ie,, N=N; UN; and Ny NN; = &, we define a diagonal basis of F| ® Es as follows:

Ny N , .
. 1 L2 if n € Ny, then k,, = e, and if, n € Ny, then k, = f,.

= l]m E a 2 _ ;
Nz NNy (n1:1n22=1(< 1)+ {02, fno) ) (5.2) Remark 5. Let k, be a given “diagonal basis” of

1
Ny
for the partition N;, N, of N, then we have the following “Pythagorean” equality holds:

exists. We also write E\oE, ie, k=

1
\ (n)en B — (n)fn
o @ asll3, = (a1 @ a2) ® (a1 B ag) e

Using the sequences {e,,, } and {f,,}, one defines the symbols (g and (a 7= i :
4 1) and (az);. llox ® azllz, = llaallz + llazllz.
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Proposition 3. Letp € DL(E) @ Ez) be the space of all functions F € 2 (Er @ E2) for which

(ApLF)(€1,&) exists for any & € E1 and & € B> and suppose that p' (& D &) € (M + N)Y,, where
M = Ey +4Ey and N = E; +iE,. Then e#619%) € D, (E, ® E) and

(Are”) (€, 82) = (0" (€1, &0V L + I (61, &) )13 )ePEréo);

n particular,

LEVY LAPLACIAN ACTING ON OPERATORS 369

5. THE OPERATOR HEAT EQUATION
Consider the Cauchy problem associated to the quantum Lévy Laplacian Af,

0A .

. AO S L(fﬁaff?)
Al0) =4

(L{Fg,Fy), respectively}.

(Are™®) (61, 65) = o @ s e,

Theorem 8. For each A € L(Fy,F})+, there exists a unigue positive Radon measure 4 on

e 2 POOL.. Write. A(€y-@-Eo)-=-ePE1:52) “We have oo -

<h (51 ! 62)’ (enl 69f""‘-2)®(e7’11 ®fﬂ2)> = D8n1 S fn, Den} ®fn, h(gl H ‘52) = {_?t—:z (h(gl ®£2+t(en1 ®fn2),f=03
but

a h(ﬁl SH] 52 + ten! 5 fnZ) = E.E ep(§1@£2*’r‘t{en1 @fnz) — ep(&l®£2} . EE [I)(E}. & 52 4+ t(enl D fn2))

= PG en ®na) (0 (¢) © €)2, en, B fn,),
2

d
) Wé © & +ten @ fullimo = PO ((p/(¢) @ &5, eny @ frp)? + (0" (€1, 62), (€n, & Fna ) B2

As a corollary, we obtain the following assertion.

Theorem 5. For (a1,a;) € M), x N} we have

ALe((alsa2Jv(£I:§2)> — ((al,a2) ® (al’ a2)>Le<a1=EI>+<a2:£2> — “al @ azllie(alsgl)+(a‘21‘s2)

Theorem 6. For an operator A € E(fg(N N, Fo(NY we ha A & :
in particular, o(A) € 02(Nf x N). b7 ) ve oldG,e) € FolV)Ge- (N
Proof. The proof follows by the direct computation.

In Definition 3 we introduced the action of A i i iti
_ ni ¢ on functions. The follo
this definition to the language of operators. iR definition translates

Definition 5. Let D(N’ x N) denote the space of all operators A € L(Fp,Fy) such that
' g}(’A) € Dp(N’' x N) and Apo(A) € Fy (N")&Gg-(N). Then the Lévy type operator A? is defined

AA = 0" ALo(A).

The following theorem claims that the above operator is well defined.

- Theorem 7. For the operators A € L(Fp,F}) we have
(A}, €) € Gor (N)&Gp+ (N);

if 7(A) € D (N x N) and
ALO'(A) € Go» (N)®g0‘ (N):

o then the Lévy type operator Af 18 defined by

AZA=06""AL0(4).
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B E-such that

(@ + 10)(y + io)dpu(z, y) (6.1)

(A¢,¢)m(Ak,w®w)=/

E‘f

for any @ and @ € Fo(N'). In that case, there exist numbers p > 0, ¢ > 0, my > 0, and my > 0
such that pa is carried by the space E_, x E_, and

f malet—)+00malyl-a) gy, (5. 4) < oo,
E_y%xE.g
Conversely, a positive finite measure of this kind on the space E' X E’ defines a positive operator

A€ L(Fg, F§)+ by formula (6.1).
" Remark 2. Note that the Fourier transform of it4 is defined by

Fuaér &) = /; BN d ) (2, y) = (AF, € @ ) = 0 (A) (i1, i6s).

Proof of Theorem 8. Let
A€ L(Fe(M), F5(N")) = Fg(M") @ FF(N') = F o(M' @ N')

A function ¢(£1,8&2) € Fo (M’ @ N’} is said to be positive if p(z; + 01,22 +10) = 0 for any z; € E,;
~and zg € E3, where M = E) +iE; and N = E3 +iEs.

Denote by Fg o(M’' @ N'); the cone of all positive functions.
An operator A is said to be positive if (4%, ) > 0 for every positive test function

w(é1,&2) € Fo(M' @ N'),

where A% > 0 provide that A* stands for the kernel associated to the operator A, equivalently,

(AF, o @ 9) = (Ap,¥) 2 0

“for every v and v € Fp(N'} such that @ and @ are positive.
Step 1. Now let A € L{Fg(M"), Fo(N').. Then the function

Calls @ &) = ((AF, e™19%2),

which is the Fourier transform of A*, is a positive definite function, i.e., C4(0) is finite, C4 (& @ &2)
is continuous, and C4 is positive definite.

Note that C4 is a characteristic function. According to the Bochner-Minlos theorem [17], there
exists a unique positive Radon measure p4 on E| x F} such that

4 l .CA (‘fl! &2) = /;», ]Ew ei{wey,&@&)dﬂfi(ﬂ% y) = <Ak1 ei(&@ﬁg))‘ (62)
1 2
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Since the elements ¢*¢€1®&®) form a dense set in the space Fp(M’) ® Fo(N'), we can extend

equality (5.2) in a usual way to thé functions
f € Fo(M")y @ Fp(N').
Indeed, let f € Fo(M") @ Fp{M'), and let e, be a sequence in

LEVY LAPLACIAN ACTING ON OPERATORS 37

Lemma 4. Let o be a measure representing a positive kernel AF. Then

/ | (1 ® 22)®", (61 @ £2)F™)dps(1, 72)
E—m XE"“U

S HLAF o —py —gymsmsz 2r)(mam) 205, 161 © &1

£ = Vect {699 ) g € B & € By}

Lemma 5. Let  be o measure representing a positive kernel Ak, Then we have

T suchthat-o;, = ffor the topology of Foa(M &N O the other and; if wewrite .

- Flanz) = (7L %),

(§1=€2) e M x N” N

then we can see that the mapping f — f* is an involution on the algebra Fu(M') @ Fo(N' )

Therefore,

(A"’,(am — ap) oy —ay)* = f, f’ [t — anizd,uA(:z:,y). ‘ (6.3)

... Using tk_le fact that the .usual product on the algebra Fyo(M') & Fp(N') is continuous, we see
from quahty (6.3) by passing to the limit that the sequence (o )nen is a Cauchy sequence in the
space L*(E] x E}, ua), and it follows that o, — a in L2(E} x E}, pa).

However, a, converges to f in Fg(M') @ Fe(N'), which implies that (o) converges pointwise
to f, and therefore a = f (u4-almost everywhere). Then we have

(A%, f) = lim (A%, o)

= lim / , / an(z,y)dualz,y) = f efz,y)dpa(z,y) = f flz,y)dpalz, y).
1 JE B\ xEL E{xE}

1
Step 2. To prove the integrability condition

dp,q, m1,m2 >0 suchthat pa(E_,xE_j)=1,

it suffices to assume that
/ mlel 1+ 0malsl-o) gy, 4 (1. ) < o0,
E_,xE_4

_ IIcn_ f;a,_c_t if_ i satisfies (6.4) and is carried by E_, x E_,, then one can readily prove that the linear
orm
(Aﬁ,f) = f flx + 40, 20 + i0)du(z), z2)

E{x E}

is continuous‘o.n Fo(M')®Fp(N"), and the positivity condition for the kernel A% follows immediately
from the positivity condition for the measure p.
Conversely, the condition (6.4) is necessary. Suppose that the measure p satisfies the relation

)= [ fenedae)
-V Ex Bl
for a certain A® > 0; then there exist some p, g, mi,my such that
Car(ér, &) = (A, 18890 ¢ exp(Mp, 07, m1) ® exp(Ng, 6%, z2),

and by the Bochner-Minlos theorem there exist p; > p and ¢, > p such that p(E_, x E_, ) =1
and, moreover, the operator iy, 4, p.q: Mp, ® Ny, — M, & N, is of Hilbert-Schmidt type. 1

Let us now use two technical lemmas.
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(6.4)

/ o1 @ 2l pydit(1,2) < (1EAP 83,202 (Vermmallip palis)"
E_p XE_py

" Pinally, we can see by using the relation (§*)* = # that it suffices to find m’ and m” > 0 for

¥ * 1 *
/ sup{e B™ 21| -5, =€ (ta)}sup{e—tzm |2l -p2 =67(t2)Y 5 dpu(zy, 22) < 003
E_p XxE_p, h ‘ t2

féally, we have

s Iyn
y _a* g+ i, m
et |w1]-py =% (t1) = € 6%(ta) E : ( , 1 ) |-’E1!?lp17
: ni

=0

"
Tl

€ —pa?

. * ¥ _ n
Sup{et1ﬂ1|m1|-—p1”9 (tl)} < Z: (mlmllg*ﬁl)
t " n,

bl

+ and hence we obtain

/’ O (@1, )+9(mn!a:2|—p2)d#(xl,$2) < K(”[_:Ak”)l/z
Eop E—Pz V

~ by choosing m’, m”, and g0l Hs-

Theorem 9 (the evolution of positive operators). Let Ap € L(Fo,F§)+. Denote by p the
corresponding Radon measure on E' x E'-(in the sense of Theorem 7). Let {e), (fn) be bases in
E. If u is invariant under S* (where 8 stands for the shift operator on E' x E'), i.e., S(en, fn) =
(€ns1, fns1), then (z,9) € (E' x E')y for p-a.e. x, and

£ 0,

e~ gu(z, ), £1,& € E,

Ai(61,82) =/

E'x E
is a solution of the quantum Cauchy problem

%éé =A24,  A(0,(6,6)) = o(40) (&1, 6)-

Proof. The statemént follows from Theorem 8 and Theorem 7.

APPENDIX

The enumeration of propositions in this appendix is independent of the enumeration in the main
part of the paper.
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1. Laplace Operators

In this section we give general definitions of Laplace operators of different types.

Unless otherwise stated explicitly, the vector spaces are assumed to be real; if £ and @ are,
locally convex spaces (LCS), then L(E, G) is the space of all linear continuous mappings from E to.
G;if G =R, then one uses the symbol E* instead of L(E, G) and writes L(E) instead of L(E, E);:
the symbol Lo(E) denotes the space of all compact operators in L(E) (we use this space only if &

is a Hilbert space). A mapping F: E — G is said to be (Hadamard) differentiable at x € Eif ther

exists an element F'(z) € L(F,G), the so-called derivative of F at x, such that, if

. 373
LEVY LAPLACIAN ACTING ON OPERATORS

i net tor subspace domSy of the
finiti t So be a linear functional deﬁne(_l on a vec _
eﬁ_nltlog(g }_g,’[f)]) }3 zecogdvorder homogeneous differential operator (deﬁne}c)i by ?gffgﬂlg‘;lgzi
ﬁ-.-'zps?)(:;ce of %unctions on E is a linear mapping (denoted by Ag,) from a subspac

)-into the space F (E). The mapping Ag, is defined as follows:
domAs, = {g € C*(E) : Yz € E, ¢"(z) € domSp};
e (As,9)(z) = Solg"(2))-

then
o re(tahn) = 0 a5 7 — oo

for any convergent sequence (hy) of elements of E and for any sequence (t,) € R convergent to

zero (see [31] and the references therein). The derivatives of higher orders are defined by induction

in this case one assumes that the spaces L(E, G), L(E,L(E,®)), and so on are equipped with
the topology of convergence on sequentially compact subsets. A mapping F': F — G is called a

C™-mapping (n € N) if it is n times differentiable everywhere and if F itself and all mappings

F(’“):EHL(E,...,L(E,G)...), k=1,2,...,n,

are continuous. The vector space of all C™-mappings of F into G is denoted by C™(E,G); if G = R!,

then one uses the symbol C™(F) instead of C™(E, G); the vector space of all real-valued functions
on £ is denoted by F(E).

One can show that a mapping F': E — G is an element of the space C™(E, G) if and only if it
is continuous and Gateaux differentiable at each point and all mappings

F(’“):E—+L(E,...,(L(E,G))...), k=1,2...,n,

are continuous {22).

In a similar way one can define the differentiability and derivatives of (eylindrical) measures on

a LCS (see (31, 32] and the references therein). To do this, one can observe that f € CY(E) if and
only if the function

Eah»—»[fo(erh)]eC(E)

is differentiable at 0, assuming that C(E) is equipped with the topology of compact convergence.
Certainly, one can also equip C(E) with some other topologies and investigate relations between
the corresponding differentiability properties and the Hadamard differentiability. Let now, for any
vector subspace £y of E*, the symbol M(E, E|) denote the space of all bounded By -cylindrical
(complex valued) measures on E equipped with the topology o(M(E, Ey),C,(E, E1)), where the
symbeol C.,; (E, Ey)) denotes the space of all bounded continuous (complex) E;-cylindrical functions

on £; let A.y,(E, Er) be the collection of all £1-cylindrical subsets of E and, for any v € M(E, Ey)
and k € E, let vy, be the shift of v on ko

Vi = [Acqu(E, B1) 3 A v(A + k) € M(E, E,).
A measure v € M(E, E;} is called {n times) élifferentiable (along E) if the function

EatHVh EM(E,El)

~is(n times) differentiable at zero and all the derivatives are measures absolutely continuous with

respect to v (cf. 31, 32}).
The following definition gives a motivation for the definition of Laplace operators.
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1 : Y ‘ . i ifferenti rs of any or-
“a” similar way one can also define (IlOIlllOIIlOgeIleOllS) linear differential Operato
0 "

in C™(E). | N N
Alll' 1zar H(lagzping from a vector subspace of F(E) into F (£) such that the restriction of this
appilrrxlv to C*(E) is a differential operator is also called a differential operator.

- (=1

- th
Example 1. Let E be a Hilbert space, let 4 € L(E.)’ and let Sgl(BB) EMLEgBE%‘ ))((LIGE?E))?
x1 trpstands for the standard operator trace) for a suitable opel:at()l‘ cociat d’ with A). Such
hgm Z is called a Laplace—Volterra operator, or a Volterra Laplacian (associate
hen Aga

i that A
i i ixti kii and L. Gross who also assumed _
dered in the sixties by Yu. L. Dalets ( | that 4
'rs?:l?—r:d‘;?iﬁ c}?;issiltive operator, but this assumption is not essential for us now. Moreover,
é%nition we even need not assume that A is continuous.

* i lterra
“ Using a proper notion of trace for elements of L(E, E*), one can introduce Laplace-Vo
perato?s for any LCS. Below we write A4 instead of Aga.

i i )i, let H be identified with its
Hilbert space with the inner product (-, )'H, ‘ )
. Let H d}?e‘ a)c Sf{l?kar;?éelet IE be aIII) LCS which is a dense subspace in I*f as a vgctordsl‘)ve;;gfl, srll(()ecil Si;
— atljlgj‘.nthe canonical embedding of E in H is continuous. Let £* be eq}npp}} Oy o
: Suz;estopology respecting the duality between E* an_d E; the}x: the crinagé)linrgage in_E*. fonco,
;cc)l?c‘;int to the embedding F — H is continuous};njetigl*ve,cag(}- ‘:;: :,I soerrllote nage If, b7, Tence,
| j igg i t space EF C = ” :
hgsifogjgfstio;rln (ma gr;g;ge;i (I;;I:I;E)elizsglr)(a:)) in the natural notation. Let e = {e,) be an orthonormal
3 H

‘l?) is in H formed by elements of E. Below one assumes that the linear span E, of the basis e is
“dense in E.

Proposition 1. The series

o0
E anen
n=1

conwerges to an element f € E* in the topology o(E*, Ee) if an = fleyn) for any n.

Corollary 1. The mapping A: E* > f — (f(en)) € R*® is a homeomorphism of the space
(E*,0(E*, Eo)) onto its image in R*. _

Corollary 2. The mapping A of Corollary 1 is a continuous bijection of E* onto A(E*).

Remark 1. Let the symbol

00
E Gn€n

n=1

. i nt exists.
denote a (unique) element f of E* such that f(e,) = a, for any n if such an eleme
According to what was said above, if the sum

o0
E OnCn
=1

" .4 2003
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exists, then the series converges in the topology o(E*, E.) but need not converge even in the
topology o(E*, E) because the series
o0

> flen)glen)

n=1

can be divergent (in the general case) for some f € E* and g € E (see Remark 2 and Example 2).

LEVY LAPLACIAN ACTING ON OPERATORS

Definition 2. The Laplace operator on F,(E) (defined by the basis e and by the functional S

is the mapping
3 Asn: dO’mAs — f(E)

defined on ,
: domlg = {f € Fo(E) : f;(x)) € domS},

.'h'el‘e" o "
" _
fg(x) = a2

f(m + tej)’

OO

D Slen)glen)
=]l .

converges for any f € E* and g € F; (2) the series

> flen)en
nw=1

~ converges in the topology o(E*, E) for any f € E*; (3) the series

Z g(en)en
n=1

converges in the topology o(F, E*) for any g € E.

Example 2. Let H = Ly(—1,1) and E = C[-1,1]; then E* is the space of all (signed) Borel
measures on [—1,1]. Let
e,(t) = ¢, cos(gnt)

foreach n =0,1,2.... Let g € C[~1,1] be a function whose Fourier series diverges at zero, and let
6 € E* be the measure of unit mass {on [—1,1]) concentrated at zero. Then the series

> dlengle;) = e;(0)g(e;)
=1 j=1

diverges.

Example 3. Let D be a (strictly) positive self-adjoint operator in H having a Hilbert-Schmidt
inverse, let (e,) be an (orthonormal) basis in H formed by eigenvectors of the operator D, and let

E = Hp = N, D™ H; one assumes that F is equipped with the topology defined by the following
collection of Hilbert norms:

{Il Il : n € N; Vh € B, |[A[l7 = (D™h D"h)y}.

Then E is a (reflexive) nuclear Fréchet space, and for each g € E* the series

oo
> (genden
n=1

converges in £ even in the strong topology (which coincides in this case with the Mackey topology).
For any n € Z, we denote the completion of the space (Hp, || - Iln) by Hn.
Let now Fo(E). be the set of all functions f € F(E) which are twice differentiable along the

vectors of the basis e. Let also S be a positive linear functional defined on a vector subspace domS
of the space R* of all sequences of real numbers, where domS contains the space £, (= £1(N)).

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 100 No. 4 2003

t=0

by the rule

(Asf)@) = S((Ff5(=),_.)-

If £, C ker S, then the operator Ag is called a (weighted) Laplace-Levy operator (and the functional
S is called a Levy functional); if

S((zn)) = D _ antn

(where a,, 2 0), then Ag is a Laplace-Volterra operator (according to the definition in Example
1). In a similar way one can define both types of Laplace operators on M(E, Ey).

Definition 2a. Let the assumptions of Definition 2 be satisﬁegi. The (?xotic Lapla.ce operator
n F.(E) of order n (€ N) defined by the basis e and by the functional S is the mapping

A%: domA§ — F(E)

defined on B
domAL = {f € Fo(E) : ((llesll72f}5{(z)) € domS},

where 2
i) = G| far e

by the rule , -
(A=) = S((Uleslla2 5D, )-

If £, C ker S, then the operator A% is called a (weighted) ezotic Laplace-Levy operator of the order
n {we do not consider exotic Laplace-Volterra operators).

Let the functional S, be defined by

n
1 1 |
domS, = {(an) € R® :311;3152%}; S.((an)) = hrllnﬁzzaj
i i 2 ing is called a (classical)
. S. is the Cesaro average of the corresponding sequence). The operator Ag, is ca (el
_ Eee;ry iaplacian associated with the basis e and is denoted below by A_; the operator A% is called

a (classical) exotic Levy Laplacian of order n and is denoted by AZ.

A, simi E ts of the space
Remark 3. In. a similar way one can also define the Cesarq average for e}emen -
G (where G is an LCS), and hence the classical Levy Laplacians, both ordinary and exotic, for
mappings from E to G. .
Below we will see that, in full analogy with the relation between the Laplace-Volterra operator
and the notion of the (usual) trace of an operator (see Example 1}, the Laplace-Levy operator 1s
related to a similar object that we call the Levy trace.

No. 4 2003
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'ﬁ’_n'it'iot{ 3. The Levy trace (with respect to a basis €) is the functional tr; whose domain
e on L(E, L(E, G)).
Iff.€ CAE), then Ay, f(z) = Ag, f(2) = A f(z) = tre(f7(z)).

.This definition can be generalized as follows.

5——-———1{‘34“5*92‘@9}713119H@@Hﬁra?@.fﬁi;?gf("dEﬁll?édTWAW (@) =% "(%)) 15 alo called the Levy-

Laplacian.

(with respect to the basis e) is defined by the rule
({a, 5} - {b,e;)) € domS.} ; if (a,b) € dom(-, ‘Je, then {a,b), =

Definition 4. The Levy inner product {)e
dom{-, ). = {(a,b) € E* x E*;
Se(({a, e5) - (b, e5))).

Remark 4. The domain of the Levy inner product need not be a vector space; moreover, even
the set Eg of the functionals f € E* for which the Levy inner product (f, f). exists need not be a

vector space.

'E.S:ample 5. Ifa € E* and A = a®a (€ L(E, E*)), then trz 4 = {a,a)..

Now we will give an example of a vector subspace E, in E* for which E. x E; < dom{-,-),. Let
the assumptions of Example 3 be satisfied; the general case can be considered in a similar way. For

each A € (0,7), let
8y = Zsin()\n)en

let also v be a g-additive Borel measure on
L2((07 1)3 U)s let

(€ E7);
(0,7) and, for each function ¢ € Ly((0,1),v) N

8, = fo “eNeau(d)) (€ B).

Let finally S, be the image of the space L, (0, 7) under the mapping f — s 5. Then S, x S, C
dom(:,-)., and the restriction of (-, )z t0 S, x 8, is an inner product on S,,. The space (Sy, (-, -),) is

a separable (pre-Hilbert) space; if the support of v is an infinite set, then this space is not complete.
Let us also note that

(80,50 = [0 " WA,

Remark 4a. The most part of the above constructions can be applied for the case in which the
basis e is replaced by any orthonormal set of elements in H.

2. Analytic Properties of Levy Laplacians

In this section we prove a chain rule and a Leibniz formula for Laplacians (both Levy and
Volterra). After that, we prove some relationships between the Levy and Volterra Laplacians.
Below we assume that A, B € L(H).

Proposition 2. (Chain rule). If g € C*(E) and f € C2(RY), then

Ac(fog)z) = f"(g(@)(g' (2), ¢ (@) + F'(g(@))(Arg) ().
IfE=H, then

Aalfog)a) = ["(9(x))(Ag (), ¢'(2))m + F(9(2))(A ag)(z).

~ Proof. Due to the chain rule, (f o g)"(z) = f"(g(z))(¢'(x) ® ¢'(2)) + f'(g(z)) - ¢"(z); now, to
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prove the first statement, it suffices to apply the mapping try to both sides of the first identity
and, to prove the other statement, it suffices to multiply the same identity by A and then to apply
the functional trz to the identity thus obtained.
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t of L(E, E*), defined by trz A = S.(({Ae;, e;))) . One can also similarly define the Levy

Definition 3a. The Levy traceisa functional trZ whose domain is a part of L(E;FE*) containing-
- operators in L{(H) of the form ¢- Jd+ K, K € Lo(H), such that trk(c-Id+ K) = c.
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Corollary 3. Let the assumptions of the preceding proposition be satisfied. If Apg =0 (if E=H
Aag =0, respectively), then :

A(f o g)z) = f"(g(x))(g'(z), 9" (z))e

T Ay (Fog)(a) = £ (9(2)(Ad (=), ¢’ (&),

espectively. 7 . _ '
On the other hand, if (¢'(x), ¢'(@)): = O (this is the case, e.g., if E=H ), then one obtains the
wing formula, which s usually presented in texts on Levy Laplacians:

Ar(fog)(z) = (Argiz)f (9(z))-

-' = / =0 si ly, then Ap{f og)(z) =0.

If Arg =0 and {¢'(z), ¢'(x)). = 0 simultaneously, . ‘ ~
Similar results hold for the Laplace—Volterra operators (if E = H). Namely, if (Ag'(z),d' (z))g =
hen

Anlf 0 9)(@) = F(g@)((Aag)@))
f (Ad'(z), g (z))n =0 and Aag =0, then Ax(fog)(z)=0.
Corollary 4. If f € E*, ¢ € C?(RY), F(&) = ¥({f,£)), and the inner square {f, f). ezists, then

(ALF)(E) = (£, Ned" (£, €))-

In particular, if F(&) = e, then (ALF)(E) = § 1, {(),:e(f;).)

If (&) = f((BE, ), then (ALY (E€) = 2(trs B) f/({BE,&)n)- _ )
,S.Zmz(l?r stit(e(mentsﬂhold for the Volterra Laplacian (if E = H). Namely, if f € H{(;) fl‘ ).,
then (AAF)(E) = (Af, Huy"((£,9)n); if F(§) = U0, then (AaF)(&) = (Af, flaeh ;o
(A6 BEm =0, then (AT)(€) = 2tr(BA)f'((BE, E)m)-

. E*. and let P,: E — R? be a homogeneous polynomial, P, (§) = (a,f).k.
ThE: er;l;ae(g =Lelj(g -€~ e, a) - ((a,£))*=2  (this means that botl} sides of the igengty )e;gs(g
“simultaneously and are equal). In particular, if {a, a). = 0 (for example, if a € H), then AP, (¢ =
“forall¢ € E.IfE = H(= E*) and P,(£) = (a, €)%, then Ay P,(€) = k(k—1)(Aa,a)q - ((a, ) )2,
“If (Aa,a)y =0, then AP, (§) =0 for any { € E.

Proposition 3 (Leibniz formula). If g, f € C*(E), then
AL(f-9)@) = (g Acf)(e)+ (f - Acg)(z) +2(f(2), ¢ (@)
If E=H, then

AA(f-9)@) = (g-Daf)(@) + (- Aag)(a) +2(Af (@),6' @)

The proof is similar to that of Proposition 2.

Corollary 5. If E=H= E*, then (f'(z), ¢ (z)). = 0, and one obtains the well-known formula
A(f-9)=) = (g-Acf)z) + (f - Arg)()-

Now we c,ons;ider some relations between Levy Laplacians and Volterra Laplacians (cf. [21, 33]}.
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4 Let (Ay) f')e a sequence of Hilbert-Schmidt operators in H such that A s —
|’ < o0. Let a linear functional P on a vector subspace of L(H) be defined as follows:

sup |4
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LEVY LAPLACIAN ACTING ON OPERATORS

..Proposition 5. If f € C}H) and f"(x) = ayld + Ky, K, € Ly(H) for each x € H, then the
lowing identity holds for the Levy Laplacian Agn:

., trAZA,C

C & domP < Jlim —~_ 2= . ApifoA,

. 5 Ape fi{(z) = im —rr

14 Tss (B o) =lm 1 Tt

“and let, for each C € domP : ‘
. ) ) A AL here (Ay) is.a sequence of Hilbert-Schmidt operators satisfying the assumptions of the preceding
P(C) = lim W roposition and convergent in the strong topology to the identity (Apq stands for the Laplace-
nlHS Volterra_operator assoctated with Id.)

~~Then-P-is-a-Levy trace. Moreover, if (Cl)

18 'a sequence of compact operators convergent to C' in

roof. Let us first note that (f o An)(z) = f"(An2)A, and (f o A,) (2) = A}, f"(Apz)An.

-thﬁSt?"O'ng .topology’ then}fo?ﬂany k’

tr Ay A, Cy, —0
[ 4n % s

and the convergence is uniform with respect to k.

lim

Proof. Let us first prove that P is a Lev . '
y trace. It suffices to prove that P(Jd) = 1 and
f(K )= 0 for any K € Lo(H). However, the first identity is obvious because tr A,’;fgn )= 1413
d;e:; ;2\&{) K( € )LO(‘f )f thferller I;' = Vd‘ BK'O, where Ky is a positive operator and V is an isometry: we
v (e,) a basis o orme eigenvect f K 3 i
cigonvalus 11 4 o po ) o Y eig ors of Ko and by (k,,) the set of the corresponding

o0 oo
tr A"AK = tr A"AVEKo = Y (Koe,, VA* de,) = > knlen, VA* Aey)

n=1

3
n=]1

on the other hand,

oo
m k * . . *
n;r?ﬁﬁ n|n§=1(en,m Ae,)| € Jmax k|- tr 44
for each ro € N. Hence,
ALK = % L5
e tT = 3 * * :
R 7R D G Al v D DR
r=1 nllHS r=rp=1
7o

max k. -sup |4 +
1

S A [Frg 1520 max k- tr d; A,

7o
[4n]7g REro=1

;flo;nzagii ;‘0 € N. SinE:e sup ||A}?|| < oo(,ifor each 1o € N, it follows that the first term on the right-
converges to zero; the second term is bounded ab
P is a Levy functional. nded above by maxszros1 = 0(ro = o). Thus,

The proof of the other statement of the it
the followimn e other st proposition follows from the fact that, for every k € N,

lim tr AnAg;';Ck -
n—oo ”AnHHS

¥

where the converge i i i s : .
calculations. gence is uniform with respect to &; in turn, the uniformity follows from the above

This proposition implies that, if a sequence of o

. y perators a,fd + K, !
- converges in the strong topology ’to an operator a - Id + K, thel.'? mon € Ko Hn € Lo(H)
tr Ay A (a,1d + K,,)

P(a-Id+ K) = lim
”An”%{S

o RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 10 No. 4 2003

cording to our assumptions, A,z — z for each z € H; hence,

F(Anz) — f(z) foreach xe€ H.
Therefore, due to the second statement of Proposition 4,
tr AX f/{A,x)A,
2l Bnt)An  pg(a)) = (Bef)(a).
1Al s

On the other hand, the above calculations show that
tr A% {7 (Apz)An = Ay (f 0 Ay) ().

The proposition is proved.

For some special sequences (A,,) and for some special Hilbert spaces, one can improve Proposi-
tions 4 and 5. '

Let H = Ly(0,1), and let A,, be integral operators on H with integral kernels K. We assume
that each K, is a continuous function and that the following relation holds for any sequence of
functions 9, € Loo{0,1) convergent in Lo,(0,1) to a limit ¢:

1 11 | 1
—_— ]0 [0 K (t, 80, (1) Ky (t, s)dtds — fo P(t)dt,

2
[ Anll7s

1 1
”Anlﬁfs=/0 f(](Kn(T,s))2dtds.

We assume also that the sequence (A, ) satisfies the conditions of Propositions 4 and 5. Then the
conclusion of Proposition 5 holds (in which under A, one means the classical Levy Laplacian on
L2(0v 1))

A typical example of a sequence (A, )} is a sequence of operators of convolution defined by

functions of a proper é-sequence (cf. [21}]).
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Abstract. The problem of stationary flow of a viscoplastic medium in a plane confusor
is studied by using the Shvedov-Bingham~I"yushin model in the case of small shear yield
stress. The solution of the problem is constructed in the first approximation w1tl'1 respect to
the yield stress, and this solution is generated by the solution of the corresponding Jeffery—
Hamel problem on the flow of a viscous fluid. The numerical-analytic method of accelerated
convergence developed by the authors is applied. In the first approximation with respect to
the yield stress, the main characteristics of the viscoplastic flow are Qeﬁned and _comme;nte_d,
namely, the asymptotic domains of the first approximation; and t.helr behavior is studied in
a wide range of parameters of the system. New effects of mechanic nature (the pumbt_ar, the
shape, and the arrangement of the asymptotic domains of the first approximation; bifurca-
tions of the flow patterns, the behavior of the velocity of the particles of the me_dlum at the
boundaries of the asymptotic domains of the first approximation, ete.) are obtained.

1. JEFFERY-HAMEL PROBLEM

Tt is well known that, when trying to find a stationary solution in the problem on the vis-
coplastic flow under the action of the pressure at infinity in a plane diffusor or confusor in the form
v(r,8) = V(8)/r, which is customary for viscous fluids, or in a conic diffusor or confusor_ in the form
w(r,8) = V(8)/r?, one faces contradictions and substantial difficulties [1} The flow lines are not
straight, and their family is a complicated pattern in the plane angle or inside the cone.

In the case of plane confusor, the stream function 4(r, #) was sought in the form {2

b= wi(Bri (1.1)

The basic function w(#) in (1.1) determines the value of the outflow; the functions wy(6) and
w3(#) do not influence in the outflow and only correct the shape of the profile.

A slow viscoplastic flow in conic and plane confusors was studied undel_v a §mall (apertl.lre)
ngle [3]. For the basic solution, we take that for the Poiseuille flow in a cylindrical tube or in a

plane layer. In what follows we assume that the flow occurs in a coné with a small cone angle 3 rather
than in a cylinder. We obtain the following formula for the outflow @ in the first approximation

with respect to 3:

'. 2 3.3
97 tan? 8 27 1'2) rirs
32uT,s (pl P2~ tan ol s r1 (?“g/ 2 _ 'rf/ 2)2

where p and 7, stand for the dynamical viscosity and the shear yield stress of the mrs}fcerial, j21
and po for the pressure at the input and output cross-sections, and r; and ro for the radii of these
cross-sections. For a plane diffusor, the formula similar to (1.2} will be:
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