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ABSTRACT. A, classification theory of quantum stationary processes similar to the corresponding theory for clas- 
sical stationary processes is presented, Our main result is the classification of those pairs of classical stationary 
processes that admit a joint boson Fock canonical representation. 
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1. I n t r o d u c t i o n  

It is known that  classical probability and classical stochastic processes can be embedded in quantum 
probability [1]. This fact allows not only to generalize known results of classical probability theory, but  
also to obtain new results by looking at classical objects from a nonclassical point  of view. Several papers 
in the last years have shown that  this program can be substantiated in numerous ways in the case of 
classical diffusions on R n [2-4], or on manifolds [5], and for general birth and death processes [4]. In the 
present note we initiate a similar program for stat ionary processes. The classification of these processes 
is not complete even in the classical case, but  in the case of regular scalar-valued processes the theory is 
sufficiently developed [6] to admit a nontrivial quantum extension. The extension we have in mind in the 
present note is motivated by the analogy with quantum Brownian motion iBM): it is known that  all the 
known boson BM can be realized, up to random time changes, by fixing two realizations of the classical 
BM 

Q = (Q(s) ) ,  P = ( P i t ) ) ,  (1.1) 

which do not commute but have the property that  their commutator  is a scalar 

[Qis), Pit)]  = imin{s ,  t}. (1.2) 

Now, suppose we are given two classical stat ionary processes X ,  Y which admit  a canonical representation 
in the sense of [6] (cf. (2.1))below) and suppose that  one can realize the canonical representation of X 
as a stochastic integral for the Q-process and the canonical representation of Y as a stochastic integral 
for the P-process,  where the stochastic integrals can be interpreted either as classical operator-valued 
stochastic integrals or as quantum stochastic integrals. Introducing the white noise notation, we can write 

/0' /0 Q(t) = qsds,  P( t )  = psds ,  (1.3) 

where qs and P8 are white noises in the sense of [7] satisfying the commutat ion relation 

[q,, Psi -- i6(s - t). il .4) 

It is clear that  this possibility imposes sorae restrictions on the pair X ,  X and Y. For example, a 
necessary condition for this to happen is that  the commutator  of any pair of variables Xs,  Y~ is itself a 
scalar process of special type (see Proposition 2 below). The main result of the present note is that  this 
necessary condition is also sufficient (see Theorem 1 below). A more delicate problem is the following: to 
what extent does the commutator  of the two processes allow to reconstruct their canonical representation? 
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From an analytical point of view, this problem is reduced to the problem of determining a canonical 
factorization of a function in the Hardy class of analytic functions. We prove that  if the two stationary 
processes are d-Markov in the sense of [6] (see (4.1) below), then this problem admits a unique solu- 
tion. Since the multiple Markov processes are dense in an appropriate topology in the class of stationary 
processes, it seems natural to conjecture that the above result holds also in the general case. 

The problem we study here has natural potential applications to quantum physics. In fact, the quantum 
fields that are usually considered in physical models are Gaussian (but not Markovian) and have a scalar 
commutator. The possibility of representing these fields as stochastic integrals with respect to quantum 
BM would therefore put the powerful tools of classical and quantum white noise calculus directly to 
the service of quantum field theory, without the fieed to consider the stochastic limit of these fields as 
presently done. A complete solution of the second problem requires, however, a deeper understanding of the 
canonical representation for multidimensional (in fact infinite-dimensional) classical stationary processes. 
This problem shall be discussed elsewhere. 

2. Canon ica l  r e p r e s e n t a t i o n  of  classical  p rocesses  

Def in i t i on  1. Let X = {Xt ; t E [0, co)} be a real-valued Ganssian process. Suppose that there exists 
a real-valued kernel function F(t,  u) such that the process Y = {Y~ ; t E [0, oc)} given by 

Yt = Fit ,  u)dB(u) (2.1) 

satisfies Bt(Y)  = Bt(B) for every t ,  where Bt(Y)  and B~(B) are the a - f i e lds  generated by Ys and 
B(s),  s < t, respectively, and has the same finite-dimensional joint distributions as X (in this case~ 
following a widespread probabilistic terminology, Y is called a version of the process Xt). In this case the 
pair {F(t, u), u <. t; B(t)} (simply written as {F(t ,  u),  B}) is called a canonical representation of X ,  
and F(t,  u) is a canonical kernel. 

Sometimes in the existing literature, the term canonical representation is used for the stronger condition 
that Xt itself is expressed as in (2.1), i.e., Yt = Xt .  In this case the Brownian motion B above is the 
innovation process of X .  If Xt is stationary, one can choose F(t, u) = F(t  - u). 

Def in i t ion  2. Two classical stationary processes ~7, 17" are said to admit a joint represe~ation if their 
canonical representations can be realized on the same probability space. 

In other words, X" and :K admit a joint representation, if there exist versions (in the sense specified 
above) X and Y of X and Y respectively, where the canonic£1 representations are expressed in the forms 

x,= f (2.2) 
by using the same white noise {W(u)}. The kernels G(u) and F(u) vanish for u < 0. 

Notice that  for scalar-valued processes admitting a canonical representation, a joint representation can 
always be constructed, so Definition 2 above is nontrivial only in the case of multidimensional processes. 

In the present note we shall freely use the terminology of quantum probability. The notion of stochastic 
process we use is the same as in [1]. The quantum white noise (1.4) is realized on the Fock space over 
L z (R) corresponding to the fact that we consider only quantum analogs of scalar-valued processes which are 
realized as operators on this Fock space. In particular by a classical process we mean a family (Xt) (t E R) 
of self-adjoint operators on the above defined Fock space such that the exponentials exp ~"]~jn__ 1 ajXtj are 
well defined for any finite family of real numbers t l , . . . ,  tn, a l , . . . ,  an and the family of these exponentials 
generates an Abelian yon Neumann algebra. The term stationary for such processes shall always refer to 
their distributions with respect to the vacuum vector @, so that the stationarity condition means that 

@, exp ajXt~+s@ = @, exp ajX,~@ 
j = l  ~=1 

for any finite family of real numbers t l ,  . . . ,  tn, a l , . . . ,  an for any real number s .  



Definition 3. Two classical stationary processes X ,  Y admit a joint boson Fock representation if 
there exists a boson Fock white noise 

r(nl)  =: {4,  ¢, q,,p,} (2.3) 

such that X and Y can be respectively expressed (up to isomorphism in the sense of finite-dimensional 
joint distributions) in the in the form 

= jc( - du, = fr( - (2.4) 

for two real-valued functions F and G. The representation (2.4) is called canonical if the representation 
of X is canonical for the q-white noise and that of Y is canonical for the p-white noise. Notice that, 
since the processes are classical, it makes sense to speak of their canonical representations in the sense of 
Definition 1. 

Proposition 1. If  two classical stationary processes X ,  Y admit a joint Fock representation if and 
only if they admit a joint representation in the classical sense. 

Proof .  Recall that we identify the classical white noise with the p-process in Fock space and let F(i) 
denote the Fourier-Gauss transform. Then 

q~ = r ( i ) p ~ r ( i ) * ,  u e ~ .  

The process ~ - F(i)YtF(i)* has the same vacuum distribution as Yt because F(i)q) -- ¢I,. If :~ has the 
form (2.4) then ~ shall have the form 

= f F(t - u)q,,du. (2.5) 

Since a unitary isomorphism transforms the conditional expectations of the Y-process into the cor- 
responding ones of the Y-process, it follows that, if the representation of Y is canonical, then (2.5) is 
isomorphic to the canonical representation of :V. From this remark the statement follows immediately 
because now the two processes X and Y are implemented in the same von Neumann Abelian algebra; 
hence they are given on the same probability space with the same filtration. [] 

The following is a well-known and elementary fact: 

L e m m a  1. The space of integrable functions vanishing on the negative half-line is an algebra under 
convolution. 

Proof .  Let F(t) and G(t) be integrable functions vanishing for t < 0. Then their convolution is well 
defined and it is integrable [8]. By inspection of the identity 

i F *G( t )= F ( t - s ) G ( s ) d s ,  
O 0  

one immediately sees that F • G is again vanishing on the negative half-line. [] 

R e m a r k  1. A corollary to the above lemma is that the space of Fourier transforms of integrable 
functions vanishing on the negative half-line forms an algebra under pointwise multiplication. In the 
following we shall always denote by /~ the Fourier transform of the function F .  



P r o p o s i t i o n  2. I f  two quantum stationary processes X and Y admit a joint boson Fock representation 
then, in this representation, for each real numbers s,  t the domains of Xs and Yt have a dense intersection 
and their commutator has the form 

[Xs, Yt] = i e ( s  - t) = i f e-i(s-t)xO(A) dA, s, t e R, (2.6) 

where 0 is the Fourier transform of a function which vanishes on the negative half line and the commutator 
is understood weakly on the intersection of the domains. Moreover,. the function 0 is uniquely determined 
by the identity 

^ 

= ( 2 . 7 )  

where F and G are defined by Eq. (2.2). 

Proof .  Let a representation of X and Y be realized in the form (2.4). Then, let us introduce the 
spectral representation of the white noises q and p 

1/ 
qx = - ~  eitX qt dr, 

1/ 
p~ = - ~  e - i~p t  dr. (2.8) 

Since F and G are real, we can write their commutator in the form 

ft;As / ~  . ^ A 
[Xs, Yt] - i G(s - u)F( t  - u) du - i e-~(s-O~G(A)F(A) dA, 

4 " - - 0 0  OO 

(2.9) 

The function O(A) :-- G(A)F(A) is the Fourier transform of (G • F)( t) ,  which vanishes dn the negative 
half-line. [] 

Def in i t ion  4. A joint Hilbert space representation of two classical stationary processes X,  Y is a pair 
{7/, ~}, where 7i is a Hilbert space and where ¢ is a unit vector in 7/ such that  for each t E R, Xt 
and Yt are.represented as operators on 7/ (still denoted by Xt,  Yt for simplicity). 

Def in i t ion  5. Two Hilbert space representations {7/, ~},  {7/', ¢ '}  are said to be equivalent if there 
exists a unitary isomorphism U : 7/--+ 7/' such that U~ -- ¢ '  and that U intertwines the actions of X 
and Y on 7i and 7/~, respectively. 

R e m a r k  2. From this definition it is clear that any pair of stochastic processes has a joint Hilbert 
space representation. It is sufficient, to this end, to consider the standard Hilbert space representations 
{7/x, Cx},  {7/Y, CY} of X and Y defined by Lemma 1 and to form their tensor product 

7 / : =  7/x ® 7/y ; ~ := ~ x  ® ~Y. 

However it is clear that, if the processes are classical, this representation in general will not be the 
canonical one. 

We want to study the following problems: 
Given a joint HUbert space representation {~t, ~} of two classical stationary processes X and Y. 

Under what conditions is this representation equivalent to a boson Fock representation of X and Y? 
Proposition 1 and Proposition 2 give two necessary conditions for this to be the case. Namely, 
i) X, Y must have a canonical representation; 
ii) the commutator of X and Y should be well defined, weakly on a dense domain and on this domain 

it should have the form (2.6), (2.9). 



3. S u f f i c i e n c y  o f  t h e  c o n d i t i o n  

Let X = (Xt) and Y = (Y~) be stationary classical stochastic processes realized as operators on a 
Hilbert space 7/ with a unit vector (I) such that 

( ¢ , / ( { Z t } ) ¢ )  = E(f({Xt})) ,  (3.1) 

((I),/({Yt})~) = E ( f ({~} ) ) ,  (3.2) 

where f({X~}) denotes an arbitrary functional of the process Xt and similarly for Y~. Notice that the 
left-hand side of Eqs. (3.1), (3.2) is well defined by the spectral theorem for any Borel function f on R 
depending only on a finite number of random variables. This identification can be extended to arbitrary 
measurable functionals using the canonical identification of the Abelian algebra generated by the random 
variables with the algebra of bounded functionals of the classical process. 

Suppose, moreover, that X and Y have a joint representation {7/, ~} in the sense of Definition 4: 

where q~ and p~ 

X~ = / e-i*aG(A)q~ d)~, 

Yt = / ei~XF(A)Pa dA, 

are standard white noises with respect to the vector 

(3.3) 

(3.4) 

(~ and, further, each of the 
representations (3.3) is isomorphic to the canonical representation of the corresponding classical process. 
Suppose also that, for introducing the processes 

1 
+ ip ,) = - ip ,) = , aA, 

The vacuum vector • is in the domain of the polynomial algebra generated by a~ (in the sense of 
distributions) and 

a;~(I) - 0. (3.5) 

Notice that here we are not assuming any commutation relation between the two white noises p and q. 
Our goal is to deduce these commutation relations from the commutation relations of the processes X 
and Y. This will prove that the necessary condition considered in the previous section is also sufficient. 

L e m m a  2. Let M ,  N be operator-valued measures on R x R such that .for any u E R 2 one has 

~2  eiU'~M (da) = ~ ei'~'~N (dc~), (3.6) 

where u .  ~ is the scalar product in R 2 . Then M = N .  

Proof .  This follows by taking matrix elements of the identity (3.6) and using the uniqueness of the 
Fourier transform of complex measures. 

Now let us assume that condition (2.6) is satisfied for some function e satisfying the conditions of 
Proposition 2. Then, explicit calculation of the commutator of X and Y using (3.3) gives: 

. . ! A A ' 

[X~, Yt] = e-'8~e '~  G(A)F(A')[q~,p~,]dAdA' 

/ ^  / f  ,,( , = i e -~ (° -0~O(A)  dA = i e-~S~'e'~ A A -- A' dAdA'; 

from Lemma (3.1), it follows that, in the sense of distributions 

(3.7) 

G(A)F(A')[q~, px,] = iO($ )5 (~ -  ~') (3.8) 



In the identity (3.8), if the product G(A)/~(A ') is zero on a set of zero Lebesgue measure, then we can 
change this value without altering the identity (3.8). If it is zero on a set of strictly positive Lebesgue 
measure on the diagonal ,k = A', then also e(A) must be zero. Therefore, with the convention that the 
quotient below is zero at those points on the diagonal at which the denominator vanishes, we can write: 

°(~) ~(~- z). 
[qx, Px'] = i~(A)ff,()¢). . 

Now, starting from the white noises qx, Px, in (3.3), let us define the processes qt and pt by the rela- 
tion (2.8). Then one has 

1 ff eiSXe_it x, [qs Pt] ds dr. (3.9) [qx, PX'] = ~ 

and therefore, taking the inverse Fourier transform of (3.9), we find: 

1 i f f  
[qs,Pt] = ~ J J  

e-isAeitA' 

From these relations, it follows that  

~)(A) ti(A-)g)dAdA'= l i  f d~. 
~(~)~(~,---~ 2~ J ~(~)~(~--] 

1 f ~(~) 2--~ e-~(s-t)~ dA = g(s - t) 

for some function or distribution g(s - t) .  We want to prove that 9(s - t) = 6(s - t) .  

L e m m a  3. Let a Hilbert space 7£ and a unit vector • in it be given, and let two self-adjoint operators 
on 7£, q, p ,  which have standard Gaussian •-dis tr ibut ions  ( cf. Definition 4) be given. Suppose, moreover, 
that [q, p] = ic, c # O, c 6 R ,  and that one can exponentiate this relation into the Weyl relations 

eispeitq = e-iSt  eitqeiSP. 

T h e n  c = 1 .  

P r o o L  Suppose the contrary. Possibly exchanging the roles of p and q, we can assume that c > 0. 
The new pair 

P q 

then satisfies [Q, P] = i .  The assumption on the possibility of exponentiating the commutation rela- 
tions between q and p implies that the system {7£, (I), Q, P} is isomorphic, up to multiplicity of the 
representation, to the SchrSdinger representation. This implies that Q, P are q)-standard Gaussian. 
Therefore, 

z 2 

= = f = 
So q is ~-Gaussian with mean zero and variance c. But, according to our assumption q, is standard 

• Gaussian, so c = 1. In the notations above, let us apply this result to the case in which 

[q,, Pt] = i g ( s -  t). (3.10) 

Introducing test functions ~ and ¢ and the association smeared noises, we have 

q(~) = / ~(S)qsds,  p(¢)  = / ¢(S)ps ds ; 

Eq.(3.10) is equivalent to 

[q@), p(¢)] = ~ / /  ,p(s)g(s - t)C(t) ds dt. [] 



T h e o r e m  1. Let X and Y be as in (3.3) with q~, p~ satisfying (3.5) and the conditions specified after 
formula (3.3). Suppose there exists a scalar integrable function ~ such that the commutator of X and Y 
has the form 

Y~] = i . f  e- i (s- t )~)(A)dA,  [Xs, (3.11) 

and suppose that for any pair of test functions ~o , ¢ , the operators q(~o) and p(¢) defined by (3.10) satisfy 
the conditions of Lemma 3. Then the white noises q~, Px are the spectral representations of a boson Fock 
white noise q~ , Pc. 

Proof .  By polarization, the commutator [q(~o), p(¢)] is uniquely determined in the case ~o -- ¢. Fix ~o 
and suppose that 

/ ~2(s) ds - 1. (3.12) 

Then by Lemma 3, q(~), p(~) are standard ¢-Gaussian and 

p(¢)] = i . / / ~ ( s ) g ( s  - t)¢(t)  ds dr. [q(~o), 

By Lemma 3, we prove that (3.12) implies 

/%a(s)g(s t)%a(t)dsdt -- 1. (3.13) 

By the polarization identity, one can prove that Eqs. (3.12) and (3.13) axe equivalent to 

[[  (s)g(s dt = / ]  - t)¢(t) dt 

for any ~o and ¢ .  This implies 
g(s - t) -- 6(s - t). (3.14) 

But by our assumption and (2.8), the processes (3.4) annihilates the vacuum. This, together with the 
commutation relation (3.10), is sufficient to guarantee that the pair qt, Pt is isomorphic to the standard 
Boson Fock white noise. [] 

4. Canonica l  p r o p e r t y  and  mul t ip le  M a r k o v  p r o p e r t y  

Before we come to the next question, we give a short review of the canonical representation of a classical 
Gaussian process. 

Suppose X~ is given by (2.2). Then, it is known that the Fourier transform G(A) of G is in the Hardy 
class (see [9]) and therefore is the boundary value of an analytic function G(w) in the lower half-plane C - .  

T h e o r e m  2. Let X ,  Y be classical stochastic processes, (7-l, ~} a HiIbert space representation of the 
pair X ,  Y .  Suppose that the conditions of Theorem 1 are satisfied. Then, denoting by 

~) = C e B e S o ,  G = C1B181, F = C2B2S2 

the canonical decompositions of ~9 , G and ~" respectively, we see that {7t, ~2} is isomorphic, in the sense 
of Definition 5 to the boson Fock representation of X ,  Y if and only if  

Co = C1"C2 ; B e  = B1-B2 ; Se = $1-$2. 

Proof .  This follows from the uniqueness of the decomposition of Hardy functions. [] 

Now assume that X~ is a multiple Markov process of order N < +oc.  This is a rather natural 
assumption for Xt to be a mathematical model of some physical phenomenon. For the definition of the 
multiple Markov property of a (classical) Gaussian process, we refer to [6, Chap. 5]. 

This definition is equivalent to the fact that G(A) is expressed as a rational function of the form 

C(A) = Q(iA) (4.1) P( iA) '  - c ~ < A < o c ,  

where P and Q are polynomials with degree of Q < degree of P = N and they have no roots with 
positive real part (see [6, Sec. 5.4]). 



5. Factor izat ion  

Before we come to the factorization of ~), we extend to noncommuting pairs of the classical stochastic 
processes the notion of multiple Markov property. 

Let Xt and Yt be classical stochastic processes given by 

f' f' X~ - G(t, u)qu du, Yt = F(t,  u)pu du, 

where G and F are canonical kernels. 

Def in i t ion  6. The quantum stochastic process defined by the pair X and Y is said to be multiple 
Markov if the vacuum distributions of Xt and Y~ respectively define multiple Gauss-Markov processes in 
the classical sense. 

Coming to the stationary quantum stochastic processes Xt and Yt given by (2.4), we assume that they 
are multiple Markov. Then, by [6, Chap. 5] again, the canonical kernels G and F are of Goursat type. 
This means that their Fourier transforms are expressed as rational functions in the form (4.1), say 

0 ( : , )  = Ql(i ) ' = 

where Pi, Q~, i -- 1, 2 are all po!ynomials. We shall assume, in addition, that they have no zeros on the 
real line. 

With this background, we now come to the ]actorization problem of O(A). 
By assumption e()~) is given as in (2.7). Notice that the asymmetric role of X and Y in formula (2.7) 

has its role in the Definition 4 of spectral transform of quantum white noise, and this is motivated by the 
necessity of preserving the commutation relations. 

Hence, we must have 

= Q1(i )Q2(i ) ( 5 . 1 )  
Pl ('iA)P2(iA} " 

Our problem is now reduced to determine Pi and Qi, i = 1, 2. The given function ~) should be a 

product of two functions, say ~)I(A) and ~2(A), that are the boundary values of Ol(W) O2(w), and the 
latter are rational functions of w and ~ ,  respectively. Take the poles of O in C + . They must be zero 
points of P1. The zero points of O in £+ must be the zero points of Q1. Similarly the poles and the 
zeros in C-  must be the zero points of P2 and Q2 respectively. 

Thus, these P~, Qi, i = 1, 2 are determined up to constants. This means that G and F are determined 
up to constants. 

It should be noted that the degree of P1 and the degree of P2 are the multiplicities in the Markov 
property for X~ and Yt, respectively. 

T h e o r e m  3: Assume that two quantum stochastic processes Xt  and Yt are multiple Markov and satisfy 
the conditions of Theorem 1. Then, given the commutator of Xt and Y~ , the orders of the Markov property 
of Xt and Yt are uniquely determined, and the canonical representations of Xt and Yt of the form (2.4) 
are uniquely determined up to constant ]actors. 

6. Conc lud ing  remarks  

We would like to conclude with some very preliminary comments on the case when noncanonical rep- 
resentations are involved. 

In these cases there are more possibilities of factoring the function e(A),  defining the commutator 
of the two processes. For example, if we still assume that X ,  Y are multiple Gauss-Markov processes 
and, moreover, that there is no singular factor in ~ ,  G and F ,  then we may write G(A) = C1 (A)BICA), 
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A 

F(A) = C2(A)B2(A), where Ci are rational functions corresponding to the canonical kernel and Bi is the 
Blaschke product ,  i = 1, 2. In this case ~)(A) = CI(A)C2(A) • BI(A)B2(A), and it is known that  

Ci (A) has no zero and no pole in the lower half plane C - .  
C2(A) has no zero and no pole in the upper  half plane C + . 
Bi  (A) has zeros in C -  and poles in C + . 
B2(A) has zeros in C + and poles in C - .  
If we take the poles of ~) in C + as in the canonical case, these poles may be either those of Ci or 

of B i .  A similar ambiguity can be seen for the zeros and poles in C - .  
We conjecture that,  by introducing some optimality conditions on I~)(w)[ along the same lines as those 

discussed in [10], it should be possible to individualize the contributions of the Blaschke products to the 
poles and the zeros. However, this problem will be discussed elsewhere. 

The authors express their grati tude to the referee for a careful reading of the present paper and for 
detailed remarks that  allowed to improve its clarity. 
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