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In this paper, we consider (some) solutions to the

heat, Schrodinger, and Laplace equations containing
Laplace-Levy operators (Levy Laplacians) in function
spaces on rigged Hilbert spaces and describe the rela-
tion of such operators to the quantum theory of random
processes. Unexpectedly, in many cases, the properties
of the Laplace—Levy operator are similar to those of the
more traditional (infinite-dimensional) Laplace—Volt-
erra operator; substantial distinctions arise only when
the functions on which these operators act are defined
on a Hilbert space (cf. [2, 7]). The approach to studying
the Laplace—-Levy operators used in this paper develops
the methods suggested in [1-4]. Some applications of
the Laplace—Levy operators are described in [10, 11].

THE LAPLACE OPERATORS

Unless otherwise specified, the vector spaces are
assumed to be real. For locally convex spaces E and G,
L(E, G) denotes the space of all linear continuous map-
pings from E to G; instead of L(E, E), we use the sym-
bol L(E). A mapping F: E — G is called (Hadamard)
differentiable at a point x € E if there exists an element
F'(x) € L(E, G), which is called the derivative of the
mapping F at the point .x, such that, if r.(h) = F(x + h) —
F(x) — F'(x)h, then t;[ r(t,h,) = 0 as n — e, whatever
a convergent sequence (/,) C E and a sequence (1,) ¢ R
converging to zero be. The higher order derivatives are
defined by induction; the spaces L(E, G), L(E, L(E, ),
etc., are endowed with the topologies of convergence
on sequentially compact subsets. A mapping F: £ — G
is called a C"-mapping for n € N if, first, it is every-
where n times differentiable and, second, F and all
mappings F®V: E — L(E, ..., I{E, G), ...) with k=1,
2, ..., n are continuous. The vector space of all C"-map-
pings of £ to G is denoted by C*(E, G); instead of C"(E,
R), we write C"(E); the vector space of all real func-
tions on E is denoted by F(E).
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For any vector subspace E; of a space E*, the nota-
tion M(E, E,) stands for the space of all bounded E,-
cylindrical (complex-valued) measures on E endowed
with the topology o(M(E, E)), C.,(E, E))), where
Ceyi(E, Ey) denotes the space of all bounded continuous
(complex-valued) Ej-cylindrical functions on E; by
A (E, E)), we denote the set of all E\-cylindrical sub-
sets in E; and, forany v e JU(E, E)) and k € E, v, is
the shift of the measure by the vector k; ie., v, =
(A (E, E) 2A = V(A +k]e ME, E)). A measure
ve M(E, E)) is called (1 times) differentiable (along E)
if the function E 3 h— v, e M(E, E)) (n is (n times)
differentiable at zero and all its derivatives are mea-
sures absolutely continuous with respect to v.

Definition 1 [1, 4]. Let S, be a linear functional
defined on a vector subspace domS, of the vector space
L(E, E*). The homogeneous linear differential operator
of the second order (specified by the functional S;) in
the function space on £ is the linear mapping Ag of a
subspace of the space C*(E) to the space F(E) defined
as follows: domAg = (g € CHE): Vxe E, g"(x) €

domS,} and (Ag g) (x) = Sy(g"(x)) for fe domAy .

The (nonhomogeneous) linear differential operators
of an arbitrary order in C"(E) are defined similarly [4].

A linear mapping of a vector subspace of F(E) to
P (E) whose restriction to C*(F) is a differential opera-
tor is also said to be a differential operator.

Example 1. Suppose that E is a Hilbert space, A €
L(E), and S, (B) = tr(BA) for suitable B € L(E, E¥)
[= L(E)]; then, As;? is called a Laplace—Volterra opera-
tor, or a Volterra Laplacian (generated by the operator A).
Such operators were considered by Yu.L. Daletskii and

L. Gross, who additionally assumed that A is a is self-
adjoint positive nuclear operator.

With the use of appropriate notions of traces for the
elements of the space L(E, E¥*), similar operators in
non-Hilbert spaces can be introduces. In what follows,
we write A, instead of A

U
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Let H be a separable Hilbert space with scalar prod-
uct (-, -)y, which is identified with its Hilbert dual H*,
and let E be a locally convex space being a dense sub-
space in H such that the embedding of E into H is con-
tinuous. We suppose that the locally convex topology of
E* is consistent with the duality between E* and E;
then, the mapping H* (= H) — E adjoint to the embed-
ding E — H is continuous and injective, and its image
is dense in E*. Thus, E c H = H* c E* is a rigged Hil-
bert space; if x € E and g € H c E*, then (x, g)y ={g,
x) [= g(x)] in natural notation. Let e = (e,) be an
orthonormal basis in H (we assume it to be fixed in
what follows) formed by elements of E. Unless other-
wise specified, we assume that the linear hull E, of the
basis e is dense in E.

Example 2. Suppose that D is a (strictly) positive
self-adjoint operator in H whose inverse is a Hilbert—
Schmidt operator, (e,) is the orthonormal basis in H
formed by eigenvectors of the operator D, and E = Hp, =

(M\D"H ; we assume the space E to be endowed with

the topology generated by the family of (Hilbert) norms

{l:ne N;Vhe E, |h|> = (D'hDh),}. Then, E is a
Fréchet (reflexive) nuclear space and for every g € E*
the series z (g, e, e, converges in E*, even with

n=1

respect to the stron;g topology.

Next, for every n e Z H, is the completion of the
space (Hp, II]l.), F(E) is the set of all functions on E
twice differentiable with respect to the directions of the
vectors from the basis e, and S is a positive linear func-
tional on a subspace domsS of the space R containing

I (= L(N)).

Definition 2. The Laplace operator in F(E) (speci-
fied by the basis e and the functional S) is the mapping

As: domAg — F(E), where domAg = {f € F(E):

" " d4*
dt

fix + tej))

t=0

defined as follows: (Agf)(x) = S(f}i(x));=,). If ||
kerS, then Ay is called a (weighed) Laplace-Levy oper-
ator (and the functional S is called as a Levy func-
tional); if S((x,)) = Za,,x,, (where a,, 2 0), then Agis a
Laplace—Volterra operator (according to the definition

given in Example 1). The Laplace operators on M(E, E,)
are defined similarly.
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The exotic Laplacian on F(E) of order n (€ N)
specified by the basis e and the functional S is the map-

ping As: domA; — F(E), where domAg = {fe F(E):

2
((le;*f5 () € domsS) (here, £ = ;l_z fox +

t t=0

re)) ) defined by (ALN® = SU(e |2 F a0 ).

If [, < kerS, then the operator Aj is called a
(weighed) exotic Levy Laplacian of order n. If S, is the

functional defined by the relations domS, = {(a,,) €

- g 1 . T | " . .
R 311'{11; Za]} and S((a,)) = ll,rln’—IZaj (i.e., S, is
j=1 j=1
the Cesaro mean of the corresponding sequence), then
the operator A;E is called the (classical) Levy Laplacian
corresponding to the basis e and denoted by Ag; the

operator Agc is called the (classical) exotic Levy Lapla-

cian of order n and denoted by Ag . In what follows, we

considered only the operator Aé ; precisely these exotic

Levy Laplacians arise in the theory of gauge fields (see
[10, 11]).

THE ANALYTICAL PROPERTIES
THE LEVY LAPLACIANS

Definition 3. The Levy trace is the functional tr¢ on
a vector subspace in L(E, E*) defined by the equality
trgA = S.(((Ae;, e;))). The Levy trace on L(E, L(E, G))
is defined similarly. g

If fe CXE), then A, fx) = Ag fix) = Agfx) =
tre (f(x)).

Definition 4. The Levy scalar product (-, ‘)¢ is
defined as follows: dom(-, )¢ = {(a, b) € E* X E*; ({a,
e;)- (b, e;)) € domS, } and, if (a, b) € dom(-, -)g, then
(a, b)g = S(({a, ¢;) - (b, €,))) (this product also depends
on the choice of the basis, and the set E; of all fe E*
for which (f, )¢ exists may be not a vector space).

Example 3 (a vector subspace Eg in E* for which
E¢ X E¢ < dom(:, -)¢). Suppose that the assumptions of
Example 2 hold. For A € (0, m), we set 5, =
z sin(An)e, (€ E*). Let v be an ¢-additive Borelian

measure on (0, 7t); for each function @ € L,((0, 1), v) N
L,((0, 1), v), we set
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it

‘\‘[» J(p(}\_),\)‘v((/)\’) (E 1:,:&).
Q0

Let S, denote the image of the space L,(0, ©) under the
mapping f+— s;. Then S, x S, < dom(., -),, and the
restriction of (-, ) to S, X S, is a scalar product in S,
The pre-Hilbert space (S, (-, -)4) is separable; if the
support of v is infinite, then this space is not complete.
Note that

nt

(g sy)s = [OOIWRIV(AL),

0

Proposition 1 (chain rule). If g€ CXE) and f e
CHRY, then

Ap(f e 9)(x) = ["(g(x))(g'(x), &'(x)) g
+11(g(x))(Dgg)(x).
If E=H, then
A(f e g)x) = f(g())(Ag (x), g'(xX))y
+f(g(x))(As8)(x).

Proposition 2 (Leibnitz formula). If g, fe CXE),
then

Ag(f - 8)(x) = (g- Ay f)(x)
+(f - Agg) () + 2(f'(x), &'(x)) 4.
If E=H, then
Au(f - 8)(x) = (g Ay f)(x)
+ (- 848)(x) + 2(Af'(x), g'(x)) -

SOLUTION OF EQUATIONS
WITH LEVY LAPLACIANS

Definition 5. If v is an E-cylindrical measure on E*,
then the functions v,,(-) and V;(-) (on E) defined by
the equalities v, (x) = J‘e<f- Vv(df) and Vp(x) =

Je“ﬁ “v(df) (if the corresponding integrals exist) are

called the (two-sided) Laplace and Fourier transforms,
respectively.

For each B > 0, consider a o-finite c-additive nonne-
gative measure g on S, (see Example 3) concentrated

on the sphere Sf of radius B, the space LZ(S\[?) of com-

plex-valued functions on E* square integrable with
respect to the measure g (such functions can be identi-

fied with their restrictions to Sf), and the space Hjp
(Hg) of Laplace (Fourier) transforms of the measures

being the products of functions from Lz(Sg) by the

measure {g; we endow these spaces with the Hilbert
space structures determined by the scalar product in
(I . _ .
I,Z(S\l. ). Finally, suppose that v is a o-finite nonnegative
measure on (0, o) and H (H’) is the continuous Hilm-
~ . I
bertm sum of the Hilbert spaces Hy (Hpy ) generated by
this measure.

Proposition 3. For every B > 0, the Laplace (Fou-

rier) transform of the measure py is an eigenfunction of

the Levy Laplacian with eigenvalue B> (-B*). The
restriction of Ay to H (1o H') determines an essentially
self-adjoint operator Ayy in the corresponding space,

and, if f(-) € domAyy and f= Jf(B) YdB), then

Q0

Acnf = [BF(B)V(AB)

0

( respectively,

. 2 .
Agyf = —JB .f(B)Y((/B)]-
0

Proposition 4. If. for everyne N, F, is the set of all
n-frames in E* orthonormal with respect to the Levy
scalar product (endowed with the natural topology),
Vis a o-additive (finite) Borel measure on [,, and
y: R — R is a harmonic function, then the function
Fo. E > R defined by x > J'\y(fl(.x‘), £, ...,

F,
LSy, dfs, ..., df) is harmonic.

Theorem 1. Let be a (finite) Borel G-additive (alter-
nating) measure on a (Borel) vector subspace E} of E*

contained in E§ . Then,

_’<./.~ Iz

1Ay~

¢Vpx) = Je T v
Ey

if )y
1.9 ST i )
) = Je P v,

E;
t(f Ny
If j e e OWINED < oo for all x (V] is the varia-
rl
tion of v), then
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r(f:f).’[
Agy~ X
= fe P M.

Ej

If J'e“ VI < oo, then
E}

A Dy
1A ~ X,
e v, = Je 2 e Yvn.
E;
If G is a measurable space, W\ is a measure on G, and
G 3 a—> B, e L(H) is a measurable function such that
. A (Byx, x) .
the function M (x) = j e "N(do) is defined for all

G
x€ E, then

e TN(x) = n(dx);

1Agy A ywgBy (B X)y
e e

By

G

A itytr,

¢ M) = [
G

By (Box 1)y,
e

n(dx).

Suppose that € > 0, F is a linear measurable func-
tional on E*, and pg{x: |F(x)|* = %} >0 for every p > 0;
suppose also that, for every A € R!, m}, is the measure

on S, concentrated on S!\f" N {x: F(x) = A} and coincid-
ing with the measure [ on this set. Let Y, be a nonneg-

ative o-finite measure on R', and let H, (H{ ) be the
continuous sum generated by this measure of the Hil-

bert spaces H, (HgF) determined by the measures 1,
p S

in the same way as the spaces Hg (H g) are determined
by the measures (13 above.

Theorem 2. The restriction of the Levy Laplacian to
H, (t0 Hg ) determines an essentially self-adjoint oper-

ator Agy, in this space, and, if f = j FOY(dL) e

domexp(tAq¢y), then

Hyy K (Al
e f = [&" fOva(an)

( respectively,
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IAY'” - _iME
= fe f(xm(dx)).

As the measures 1, the surface measures generated
by some smooth measure on E* can be taken. Applying
Theorem 2 to a suitable Gaussian measure, we can
derive some results that go back to Saito (see [9] and the
references cited therein) and are based on the use of
Hida’s white-noise analysis. At € € {1, 2] evaluating the
last two integrals reduces to determining a mathemati-
cal expectation with respect to a stable distribution of
order €.

QUANTUM PROBABILITY
AND LEVY LAPLACIANS

Below, we use the assumptions and notation of
Example 3 and omit some analytical assumptions. Sup-
pose that v is a canonical Gaussian H-cylindrical mea-

1
-5, Xy
. ~ 2 . .
sure on H [i.e., vo(x) = e ] and v is the Gaussian

E-cylindrical measure on E* being its image under the
embedding H — E*; we denote the Lebesgue extension
of this measure by the same symbol.

Let S be an operator in # = Ly(E*, v) such that, for
suitable g € F(E*) and fe ¥, Syg(x) = tr(-D'g"(x) +
(D lx ® x)g(x) — Id - g(x)) and

(x,x),, uﬂ
SH=e * (Sg(f(oe ¢ )(x).

Then, S generates a (strictly) positive self-adjoint
operator whose inverse is a Hilbert-Schmidt operator.
Note that S is the particle number operator (also known
as the Ornstein—Uhlenbeck operator) in Ly(E*, v) gen-

erated by the operator D. If € = #g (Example 2), then

€ c ¥ < €* is arigged Hilbert space. In particular, if
H = Ly(R), E is the Schwartz test function space S(R),

and D is the standard particle number operator in S(R),
then the obtained rigged Hilbert space is isomorphic to
the Hida—Kubo-Takenaka space [8]. In what follows,
we omit the subscript S if D is the operator mentioned
above.

Remark 1. Replacing v with some non-Gaussian
measure V; and S with a positive (in the natural sense)
operator S; such that S,v, = 0, we can define an analog
of the Fock space describing systems with interaction
(known as the interacting Fock space).

Remark 2. An €*-valued function on a subset of R
is called a generalized random process (see [8]). A gen-
eralized quantum random process is a function defined
on a subset of R and taking values in L(§, €*). If g(-)
is a generalized quantum random process and z € €,
then the function g(-)z is a generalized random process.
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~ Forexample, suppose that b(h)(z)(x) = Z'()h forz e
€, xe E* and h e E*;if h =3, we write b(t) instead
of b(9,). It can be proved [8] that h(t) e L(‘¢) and, there-
fore, b(1)* € L(€*) [= L(€*, €*)] [the functions b(-)
and b(-)* are called birth and death processes].

Proposition 5. [f H = [,(0, @) for a > 0 and e is a
uniformly bounded basis in H equidense on [0, 1] [6],
then the function g defined by the equality

! J{;(r):zlr
g(t,&) = J‘ew"'e” n(ds)
0
is a solution to the Levy heat equation.

This is a corollary to the preceding theorem; it is
sufficient to set B, = [L,(0, ) 3 & > &, € Ly(0, a)],
where E (1) = E(1) if r < s and E(t) = 0 if £ > 5 (we then
have tryB; = s).

Remark 3. The function

Ié(r)zdt
(t,§)— e’ n(ds)

is a (unique) solution to the Cauchy problem

Yie) = el s, £0) = 1

relative to the functions defined on [0, a] and taking val-
ues in F(H). An analog of Proposition 5 is also valid for
H=L,(R)and E=S(R), and f: |0, e0) — F(E) is a solu-
tion to same problem but in the space of F(E)-valued
functions on [0, o). Namely, the function

(1.8) = [ f(s)(Em(ds)
0

is a solution to the Cauchy problem for the Levy heat
equation under the assumption that the basis e satisfies
the additional conditions

lim}e,,(z)z = ]im}e”(r)z = 0.

It was shown in [8] that, if F'is a solution to the Cauchy
problem

‘:{—f = (b(1) +b(D)*) o F, F) = Id
(the symbol o denotes normal product) and, for every ¢
G(1) = F(1)(zg), where zy(x) = 1 for x € E* (thus, z;is a
vacuum vector), then the so-called S-transform C(r) of
the function G(¢) is defined by the equality

J.é(l’):d'r
City=¢e’

Thus, the preceding paragraph contains the conclud-
ing result of [8], which establishes a relation between
C(+) and the Levy heat equation.

In what follows, we assume H = L,(R") and E = S(R)).
For every a > 0, consider the function d“ of real argument

definedasd(r)=11ifre [—%’ , ﬂ and d(t)=01ifr<

“ L

a a 4
—5 ore> . In particular, )=l at t =0 and d°(t) = 0

att#0. Forx e R, let (/(3 be the function on R defined

by (l? (1) = d%1 - x). Suppose also that

j §,®9%,dtds = lim J 8, ®d, drds
€ -0

{1=s} {lr-sl<et
(here and in what follows, we consider integrals of

functions taking values in the space of distributions or
operator-valued functions on R) and

j b()b(s)dtds = lim f b(t)b(s)dt ds.
€= 0

{r=s} {le-sl<el

We stress that j (...) is by no means an integral

{r=1s}
over the straight line {f = s}. The first definition implies

that J- S, ® d,drds = JS, ® d; dr. Note that the rela-
{r=s} R'
tion 8,(x)dt =1 (x € R) from the Ito table [12] can be
written as 8. (-)df = 1; in its turn, this equality means
thatve R 8, ()dr= (15\?(.) for each x =t; in particular,
for §,(-)dt = a’? (+), we obtain the equality J,(-)dr = d? ()
[it is useful to compare these relations with the heuristic
equalities 0, (-)dr = J' O (x)dx = 1]. The last two

o+ dt

equalities outside the parentheses imply that

ja,®d?dr = j6,®6,(1rds = j@ésfd#.
R R' R

The formal use of the symbols drds and df?* does not
lead to contradictions.

Now, let us define jb (£)’df? = Jb (Hb(t)drds and

1 i

R R
b%t) by the equalities Jb(t)zdtz = fﬁ, ® 8,dt? o D?
&' R'

and b(t) = d°(+)D, where D denotes differentiation.

Theorem 3. The following two chains of equalities
hold:

DOKLADY MATHEMATICS  Vol. 65 No.3 2002

REPRESENTATIONS OF LEVY LAPLACIANS AND RELATED SEMIGROUPS 361

lim f 8,®8,dtds = j8,®6,dtds
e—0 | [ )
{lt-si<e R!

il

= j@ﬁ?df: j5,®d?dt j 8, ® 8,dt ds;

R Rl {t=s}

lim j b(1)b(s)dt ds jb(t)b(t)dtds
€->0 .

{lt-si<e} R

j b(1)b(s)dt ds.

= f b(t)’dt® = Jb(t)bo(t)dt
1 I {t=s}

R
Theorem 4. The following representations of the
Levy Laplacian hold.:
Ay = limoJd“(t—s)b(t)b(s)dtds
2

R

= lim _f b(£)b(s)dt ds
€-0

{lt—st<e}

3
= lim ”b(t-s)b(z+s)drds
a—0
R‘_g

k k

RTINS | 2. 1

= lim zlb(e") = lim {7 21e,,<t>e,,(s>b(z>b(s>drds
n= R =

(in the topology of pointwise convergence on a suitable
set of smooth functions)
- j b()b(t)dt ds = j b(1)’di

R R

- Jb(r)bo(t)dt = j b()b(s)dt ds.
R {t=s}

The last two representations coincide with those
given in [5, 12] with a reference to H.-H. Kuo (although
the corresponding formulas in [12] contain misprints).

Theorem 5. The following representations of the
Volterra Laplacian hold:

Ay = lim a”'d' (¢ - s)b(2)b(s)dt ds

R2

= lim a ' b(t)b(s)dt ds
|ls—1f<

a
2
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a

2
= lima™ “b(t—s)b(z+s)dzds
a—0
R‘«g

oo k
= Y bley)’ = lim [ Y e,(0e,()b(0b(s)drds

n=1 Rzn:l

(in the topology of pointwise convergence on a suitable
set of smooth functions)

= j (¢ —s)b(1)b(s)dt ds = Jb(t)b(t)dt.

R R'

Let 6, denote the shift of the Heaviside function by ¢
foreveryte R.

Theorem 6. In the topology of pointwise conver-
gence on a suitable set of smooth functions,

AL = lim j d°(t - 5)b(8,)b(0,)dt ds.

R

Theorem 7. Suppose that v is a (countably additive)
E-cylindrical measure on E* and Vy(-) is its Fourier

transform extended by continuity over the largest space
H, among those admitting such an extension. Then,

AgVi ()= ~(+, Ve Vpand Agvy =—(-, Vg Vr . In partic-

ular, ifx € H, then Agvp=0.If vp = e ,Le., ifv
is a Gaussian measure with correlation operator B,
then AgVp(x) = trgB + Vp(x) = AgVp(x) + (trgB — (x,
XV (X). If (x, x) = O (in particular, if x € H) and B =

Id, then Asgf\?}(x) = AgVp(x) + Vi (x).

These relations also hold for measures absolutely
continuous with respect to the corresponding Gaussian
measure (provided that their densities satisfy some
additional conditions). If the Gaussian measure has
identity correlation operator, then the set of elements of
é* generated by such measures is dense in €* and
these relations can be extended to the space €*; note that
the last of them coincides with a formula given in [6].
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Following the terminology of monographs [1—4],
we call an algebraic system A of finite signature X com-
putable if the basis set and the base relations of signa-
ture X are computable and the base operations of X are
partially computable functions. Such systems are fre-
quently called recursive algebraic systems in the litera-
ture. If the signature is infinite, then uniform computa-
bility is additionally required. We say that two comput-
able algebraic systems A and B of signature X are
constructively isomorphic if there exists an isomor-
phism @ of system A onto B such that the function ¢ is
computable. If a computable algebraic system B is iso-
morphic to A, then we call B a computable representa-
tion of the system A. Obviously, any system A can have
several computable representations but no more than
countably many.

If B and B’ are constructive but not constructively
isomorphic representations of a system A, we call them
nonautoequivalent representations [1, 5, 6]. Asin [1, 5],
for the number of nonautoequivalent representations of
system A, we use the term algorithmic dimension of
system A and notation dimy(A). As mentioned,
dim,(A) < . It is shown in [5] that the spectrum of
algorithmic dimensions of algebraic systems is pre-
cisely o U {w}. Following Mal’tsev [6], we call alge-
braic systems of algorithmic dimension one autostable.
The problem of describing autostable models plays an
important role in studying constructive models; to date,
a number of sufficient and necessary conditions for
autostability have been found.

In the general case, the problem of describing
autostable models is not solved completely. This prob-
lem is also interesting as applied to some classical alge-
braic objects. The most important results in this direc-
tion are given in [1, 3]. There are also a number of inter-
esting results concerning algebraic systems of infinite
algorithmic dimension [1-3]. The greatest difficulties
are involved in characterizing systems of finite algo-
rithmic dimensions. In this paper, we suggest an
approach reducing the problem of characterizing vari-
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ous types of computable representations to studying
special definable relations.

A relation P A" on the elements of a system A is
said to be definable over a set g, a,, ..., a,, from A if
there exists a formula fix,, x,, ..., x,, a;, @y, ..., a,,) of

language Lf,lm that defines the relation P, or, equiva-

lently, if the set P is closed with respect to the automor-
phisms in the enrichment (A, a,, a,, ..., a,,) by constants
for the elements a,, a, ..., a,,

A relation P (a family P = {P;| i € I} of relations) is
called rigid for a constructive representation A of a sys-
tem A* if the enrichment AP of the system A by the
predicate (the family of predicates) for P (for P;, where
i € I) is computable and has algorithmic dimension one
and there exists a setay, a,, ..., a,, such that the relation
P is definable (all relations from P are definable) over
ap, ay, ..., 4.

Theorem 1. For any constuctivizable superatomic
Boolean algebra, there exists a family of one-element
relations rigid for its some constructivization.

Note that all superatomic Boolean algebras, except
finite algebras, are nonautostable and have infinite
algorithmic dimensions.

Theorem 2. For the Boolean algebra B, of finite
and cofinite subsets of ®, only one (to an autoequiva-
lence) computable representation has a rigid relation.

As to the vector spaces, it is well known that all
those of finite dimension are autostable, and the count-
able space V% of infinite dimension over a comput-
able field F has infinite algorithmic dimension.

The results obtained in [6] directly imply the follow-
ing theorem.

Theorem 3. A constructive representation of the
space V, with a solvable basis has a rigid family of
relations.

However, it is not known whether or not it has a
rigid relation for an arbitrary computable field F.

Theorem 4. The constructive representations of
algebraically closed (real-closed ordered) fields with
recursive transcendence bases have rigid families of
relations.
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