CENTRAL EXTENSION OF VIRASORO TYPE SUBALGEBRAS OF THE ZAMOLODCHIKOV- w_{∞} LIE ALGEBRA

LUIGI ACCARDI

Centro Vito Volterra, Università di Roma Tor Vergata via Columbia, 2– 00133 Roma, Italy E-mail: accardi@Volterra.mat.uniroma2.it

ANDREAS BOUKAS

Centro Vito Volterra, Università di Roma Tor Vergata via Columbia, 2– 00133 Roma, Italy E-mail: andreasboukas@yahoo.com

It is known that the centerless Zamolodchikov– w_{∞} *–Lie algebra of conformal field theory does not admit nontrivial central extensions, but the Witt *–Lie algebra, which is a sub–algebra of w_{∞} , admits a nontrivial central extension: the Virasoro algebra. Therefore the following question naturally arises: are there other natural sub–algebras of w_{∞} which admit nontrivial central extensions other than the Virasoro one? We show that for certain infinite dimensional closed subalgebras of w_{∞} , which are natural generalizations of the Witt algebra the answer is negative.

Keywords: Witt algebra; Virasoro algebra; Central extensions

1. Introduction

The centerless Virasoro (or Witt)-Zamolodchikov- w_{∞} *-Lie algebra (cf.³-⁶) is the infinite dimensional *-Lie algebra, with generators

$$\{\hat{B}_k^n : n \in \mathbb{N}, n \ge 2, k \in \mathbb{Z}\}$$
(1)

commutation relations

$$[\hat{B}_{k}^{n}, \hat{B}_{K}^{N}] = (k(N-1) - K(n-1)) \hat{B}_{k+K}^{n+N-2}$$
(2)

and involution

$$\left(\hat{B}_{k}^{n}\right)^{*} = \hat{B}_{-k}^{n} \tag{3}$$

where $\mathbb{N} = \{1, 2, ...\}.$

The central extensions of the w_{∞} algebra have been widely studied in the physical literature. In particular, Bakas proved in Ref. 3 that the $w_{\infty} \ast$ -Lie algebra does not admit non-trivial central extensions. That was done by showing that, after a suitable contraction which yields the w_{∞} commutation relations, the central terms appearing in the algebra W_{∞} , which is defined as a $N \to \infty$ limit of the Zamolodchikov type Lie algebras W_N , vanish. A direct proof of the triviality of all central extensions of w_{∞} based on the cocycle definition of a central extension and avoiding the ambiguities that arise from passing to the (non-unique) limit of W_N , was given in Ref. 1.

The *-Lie sub-algebra of the w_{∞} algebra, generated by the family $\{B_k^2 : k \in \mathbb{Z}\}$ is the Witt algebra which admits the Virasoro non trivial central extension

$$[\hat{B}_m^2, \hat{B}_n^2] = (m-n)\,\hat{B}_{m+n}^2 + \delta_{m+n,0}\,m\,(m^2-1)\,E\tag{4}$$

where traditionally E = c/12 where $c \in \mathbb{C}$ is the "central charge".

In this paper we examine whether certain infinite dimensional closed subalgebras of w_{∞} , which are natural generalizations of the Witt algebra, can also be non-trivially centrally extended.

2. Closed subalgebras of w_{∞}

In this section we investigate the structure of the Lie sub-algebras of w_{∞} . More precisely, we investigate which subsets of the generators of w_{∞} are such that the Lie algebra (resp. *-Lie algebra) generated by them, is a proper sub-algebra of w_{∞} . To this goal notice that, if \hat{S} is any subset of the generators of w_{∞} , then there exists a unique partition $\{\hat{S}_+\hat{S}_0, \hat{S}_-\}$ of \hat{S} defined by

$$\begin{aligned} \hat{\mathcal{S}}_{+} &:= \{ \hat{B}_{k}^{n} \in \hat{\mathcal{S}} : k > 0 \} \\ \hat{\mathcal{S}}_{0} &:= \{ \hat{B}_{k}^{n} \in \hat{\mathcal{S}} : k = 0 \} \\ \hat{\mathcal{S}}_{-} &:= \{ \hat{B}_{k}^{n} \in \hat{\mathcal{S}} : k < 0 \} \end{aligned}$$

From (3) we know that a generator \hat{B}_k^n is self-adjoint if and only if k = 0. Therefore \hat{S}_0 is a self-adjoint set. Moreover the set \hat{S} generates a *-subalgebra if and only if $(\hat{S}_+)^* = \hat{S}_-$. Denote $\hat{\mathcal{L}}(\hat{S})$ the Lie sub-algebra of w_∞ generated by \hat{S} . From (2), we see that the sets \hat{S}_+ , \hat{S}_- generate Lie sub-algebras $\hat{\mathcal{L}}(\hat{S}_+), \hat{\mathcal{L}}(\hat{S}_-)$ of $\hat{\mathcal{L}}(\hat{S})$, while \hat{S}_0 generates a Lie *-sub-algebra $\hat{\mathcal{L}}(\hat{S}_0)$. Denote $\mathbb{N}_{\geq 2} := \{n \in \mathbb{N} : n \geq 2\}$. The map $\hat{B}_k^n \mapsto (n,k) \in \mathbb{N}_{\geq 2} \times \mathbb{Z}$ defines a one-to-one correspondence between the set of generators (1) and the set $\mathbb{N}_{\geq 2} \times \mathbb{Z}$. Therefore the sub-set of generators \hat{S} will be in one-to-one correspondence with a subset $S \subseteq \mathbb{N}_{\geq 2} \times \mathbb{Z}$. The images of the subsets \hat{S}_{ε} where $\varepsilon \in \{+, 0, -\}$ under this correspondence will be denoted by S_{ε} .

We want to study the following problem: which subset of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ corresponds to those generators (1) which belong to $\hat{\mathcal{L}}(\hat{\mathcal{S}})$ (resp. $\hat{\mathcal{L}}(\hat{\mathcal{S}}_{\varepsilon}), \varepsilon \in \{+, 0, -\}$)? This sub-set will be denoted by $\mathcal{L}(\mathcal{S})$ (resp. $\mathcal{L}(\mathcal{S}_{\varepsilon}), \varepsilon \in \{, 0, -\}$). The answer to this question, for a generic $\hat{\mathcal{S}}$, is very difficult therefore we begin to analyze a simpler problem, namely: Can we construct interesting families of subsets $\hat{\mathcal{S}} \subseteq \mathbb{N}_{\geq 2} \times \mathbb{Z}$ with the property that the linear span of such a subset is a proper Lie *-sub-algebra of w_{∞} ? Notice that, if $\hat{B}_k^n, \hat{B}_K^N \in \hat{\mathcal{S}}$, then from (2) one sees that, if $k(N-1) - K(n-1) \neq 0$ then the generator $\hat{B}_{k+K}^{n+N-2} \in \hat{\mathcal{L}}(\hat{\mathcal{S}})$.

Moreover, the set $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ is an associative semi–group under the composition law

$$(n,k) \dot{+} (N,K) := (n+N-2,k+K)$$
(5)

In fact, it is the product of the semi–group $\mathbb{N}_{\geq 2}$ with composition law

$$n \dot{+} N := n + N - 2 \tag{6}$$

and the (semi-) group \mathbb{Z} with the usual addition. Thus the set $\mathcal{L}(S)$ will be contained in the sub-semi-group of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ generated by S. Conversely, if S_0 is any sub-semi-group of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$, then the linear span of $\hat{S}_0 := \{\hat{B}_k^n :$ $(n,k) \in S_0\}$ is a Lie-sub-algebra of w_∞ and it is a Lie *-sub-algebra if and only if S_0 is a self-adjoint subset under the involution

$$(n,k) \in \mathbb{N}_{\geq 2} \times \mathbb{Z} \mapsto (n,-k) \in \mathbb{N}_{\geq 2} \times \mathbb{Z}$$

For this reason, it is interesting to study the sub–semi–groups of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ under the composition law (Ref. 5). An interesting class of these semigroups are those of the form

4 L. Accardi & A. Boukas

$$\mathcal{S} = \mathcal{S}_1 \times \mathcal{S}_2 \tag{7}$$

where S_1 is a sub-semi-group of $\mathbb{N}_{\geq 2}$ with composition law (6) and S_2 a sub-semi-group of \mathbb{Z} . The composition law (6) has an identity, given by the number 2, which is in $\mathbb{N}_{\geq 2}$. Hence $\{2\} \times \mathbb{Z}$ is a self-adjoint sub-semi-group of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$. Therefore the linear span of the set $\{\hat{B}_k^2 : k \in \mathbb{Z}\}$ is a Lie *-sub-algebra of w_{∞} which is precisely the Witt (or centerless Virasoro) algebra.

Notice that $\{2\}$ is the only finite sub-semi-group of $\mathbb{N}_{\geq 2}$. In fact if S is such a semigroup and $n \in S$, then $\forall \nu \in \mathbb{N} \cup \{0\}$

$$n + \dots + n$$
 $(\nu - \text{times}) = \nu n - 2(\nu - 1) = \nu(n - 2) + 2 \in S$ (8)

and, for varying ν , this is a finite set if and only if n = 2. Notice also that the sub–semi–group of $\mathbb{N}_{\geq 2}$ generated by the single element $n \in \mathbb{N}_{\geq 2}$ is the set of elements of the form (8) for $\nu \in \mathbb{N} \cup \{0\}$. Denoting by S_n this semi– group, one has that $S_n \times \mathbb{Z}$ is a self–adjoint sub–semi–group of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$. Therefore $\forall n \in \mathbb{N}_{\geq 2}$ the linear span of the set

$$\{\hat{B}_k^{\nu(n-2)+2} : \nu \in \mathbb{N} \cup \{0\}, k \in \mathbb{Z}\}$$

is a closed Lie *-sub-algebra of w_{∞} . Letting $N = n - 2 \ge 0$ and (for fixed N)

$$W_k^n := \hat{B}_k^{n\,N+2}$$

we arrive at the following definition.

Definition 2.1. For any natural integer $N \ge 0$ we denote w_N the *-Lie subalgebra of w_{∞} defined by

$$w_N := span \{ W_k^n : n \in \mathbb{N} \cup \{0\}, k \in \mathbb{Z} \}$$

with Lie brackets (inherited from w_{∞})

$$[W_k^n, W_m^l] = ((k\,l - m\,n)\,N + (k - m))\,W_{k+m}^{n+l} \tag{9}$$

For N = 0, w_0 is the Witt algebra.

The question of the existence of non-trivial central extensions of w_N is the subject of this paper.

Notice that w_N is a direct generalization of the Witt algebra w_0 . Furthermore, notice that the Witt algebra is the vector space generated by the generators of the form $\{\hat{B}_k^{\varphi(k)} : k \in \mathbb{Z}\}$ where φ is the constant function $\varphi(k) = 2$, $\forall k \in \mathbb{Z}$.

One may wonder if there exist other functions $\varphi : \mathbb{Z} \to \mathbb{N}_{\geq 2}$ with this property. The following Lemma shows that this is not the case.

Lemma 2.1. Let $\varphi : \mathbb{Z} \to \mathbb{N}_{\geq 2}$ be a function such that the linear span of $\{\hat{B}_k^{\varphi(k)} : k \in \mathbb{Z}\}$ is a *-Lie algebra. Then φ is the constant function $\varphi(k) = 2$, $\forall k \in \mathbb{Z}$.

Proof. The condition $(\hat{B}_k^{\varphi(k)})^* = \hat{B}_{-k}^{\varphi(k)}$ for all $k \in \mathbb{N}$ implies that $\varphi(k) = \varphi(-k)$. This, together with the condition

$$[\hat{B}_k^{\varphi(k)}, \hat{B}_{-k}^{\varphi(-k)}] = 2k(\varphi(k) - 1)B_0^{\varphi(k) \dotplus \varphi(-k)} ; \quad \forall \, k \in \mathbb{Z}$$

gives that, $\forall k \in \mathbb{Z}$

$$\varphi(0) = \varphi(k) + \varphi(k) = 2\varphi(k) - 2 \Leftrightarrow 2\varphi(k) = \varphi(0) + 2 \Leftrightarrow \varphi(k) = \frac{1}{2}\varphi(0) + 1$$

But then the condition

$$[\hat{B}_0^{\varphi(0)},\hat{B}_k^{\varphi(k)}]=-k(\varphi(0)-1)\hat{B}_k^{\varphi(k)\dot+\varphi(0)}$$

gives that

$$\varphi(k) \dot{+} \varphi(0) = \varphi(k) \Leftrightarrow \varphi(0) = 2$$

Therefore $\forall k \in \mathbb{Z}, \varphi(k) = \frac{1}{2}\varphi(0) + 1 = 2.$

A class of examples not of product type, i.e. defined by semi-groups not of the form (7), might be built as follows. Suppose that $[\hat{B}_k^n, \hat{B}_{k''}^{n'}] = 0$, $[\hat{B}_k^n, \hat{B}_{k''}^{n''}] \neq 0$, and $[\hat{B}_{k'}^{n'}, \hat{B}_{k''}^{n''}] \neq 0$. Then the *-algebra generated by $\{\hat{B}_k^n, \hat{B}_{k''}^{n'}, \hat{B}_{k''}^{n''}\}$ should not be of product type.

3. Abelian sub–algebras of w_{∞}

Lemma 3.1. Any subset of the set

$$\mathcal{A}_0 := \{ \hat{B}_0^n : n \in \mathbb{N}_{\ge 2} \}$$
(10)

consists of commuting self-adjoint generators. The set (10) is a maximal set with this property and generates a maximal Abelian *-sub-algebra of w_{∞} .

Proof. The commutativity of the set (10) is clear from (2). The same identity shows that if $X \in W_{\infty}$, then $\forall n \in \mathbb{N}_{\geq 2}$, $[\hat{B}_0^n, X]$ is a linear combination of the (linearly independent) generators of the form \hat{B}_k^n with $k \neq 0$. Therefore either $X \in \mathcal{A}_0$ or X cannot commute with \mathcal{A}_0 . This proves maximality. That \mathcal{A}_0 is a *-sub-algebra follows from the fact that the generators are self-adjoint.

Lemma 3.2. If a subset \hat{S} of generators of the form (1) contains an element of the form \hat{B}_0^n , then \hat{S} can be a commutative subset if and only if

$$\hat{B}_k^m \in \hat{\mathcal{S}} \Rightarrow k = 0 \tag{11}$$

Proof. From Lemma 3.1 we know that (11) is a sufficient condition for commutativity of \hat{S} . Let us prove that, under the conditions of the Lemma, it is also necessary. Suppose that $\hat{B}_k^m \in \hat{S}$ and that $k \neq 0$. Then (2) implies that $0 = [\hat{B}_0^n, \hat{B}_k^m] = k(m-1)\hat{B}_k^{n+m-2}$. Since by assumption $m, n \geq 2$ and $\hat{B}_k^{n+m-2} \neq 0$, it follows that k = 0, against the assumption.

Lemma 3.3. Two generators \hat{B}_k^n , \hat{B}_K^N with $k, K \neq 0$, commute if and only if $sgn(k) = sgn(K) =: \pm$ and there exist $p, q \in \mathbb{N} \cup \{0\}$ mutually prime, such that, for some $k', K' \geq 1$: $(n, k) = (1+qk', \pm pk')$ and $(n, K) = (1+qK', \pm pK')$.

Proof. We have that

$$0 = [\hat{B}_k^n, \hat{B}_K^N] = (k(N-1) - K(n-1))\hat{B}_{k+K}^{n+N-2}$$

Since $\hat{B}_{k+K}^{n+N+2} \neq 0$, this is equivalent to k(N-1) - K(n-1) = 0. Since $N, n \geq 2$, this is possible if and only if k and K have the same sign. In this case the condition is equivalent to

$$\frac{k}{n-1} = \frac{K}{N-1} =: \pm \frac{p}{q}$$

where p and q are mutually prime natural integers and the \pm sign is the common sign of k and K. This means that $k = \pm pk'$, n - 1 = qk' and $K = \pm pK'$, N - 1 = qK' where the sign \pm is the same in both cases and $k', K' \geq 1$. This is equivalent to the statement in the Lemma.

Definition 3.1. A half–line in $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ is a subset either of the form

$$H_{\varepsilon,p,q} := \{ (1+qk, \varepsilon pk) : k \in \mathbb{N} \cup \{0\} \}$$

where $\varepsilon \in \{\pm 1\}$ and $q, p \in \mathbb{N} \cup \{0\}$ are mutually prime, or of the form

$$H_{1,0,q} := \{ (1+qk,0) : k \in \mathbb{N} \cup \{0\} \}$$

Theorem 3.1. Each of the three sets of indices $H_{1,0,1} = \{(1+k,0) : k \in \mathbb{N} \cup \{0\}\}$, $H_{+,1,1} = \{(1+k,k) : k \in \mathbb{N} \cup \{0\}\}$ and $H_{-,1,1} = \{(1+k,-k) : k \in \mathbb{N} \cup \{0\}\}$ defines a maximal family of mutually commuting generators.

Proof. We know from Lemma 3.1 that $H_{1,0,1}$ is a mutually commuting family. The same is true for $H_{+,1,1}$ and $H_{-,1,1}$ because of Lemma 3.3. Now let \hat{S} be a mutually commuting family of generators (1). If \hat{S} contains a generator of the form \hat{B}_0^n , for some $n \in \mathbb{N}_{\geq 2}$, from Lemma 3.2 we know that $\hat{S} \subseteq H_{1,0,1}$. If this is not the case, then from Lemma 3.3 we know that \hat{S} is contained in some half–line $H_{\varepsilon,p,q}$ in $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ with $p \neq 0$. But all half–lines of this type, with $\varepsilon = +1$ (resp. $\varepsilon = -1$), are contained in $H_{+,1,1}$ (resp. $H_{-,1,1}$) and this implies the statement.

Notice that, of the three families listed in Theorem 3.1, only $H_{1,0,1}$ generates a *-sub-algebra.

4. Basic facts on central extensions of Lie algebras

If L and \widetilde{L} are two complex Lie algebras, we say that \widetilde{L} is a one-dimensional *central extension* of L with *central element* E if there is a Lie algebra exact sequence $0 \mapsto \mathbb{C} E \mapsto \widetilde{L} \mapsto L \mapsto 0$ where $\mathbb{C} E$ is the one-dimensional trivial Lie algebra and the image of $\mathbb{C} E$ is contained in the center Cent(L) of \widetilde{L} i.e.,

8 L. Accardi & A. Boukas

$$[l_1, E]_{\widetilde{L}} = 0 \qquad , \qquad \forall l_1 \in L$$

where $[\cdot, \cdot]_{\widetilde{L}}$ are the Lie brackets in \widetilde{L} . For *-Lie algebras we also require that the central element E is self-adjoint, i.e

$$(E)^* = E \tag{12}$$

A 2-cocycle on L is a bilinear form $\phi : L \times L \mapsto \mathbb{C}$ on L satisfying, for all $l_1, l_2 \in L$, the skew-symmetry condition

$$\phi(l_1, l_2) = -\phi(l_2, l_1)$$

(in particular $\phi(l, l) = 0$ for all $l \in L$) and the 2-cocycle identity:

$$\phi([l_1, l_2]_L, l_3) + \phi([l_2, l_3]_L, l_1) + \phi([l_3, l_1]_L, l_2) = 0$$
(13)

One-dimensional central extensions of L are classified by 2-cocycles in the sense that \tilde{L} is a central extension of L if and only if, as vector space, it is the direct sum

$$\widetilde{L} = M \oplus \mathbb{C} E$$

where M is a Lie algebra isomorphic to L, and there exists a 2-cocycle on L such that, for all $l_1, l_2 \in L$, the Lie brackets in \widetilde{L} are given by

$$[l_1, l_2]_{\widetilde{L}} = [l_1, l_2]_L + \phi(l_1, l_2) E \tag{14}$$

where, in the right hand sides of (14), L is identified to $L \oplus \{0\} \subseteq L \oplus \mathbb{C} E$, and $\phi : L \times L \mapsto \mathbb{C}$ is a 2-cocycle on L,

$$[l_1, l_2]_{\widetilde{L}} = [l_1, l_2]_L + \phi(l_1, l_2) E$$

where $[\cdot, \cdot]_L$ are the Lie brackets in L. A central extension is *trivial* if the corresponding 2-cocycle ϕ is uniquely determined by a linear function $f : L \mapsto \mathbb{C}$ through the identity

$$\phi(l_1, l_2) = f([l_1, l_2]_L) \quad , \quad \forall l_1, l_2 \in L$$
(15)

Such a 2-cocycle is called a 2-coboundary, or a trivial 2-cocycle. Two extensions are called equivalent if each of them is a trivial extension of the other. This is the case if and only if the difference of the corresponding 2-cocycles is a trivial cocycle. A central extension \tilde{L} of L is called universal whenever there exists a homomorphism from \tilde{L} to any other central extension of L. A Lie algebra L possesses a universal central extension if and only if L is perfect (i.e. L = [L, L]). In this case, the universal central extension of L is unique up to isomorphism.

Notice that the 2-cocycle identity (13) implies that, if $l_c \in Cent(L)$ is an element of the center of L, then

$$\phi([l_1, l_2]_L, l_c) = 0 \qquad ; \quad \forall l_1, l_2 \in L$$

i.e. l_c is ϕ -orthogonal to the derived set [L, L] of L. Similarly (15) implies that a necessary condition for the 2-cocycle ϕ to be trivial is that the center of L is ϕ -orthogonal to the whole algebra L. Because of (14) this is equivalent to say that the center of L is mapped into the center of \widetilde{L} . Therefore a sufficient condition for a 2-cocycle ϕ on L to be non trivial is that there exist $l_c \in Cent(L)$ and $x \in L \setminus [L, L]$ such that

$$\phi(x, l_c) \neq 0$$

This practical rule is useful for Lie algebras L with a *large* derivative [L, L].

5. Central extensions of w_N

Throughout this section we assume that $\widetilde{w_N}$ is a central extension of w_N , where N > 0 is fixed. For N = 0, the Witt algebra w_0 admits the wellknown non-trivial Virasoro central extension

$$[W_k^0, W_m^0] = (k - m) W_{k+m}^0 + \delta_{k+m,0} m (m^2 - 1) E$$

We denote by c(n, k; l, m) the value assumed by the corresponding 2-cocycle on the pair of generators (W_k^n, W_m^l) , i.e.:

$$c(n,k;l,m) := \phi(W_k^n, W_m^l) \in \mathbb{C}$$
(16)

$$[W_k^n, W_m^l] = ((k \, l - m \, n) \, N + (k - m)) \, W_{k+m}^{n+l} + c(n, k; l, m) \, E$$

The skew-symmetry of ϕ and the adjointness condition (12) imply respectively that:

$$c(n,k;l,m) = -c(l,m;n,k)$$
(17)

$$c(n,k;l,m) = -\overline{c(n,-k;l,-m)}$$
(18)

If at least one of n, l is negative we set

$$c(n,k;l,m) = 0 \tag{19}$$

Lemma 5.1. The derived set of the $w_N *$ -Lie algebra is itself.

Proof. From (9) we see that the derived set of the w_N *-Lie algebra is

$$Der(W_N) := \{ W_{k+m}^{n+l} : (k \, l - m \, n) \, N + (k - m) \neq 0, n, l \in \mathbb{N} \cup \{0\}, k, m \in \mathbb{Z} \}$$

Choosing (n,k) = (0,0) we see that $Der(W_N)$ contains the generators of the form W_m^l with $l \in \mathbb{N} \cup \{0\}$ and $m \in \mathbb{Z} \setminus \{0\}$. Choosing n = 0 and (k,m) = (1,-1) we see that $Der(W_N)$ also contains the generators of the form W_0^l such that $l N + 2 \neq 0$ which is always true for all $l \in \mathbb{N} \cup \{0\}$. \Box

Combining the remark after equation (15), with Lemma 5.1 one deduces that, in any central extension of W_N , the central element is mapped to the central element of the extension so that, for any $l \in \mathbb{N} \cup \{0\}$ and $m \in \mathbb{Z}$

$$c(0,0;l,m) = 0 \tag{20}$$

Lemma 5.2. On the w_N generators W_k^n , for the family $\{c(n,k;l,m)\}$ defined by (16), the 2-cocycle identity (13) is equivalent to

$$((k_1 n_2 - k_2 n_1) N + (k_1 - k_2)) c(n_1 + n_2, k_1 + k_2; n_3, k_3)$$
(21)

$$C((k_2 n_3 - k_3 n_2) N + (k_2 - k_3)) c(n_2 + n_3, k_2 + k_3; n_1, k_1)$$

$$+((k_3 n_1 - k_1 n_3) N + (k_3 - k_1)) c(n_3 + n_1, k_3 + k_1; n_2, k_2) = 0$$

Conversely any family $\{c(n,k;l,m)\}$ satisfying (21) defines, through (16), a 2-cocycle on w_N .

Proof. For all n_i, k_i , where i = 1, 2, 3, making use of (17) we have

$$\begin{split} 0 &= \phi([W_{k_1}^{n_1}, W_{k_2}^{n_2}], W_{k_3}^{n_3}) + \phi([W_{k_2}^{n_2}, W_{k_3}^{n_3}], W_{k_1}^{n_1}) + \phi([W_{k_3}^{n_3}, W_{k_1}^{n_1}], W_{k_2}^{n_2}) \\ &= ((k_1 n_2 - k_2 n_1) N + (k_1 - k_3)) \phi(W_{k_1 + k_2}^{n_1 + n_2}, W_{k_3}^{n_3}) \\ &+ ((k_2 n_3 - k_3 n_2) N + (k_2 - k_3)) \phi(W_{k_2 + k_3}^{n_2 + n_3}, W_{k_1}^{n_1}) \\ &+ ((k_3 n_1 - k_1 n_3) N + (k_3 - k_1)) \phi(W_{k_3 + k_1}^{n_3 + n_1}, W_{k_2}^{n_2}) \\ &= ((k_1 n_2 - k_2 n_1) N + (k_1 - k_3)) c(n_1 + n_2, k_1 + k_2, n_3, k_3) \\ &+ ((k_2 n_3 - k_3 n_2) N + (k_2 - k_3)) c(n_2 + n_3, k_2 + k_3, n_1, k_1) \\ &+ ((k_3 n_1 - k_1 n_3) N + (k_3 - k_1)) c(n_3 + n_1, k_3 + k_1, n_2, k_2) \end{split}$$

The converse is clear due to the linear independence of the generators. \Box

We notice that the sum of the first and third (resp. second and fourth) arguments in the three 2-cocycle values $c(n_2 + n_3, k_2 + k_3; n_1, k_1)$, $c(n_1 + n_2, k_1 + k_2; n_3, k_3)$ and $c(n_3 + n_1, k_3 + k_1; n_2, k_2)$ appearing in (21) is equal to $n_1 + n_2 + n_3$ (resp. $k_1 + k_2 + k_3$). We are thus led to the following definition.

Definition 5.1. Given natural integers $n_1, n_2, n_3 \ge 0$ and $k_1, k_2, k_3 \in \mathbb{Z}$, define $S \in \mathbb{N} \cup \{0\}$ and $M \in \mathbb{Z}$ by:

$$S := n_1 + n_2 + n_3$$
; $M := k_1 + k_2 + k_3$

and

$$\psi_{S,M}(n_i, k_i) := c(S - n_i, M - k_i; n_i, k_i) \; ; \; i \in \{1, 2, 3\}$$
(22)

Corollary 5.1. The skew-symmetry condition (17) becomes

$$\psi_{S,M}(n_i,k_i) = -\psi_{S,M}(S-n_i,M-k_i)$$

and (21) is equivalent to

$$((k_1 n_2 - k_2 n_1) N + (k_1 - k_2)) c(S - n_3, M - k_3; n_3, k_3)$$
(23)
+((k_2 n_3 - k_3 n_2) N + (k_2 - k_3)) c(S - n_1, M - k_1; n_1, k_1)
+((k_3 n_1 - k_1 n_3) N + (k_3 - k_1)) c(S - n_2, M - k_2; n_2, k_2) = 0

or in ψ -form

$$((k_1 n_2 - k_2 n_1) N + (k_1 - k_2)) \psi_{S,M}(n_3, k_3)$$

$$+((k_2 n_3 - k_3 n_2) N + (k_2 - k_3)) \psi_{S,M}(n_1, k_1)$$

$$+((k_3 n_1 - k_1 n_3) N + (k_3 - k_1)) \psi_{S,M}(n_2, k_2) = 0$$
(24)

Proof. The proof follows directly from Definition 5.1.

Proposition 5.1. For any $\lambda \in \mathbb{R}$ the family $\{c(n,k;l,m)\}$, defined by

$$c(n,k;l,m) := \delta_{k+m,0} \lambda k \tag{25}$$

defines, through (16), a 2-cocycle on w_N .

Proof. Condition (17) is verified by inspection and (18) follows from the fact that λ is real. We want to prove that (24) this is satisfied by the family $\{c(n,k;l,m)\}$, defined by (25). Direct substitution shows that, if the family $\{c(n,k;l,m)\}$ is defined by (25), then $\psi_{S,M}$, defined by (22), satisfies (24). Moreover, $\psi_{S,M}(n_i,k_i) = \delta_{M,0} \lambda k_i$ implies that $c(S - n_i, M - k_i; n_i, k_i) = \delta_{M,0} \lambda k_i$. For i = 1 we get $c(S - n_1, M - k_1; n_1, k_1) = \delta_{M,0} \lambda k_1$ which for $n_3 = 0$ becomes $c(n_2, k_2 + k_3; n_1, k_1) = \delta_{M,0} \lambda k_1$. Letting $k_2 + k_3 := K$ we have that

$$c(n_2, K; n_1, k_1) = \delta_{k_1 + K, 0} \lambda k_1$$

i.e. $c(n,k;l,m) = \delta_{k+m,0} \,\lambda \,k.$

Proposition 5.2. The central extension

$$[W_k^n, W_m^l] = ((k \, l - m \, n) \, N + (k - m)) \, W_{k+m}^{n+l} + \delta_{k+m,0} \, \lambda \, k \, E$$

of w_N is trivial.

Proof. We look for a linear complex-valued function f defined on w_N such that

$$f\left(\left[W_k^n, W_m^l\right]\right) = \delta_{k+m,0} \, k \, \lambda \tag{26}$$

By the w_N commutation relations (9) and the linearity of f, equation (Ref. 26) is equivalent to

$$((k l - m n) N + (k - m)) f(W_{k+m}^{n+l}) = \delta_{k+m,0} k \lambda$$
(27)

For $k + m \neq 0$ this is equivalent to

$$f\left(W_x^{n+l}\right) = 0 \qquad ; \qquad \forall x \in \mathbb{Z} \setminus \{0\}$$
 (28)

For $k + m = 0 \Leftrightarrow m = -k$ (27) is equivalent to

$$\left(\left(k\,l+k\,n\right)N+2k\right) f\left(W_0^{n+l}\right) = k\,\lambda \Leftrightarrow \left(\left(l+n\right)N+2\right) f\left(W_0^{n+l}\right) = \lambda$$

$$\Leftrightarrow f\left(W_0^{n+l}\right) = \frac{\lambda}{\left(l+n\right)N+2}$$

and this, together with (28) uniquely defines a linear functional f with the required property. Therefore the central extension of w_N is trivial.

Lemma 5.3. Let $z \in \mathbb{C}$. If $z = 2\bar{z}$ then z = 0.

Proof. If z = x + iy, $x, y \in \mathbb{R}$, then $z = 2\overline{z}$ implies that x = 2x and y = -2y. Therefore x = y = 0.

Lemma 5.4. In the notation of Definition 5.1, let $S \in \mathbb{N} \cup \{0\}$, M = 0 and N > 0. Then:

(i)
$$\psi_{S,0}(0,1) = c(S,-1;0,1) = 0$$

(ii) For all $k \in \mathbb{Z}$, $\psi_{S,0}(0,-k) = c(S,k;0,-k) = 0$
(iii) For all $n \ge 0$ and $k \in \mathbb{Z}$, $c(S-n,k;n,-k) = 0$
Notice that (iii) \Rightarrow (ii) \Rightarrow (i).

Proof. (i) For $n_2 = S - n_1$, $n_3 = 0$, $k_1 = 0$, $k_2 = -1$ and $k_3 = 1$, (21) yields

$$(n_1 N + 1) c(S, -1; 0, 1) =$$

$$((S - n_1) N + 2) c(S - n_1, 0; n_1, 0) + (n_1 N + 1) c(S - n_1, -1; n_1, 1)$$

$$(29)$$

For $n_3 = n_1$, $n_2 = S - 2n_1$, $k_1 = 1$, $k_2 = -1$ and $k_3 = 0$, (21) yields

$$((S - n_1) N + 2) c(S - n_1, 0; n_1, 0) =$$
(30)
(1 + n_1 N) c(S - n_1, -1; n_1, 1) - (n_1 N + 1) c(S - 2 n_1, -1; 2 n_1, 1)

Substituting (30) in (29) we obtain

$$(n_1 N + 1) c(S, -1; 0, 1) = (n_1 N + 1) c(S - n_1, -1; n_1, 1)$$

$$-(n_1 N + 1) c(S - 2 n_1, -1; 2 n_1, 1) + (n_1 N + 1) c(S - n_1, -1; n_1, 1)$$

which for $n_1 = S$, since by (19) c(-S, -1; 2S, 1) = 0, after dividing out (SN + 1), yields with the use of (17) and (18)

$$c(S, -1; 0, 1) = 2c(0, -1; S, 1) = -2c(S, 1; 0, -1) = 2\overline{c(S, -1; 0, 1)}$$

which, by Lemma 5.3, implies that c(S, -1; 0, 1) = 0.

(ii) For $n_1 = S$, $n_2 = 0$, $n_3 = 0$, $k_1 = k$, $k_2 = 1$, $k_3 = -(k+1)$, letting $a_k := c(S, k; 0, -k)$, since by (i) $a_{-1} = 0$, (21) yields

$$(k - SN - 1)a_{k+1} = (k+2)a_k$$

which implies that $a_k = 0$ for all k.

(iii) For $k_1 = k \neq 0$, $k_2 = -k$, $k_3 = 0$, $n_1 = S - n$, $n_2 = 0$ and $n_3 = n$, after dividing out $k \neq 0$ and using c(S, k; 0, -k) = 0, (21) yields

$$c(S-n,k;n,-k) = -\frac{(S-n)N+2}{nN+1}c(S-n,0;n,0)$$

for all $k \neq 0$. Similarly, for $k_1 = -k \neq 0$, $k_2 = k$, $k_3 = 0$, $n_1 = 0$, $n_2 = n$ and $n_3 = S - n$, (21) yields

$$c(S - n, k; n, -k) = -\frac{nN + 2}{(S - n)N + 1}c(S - n, 0; n, 0)$$

for all $k \neq 0$. Thus

$$\frac{(S-n)N+2}{nN+1}c(S-n,0;n,0) = \frac{nN+2}{(S-n)N+1}c(S-n,0;n,0)$$
(31)

If S = 2n then c(S - n, 0; n, 0) = c(n, 0; n, 0) = 0 by (17). If $S \neq 2n$ then c(S - n, 0; n, 0) = 0 by (31).

Proposition 5.3. Let $S \in \mathbb{N} \cup \{0\}$ and $M \in \mathbb{Z}$. In the notation of Definition 5.1, all non-trivial 2-cocycles $\psi_{S,M}(n,k)$ on w_N are given by

$$\psi_{S,M}(n,k) = \delta_{S,0} \,\delta_{M,0} \,k \,(k^2 - 1)$$

Proof. Case (i): S = 0. Then $n_1 + n_2 + n_3 = 0$ and so $n_1 = n_2 = n_3 = 0$ which means that we are reduced to the standard Witt-Virasoro case $W_k^0 = \hat{B}_k^2$. Therefore, the only non-trivial cocycle is

$$\psi_{S,M}(n,k) = \psi_{0,M}(n,k) = \delta_{M,0} k (k^2 - 1)$$

Case (ii): $S \neq 0$ and $M \neq 0$. For $n_3 = k_3 = 0$, using $c(n_2, k_2; n_1, k_1) = -c(n_1, k_1; n_2, k_2)$, $n_1 + n_2 = S$ and $k_1 + k_2 = M$, (21) yields

$$(k_1(n_2N+1) - k_2(n_1N+1))c(S, M; 0, 0) - (k_2 + k_1)c(n_1, k_1; n_2, k_2) = 0$$

which, letting $n_2 = n$, $k_2 = k$, $n_1 = S - n$ and $k_1 = M - k$, implies that

$$\psi_{S,M}(n,k) = c(S-n,M-k;n,k)$$

$$= ((M - k)(nN + 1) - k((S - n)N + 1))c(S, M; 0, 0) = 0$$

by (20).

Case (iii): $S \neq 0$ and M = 0. For $k_3 = 0$, $n_1 = 0$, $k_1 \neq 0$, using Lemma 5.4 (ii) and (iii), (24) yields

16 L. Accardi & A. Boukas

$$\psi_{S,0}(n_2,k_2) = \frac{n_2 N + 1 - \frac{k_2}{k_1}}{n_3 N + 1} \psi_{S,0}(n_3,0) + \frac{k_2}{k_1} \psi_{S,0}(0,k_1) = 0$$
(32)

and the result follows by the arbitrariness of n_2 and k_2 .

The next corollary shows that there are no non-trivial central extensions of w_N other than the Virasoro one.

Corollary 5.2. The non-trivial central extensions of w_N are given by

$$[W_k^n, W_m^l] = ((k \, l - m \, n) \, N + (k - m)) \, W_{k+m}^{n+l} + \delta_{n,0} \, \delta_{l,0} \, \delta_{k+m,0} \, m \, (m^2 - 1) \, E$$

Thus only the Virasoro sector of w_N can be extended in a non-trivial way.

Proof. By Proposition 5.3, in the notation of Definition 5.1,

$$\psi_{S,M}(n_1,k_1) = c(S-n_1,M-k_1;n_1,k_1) = \delta_{S,0}\,\delta_{M,0}\,k_1\,(k_1^2-1)$$

i.e.,

$$c(n_2 + n_3, k_2 + k_3; n_1, k_1) = \delta_{n_1 + n_2 + n_3, 0} \,\delta_{k_1 + k_2 + k_3, 0} \,k_1 \,(k_1^2 - 1)$$

which, letting $n_3 = k_3 = 0$, $n_1 = n$, $k_1 = k$, $n_2 = l$ and $k_2 = m$ implies that

$$c(n,k;l,m) = \delta_{n+l,0} \,\delta_{k+m,0} \,m \,(m^2 - 1) = \delta_{n,0} \,\delta_{l,0} \,\delta_{k+m,0} \,m \,(m^2 - 1) \quad \Box$$

References

- L. Accardi and A. Boukas, Infinite Dimensional Anal. Quantum Probab. Related Topics, 12, No. 2 (2009) 193–212.
- 2. L. Accardi and A. Boukas, Stochastics, 81 (2009), no. 3-4, 201–218.
- 3. I. Bakas, Commun. Math. Phys. 134 (1990) 487-508.
- 4. V. A. Fateev and A. B. Zamolodchikov, *Nuclear Phys. B* **280** (4) (1987) 644–660.
- 5. J. Fuchs and C. Schweigert, *Cambridge Monographs on Mathematical Physics*, Cambridge University Press (1997).
- 6. S. V. Ketov, Conformal field theory, World Scientific (1995).
- C.N. Pope, Lectures on W algebras and W gravity, Lectures given at the Trieste Summer School in High-Energy Physics, August 1991.
- 8. A.B. Zamolodchikov, Teoret. Mat. Fiz. 65 (3)(1985) 347–359.