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It is known that the centerless Zamolodchikov–w∞ ∗–Lie algebra of conformal

field theory does not admit nontrivial central extensions, but the Witt ∗–Lie al-
gebra, which is a sub–algebra of w∞, admits a nontrivial central extension: the

Virasoro algebra. Therefore the following question naturally arises: are there

other natural sub–algebras of w∞ which admit nontrivial central extensions
other than the Virasoro one? We show that for certain infinite dimensional

closed subalgebras of w∞, which are natural generalizations of the Witt alge-

bra the answer is negative.
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1. Introduction

The centerless Virasoro (or Witt)-Zamolodchikov-w∞ ∗–Lie algebra (cf.3-6)

is the infinite dimensional ∗–Lie algebra, with generators

{B̂nk : n ∈ N, n ≥ 2, k ∈ Z} (1)

commutation relations

[B̂nk , B̂
N
K ] = (k (N − 1)−K (n− 1)) B̂n+N−2

k+K (2)

and involution
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(
B̂nk

)∗
= B̂n−k (3)

where N = {1, 2, ...}.

The central extensions of the w∞ algebra have been widely studied in the

physical literature. In particular, Bakas proved in Ref. 3 that the w∞ ∗–
Lie algebra does not admit non-trivial central extensions. That was done by

showing that, after a suitable contraction which yields the w∞ commutation

relations, the central terms appearing in the algebra W∞, which is defined

as a N → ∞ limit of the Zamolodchikov type Lie algebras WN , vanish. A

direct proof of the triviality of all central extensions of w∞ based on the

cocycle definition of a central extension and avoiding the ambiguities that

arise from passing to the (non-unique) limit of WN , was given in Ref. 1.

The ∗–Lie sub–algebra of the w∞ algebra, generated by the family {B̂2
k :

k ∈ Z} is the Witt algebra which admits the Virasoro non trivial central

extension

[B̂2
m, B̂

2
n] = (m− n) B̂2

m+n + δm+n,0m (m2 − 1)E (4)

where traditionally E = c/12 where c ∈ C is the “central charge”.

In this paper we examine whether certain infinite dimensional closed sub-

algebras of w∞, which are natural generalizations of the Witt algebra, can

also be non-trivially centrally extended.

2. Closed subalgebras of w∞

In this section we investigate the structure of the Lie sub–algebras of w∞.

More precisely, we investigate which subsets of the generators of w∞ are

such that the Lie algebra (resp. ∗–Lie algebra) generated by them, is a

proper sub–algebra of w∞. To this goal notice that, if Ŝ is any subset of

the generators of w∞, then there exists a unique partition {Ŝ+Ŝ0, Ŝ−} of Ŝ
defined by

Ŝ+ := {B̂nk ∈ Ŝ : k > 0}
Ŝ0 := {B̂nk ∈ Ŝ : k = 0}
Ŝ− := {B̂nk ∈ Ŝ : k < 0}
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From (3) we know that a generator B̂nk is self–adjoint if and only if k = 0.

Therefore Ŝ0 is a self–adjoint set. Moreover the set Ŝ generates a ∗–sub–

algebra if and only if (Ŝ+)∗ = Ŝ−. Denote L̂(Ŝ) the Lie sub–algebra of

w∞ generated by Ŝ. From (2), we see that the sets Ŝ+, Ŝ− generate Lie

sub–algebras L̂(Ŝ+), L̂(Ŝ−) of L̂(Ŝ), while Ŝ0 generates a Lie ∗–sub–algebra

L̂(Ŝ0). Denote N≥2 := {n ∈ N : n ≥ 2}. The map B̂nk 7→ (n, k) ∈ N≥2 × Z
defines a one–to–one correspondence between the set of generators (1) and

the set N≥2×Z. Therefore the sub–set of generators Ŝ will be in one–to–one

correspondence with a subset S ⊆ N≥2 × Z. The images of the subsets Ŝε
where ε ∈ {+, 0,−} under this correspondence will be denoted by Sε.

We want to study the following problem: which subset of N≥2 × Z cor-

responds to those generators (1) which belong to L̂(Ŝ) (resp. L̂(Ŝε), ε ∈
{+, 0,−})? This sub–set will be denoted by L(S) (resp. L(Sε), ε ∈ {,0,−}).
The answer to this question, for a generic Ŝ, is very difficult therefore we

begin to analyze a simpler problem, namely: Can we construct interesting

families of subsets Ŝ ⊆ N≥2×Z with the property that the linear span of such

a subset is a proper Lie ∗–sub–algebra of w∞? Notice that, if B̂nk , B̂
N
K ∈ Ŝ,

then from (2) one sees that, if k(N − 1)−K(n− 1) 6= 0 then the generator

B̂n+N−2
k+K ∈ L̂(Ŝ).

Moreover, the set N≥2 × Z is an associative semi–group under the compo-

sition law

(n, k)+̇(N,K) := (n+N − 2, k +K) (5)

In fact, it is the product of the semi–group N≥2 with composition law

n+̇N := n+N − 2 (6)

and the (semi–) group Z with the usual addition. Thus the set L(S) will be

contained in the sub–semi–group of N≥2×Z generated by S. Conversely, if

S0 is any sub–semi–group of N≥2 × Z, then the linear span of Ŝ0 := {B̂nk :

(n, k) ∈ S0} is a Lie–sub–algebra of w∞ and it is a Lie ∗–sub–algebra if and

only if S0 is a self–adjoint subset under the involution

(n, k) ∈ N≥2 × Z 7→ (n,−k) ∈ N≥2 × Z

For this reason, it is interesting to study the sub–semi–groups of N≥2 × Z
under the composition law (Ref. 5). An interesting class of these semigroups

are those of the form
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S = S1 × S2 (7)

where S1 is a sub–semi–group of N≥2 with composition law (6) and S2 a

sub–semi–group of Z. The composition law (6) has an identity, given by the

number 2, which is in N≥2. Hence {2}×Z is a self–adjoint sub–semi–group

of N≥2 × Z. Therefore the linear span of the set {B̂2
k : k ∈ Z} is a Lie

∗–sub–algebra of w∞ which is precisely the Witt (or centerless Virasoro)

algebra.

Notice that {2} is the only finite sub–semi–group of N≥2. In fact if S is

such a semigroup and n ∈ S, then ∀ ν ∈ N ∪ {0}

n+̇ . . . +̇n (ν − times) = νn− 2(ν − 1) = ν(n− 2) + 2 ∈ S (8)

and, for varying ν, this is a finite set if and only if n = 2. Notice also that

the sub–semi–group of N≥2 generated by the single element n ∈ N≥2 is the

set of elements of the form (8) for ν ∈ N ∪ {0}. Denoting by Sn this semi–

group, one has that Sn × Z is a self–adjoint sub–semi–group of N≥2 × Z.

Therefore ∀n ∈ N≥2 the linear span of the set

{B̂ν(n−2)+2
k : ν ∈ N ∪ {0}, k ∈ Z}

is a closed Lie ∗–sub–algebra of w∞. Letting N = n− 2 ≥ 0 and (for fixed

N)

Wn
k := B̂nN+2

k

we arrive at the following definition.

Definition 2.1. For any natural integer N ≥ 0 we denote wN the ∗–Lie

subalgebra of w∞ defined by

wN := span {Wn
k : n ∈ N ∪ {0}, k ∈ Z}

with Lie brackets (inherited from w∞)

[Wn
k ,W

l
m] = ((k l −mn)N + (k −m)) Wn+l

k+m (9)

For N = 0, w0 is the Witt algebra.
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The question of the existence of non–trivial central extensions of wN is the

subject of this paper.

Notice that wN is a direct generalization of the Witt algebra w0. Further-

more, notice that the Witt algebra is the vector space generated by the

generators of the form {B̂ϕ(k)
k : k ∈ Z} where ϕ is the constant function

ϕ(k) = 2 , ∀k ∈ Z.

One may wonder if there exist other functions ϕ : Z → N≥2 with this

property. The following Lemma shows that this is not the case.

Lemma 2.1. Let ϕ : Z → N≥2 be a function such that the linear span

of {B̂ϕ(k)
k : k ∈ Z} is a ∗–Lie algebra. Then ϕ is the constant function

ϕ(k) = 2 , ∀k ∈ Z.

Proof. The condition (B̂
ϕ(k)
k )∗ = B̂

ϕ(k)
−k for all k ∈ N implies that ϕ(k) =

ϕ(−k). This, together with the condition

[B̂
ϕ(k)
k , B̂

ϕ(−k)
−k ] = 2k(ϕ(k)− 1)B

ϕ(k)+̇ϕ(−k)
0 ; ∀ k ∈ Z

gives that, ∀ k ∈ Z

ϕ(0) = ϕ(k)+̇ϕ(k) = 2ϕ(k)− 2⇔ 2ϕ(k) = ϕ(0) + 2⇔ ϕ(k) =
1

2
ϕ(0) + 1

But then the condition

[B̂
ϕ(0)
0 , B̂

ϕ(k)
k ] = −k(ϕ(0)− 1)B̂

ϕ(k)+̇ϕ(0)
k

gives that

ϕ(k)+̇ϕ(0) = ϕ(k)⇔ ϕ(0) = 2

Therefore ∀ k ∈ Z, ϕ(k) = 1
2 ϕ(0) + 1 = 2.

A class of examples not of product type, i.e. defined by semi–groups not

of the form (7), might be built as follows. Suppose that [B̂nk , B̂
n′

k′ ] = 0,

[B̂nk , B̂
n′′

k′′ ] 6= 0, and [B̂n
′

k′ , B̂
n′′

k′′ ] 6= 0. Then the ∗–algebra generated by

{B̂nk , B̂n
′

k′ , B̂
n′′

k′′ } should not be of product type.
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3. Abelian sub–algebras of w∞

Lemma 3.1. Any subset of the set

A0 := {B̂n0 : n ∈ N≥2} (10)

consists of commuting self–adjoint generators. The set (10) is a maximal

set with this property and generates a maximal Abelian ∗–sub–algebra of

w∞.

Proof. The commutativity of the set (10) is clear from (2). The same iden-

tity shows that if X ∈W∞, then ∀n ∈ N≥2, [B̂n0 , X] is a linear combination

of the (linearly independent) generators of the form B̂nk with k 6= 0. There-

fore either X ∈ A0 or X cannot commute with A0. This proves maximality.

That A0 is a ∗–sub-algebra follows from the fact that the generators are

self–adjoint.

Lemma 3.2. If a subset Ŝ of generators of the form (1) contains an el-

ement of the form B̂n0 , then Ŝ can be a commutative subset if and only

if

B̂mk ∈ Ŝ ⇒ k = 0 (11)

Proof. From Lemma 3.1 we know that (11) is a sufficient condition for

commutativity of Ŝ. Let us prove that, under the conditions of the Lemma,

it is also necessary. Suppose that B̂mk ∈ Ŝ and that k 6= 0. Then (2) implies

that 0 = [B̂n0 , B̂
m
k ] = k(m− 1)B̂n+m−2

k . Since by assumption m,n ≥ 2 and

B̂n+m−2
k 6= 0, it follows that k = 0, against the assumption.

Lemma 3.3. Two generators B̂nk , B̂NK with k, K 6= 0, commute if and

only if sgn (k) = sgn (K) =: ± and there exist p, q ∈ N ∪ {0} mutually

prime, such that, for some k′, K ′ ≥ 1: (n, k) = (1+qk′,±pk′) and (n,K) =

(1 + qK ′,±pK ′).

Proof. We have that

0 = [B̂nk , B̂
N
K ] = (k(N − 1)−K(n− 1))B̂n+N−2

k+K

Since B̂n+N+2
k+K 6= 0, this is equivalent to k(N − 1) − K(n − 1) = 0. Since

N,n ≥ 2, this is possible if and only if k and K have the same sign. In this

case the condition is equivalent to
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k

n− 1
=

K

N − 1
=: ±p

q

where p and q are mutually prime natural integers and the ± sign is the

common sign of k and K. This means that k = ±pk′, n − 1 = qk′ and

K = ±pK ′, N − 1 = qK ′ where the sign ± is the same in both cases and

k′, K ′ ≥ 1. This is equivalent to the statement in the Lemma.

Definition 3.1. A half–line in N≥2 × Z is a subset either of the form

Hε,p,q := {(1 + qk, εpk) : k ∈ N ∪ {0}}

where ε ∈ {±1} and q, p ∈ N ∪ {0} are mutually prime, or of the form

H1,0,q := {(1 + qk, 0) : k ∈ N ∪ {0}}

Theorem 3.1. Each of the three sets of indices H1,0,1 = {(1 + k, 0) : k ∈
N ∪ {0}}, H+,1,1 = {(1 + k, k) : k ∈ N ∪ {0}} and H−,1,1 = {(1 + k,−k) :

k ∈ N ∪ {0}} defines a maximal family of mutually commuting generators.

Proof. We know from Lemma 3.1 that H1,0,1 is a mutually commuting

family. The same is true for H+,1,1 and H−,1,1 because of Lemma 3.3. Now

let Ŝ be a mutually commuting family of generators (1). If Ŝ contains a

generator of the form B̂n0 , for some n ∈ N≥2, from Lemma 3.2 we know

that Ŝ ⊆ H1,0,1. If this is not the case, then from Lemma 3.3 we know

that Ŝ is contained in some half–line Hε,p,q in N≥2 ×Z with p 6= 0. But all

half–lines of this type, with ε = +1 (resp. ε = −1), are contained in H+,1,1

(resp. H−,1,1) and this implies the statement.

Notice that, of the three families listed in Theorem 3.1, onlyH1,0,1 generates

a ∗–sub–algebra.

4. Basic facts on central extensions of Lie algebras

If L and L̃ are two complex Lie algebras, we say that L̃ is a one-dimensional

central extension of L with central element E if there is a Lie algebra exact

sequence 0 7→ CE 7→ L̃ 7→ L 7→ 0 where CE is the one-dimensional trivial

Lie algebra and the image of CE is contained in the center Cent(L) of L̃

i.e.,
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[l1, E]L̃ = 0 , ∀l1 ∈ L

where [·, ·]L̃ are the Lie brackets in L̃. For ∗–Lie algebras we also require

that the central element E is self–adjoint, i.e

(E)∗ = E (12)

A 2-cocycle on L is a bilinear form φ : L × L 7→ C on L satisfying, for all

l1, l2 ∈ L, the skew-symmetry condition

φ(l1, l2) = −φ(l2, l1)

(in particular φ(l, l) = 0 for all l ∈ L) and the 2-cocycle identity:

φ([l1, l2]L, l3) + φ([l2, l3]L, l1) + φ([l3, l1]L, l2) = 0 (13)

One-dimensional central extensions of L are classified by 2-cocycles in the

sense that L̃ is a central extension of L if and only if, as vector space, it is

the direct sum

L̃ = M ⊕ CE

where M is a Lie algebra isomorphic to L, and there exists a 2-cocycle on

L such that, for all l1, l2 ∈ L, the Lie brackets in L̃ are given by

[l1, l2]L̃ = [l1, l2]L + φ(l1, l2)E (14)

where, in the right hand sides of (14), L is identified to L⊕{0} ⊆ L⊕CE,

and φ : L× L 7→ C is a 2-cocycle on L,

[l1, l2]L̃ = [l1, l2]L + φ(l1, l2)E

where [·, ·]L are the Lie brackets in L. A central extension is trivial if the

corresponding 2-cocycle φ is uniquely determined by a linear function f :

L 7→ C through the identity

φ(l1, l2) = f([l1, l2]L) , ∀l1, l2 ∈ L (15)
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Such a 2-cocycle is called a 2-coboundary, or a trivial 2-cocycle. Two exten-

sions are called equivalent if each of them is a trivial extension of the other.

This is the case if and only if the difference of the corresponding 2-cocycles

is a trivial cocycle. A central extension L̃ of L is called universal whenever

there exists a homomorphism from L̃ to any other central extension of L.

A Lie algebra L possesses a universal central extension if and only if L is

perfect (i.e. L = [L,L]). In this case, the universal central extension of L is

unique up to isomorphism.

Notice that the 2-cocycle identity (13) implies that, if lc ∈ Cent(L) is an

element of the center of L, then

φ([l1, l2]L, lc) = 0 ; ∀l1, l2 ∈ L

i.e. lc is φ–orthogonal to the derived set [L,L] of L. Similarly (15) implies

that a necessary condition for the 2-cocycle φ to be trivial is that the

center of L is φ–orthogonal to the whole algebra L. Because of (14) this

is equivalent to say that the center of L is mapped into the center of L̃.

Therefore a sufficient condition for a 2-cocycle φ on L to be non trivial is

that there exist lc ∈ Cent(L) and x ∈ L \ [L,L] such that

φ(x, lc) 6= 0

This practical rule is useful for Lie algebras L with a large derivative [L,L].

5. Central extensions of wN

Throughout this section we assume that w̃N is a central extension of wN ,

where N > 0 is fixed. For N = 0, the Witt algebra w0 admits the well-

known non-trivial Virasoro central extension

[W 0
k ,W

0
m] = (k −m)W 0

k+m + δk+m,0m (m2 − 1)E

We denote by c(n, k; l,m) the value assumed by the corresponding 2–cocycle

on the pair of generators (Wn
k ,W

l
m), i.e.:

c(n, k; l,m) := φ(Wn
k ,W

l
m) ∈ C (16)

[Wn
k ,W

l
m] = ((k l −mn)N + (k −m)) Wn+l

k+m + c(n, k; l,m)E
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The skew-symmetry of φ and the adjointness condition (12) imply respec-

tively that:

c(n, k; l,m) = −c(l,m;n, k) (17)

c(n, k; l,m) = −c(n,−k; l,−m) (18)

If at least one of n, l is negative we set

c(n, k; l,m) = 0 (19)

Lemma 5.1. The derived set of the wN ∗–Lie algebra is itself.

Proof. From (9) we see that the derived set of the wN ∗–Lie algebra is

Der(WN ) := {Wn+l
k+m : (k l−mn)N+(k−m) 6= 0, n, l ∈ N∪{0}, k,m ∈ Z}

Choosing (n, k) = (0, 0) we see that Der(WN ) contains the generators of

the form W l
m with l ∈ N ∪ {0} and m ∈ Z \ {0}. Choosing n = 0 and

(k,m) = (1,−1) we see that Der(WN ) also contains the generators of the

form W l
0 such that l N + 2 6= 0 which is always true for all l ∈ N ∪ {0}.

Combining the remark after equation (15), with Lemma 5.1 one deduces

that, in any central extension of WN , the central element is mapped to the

central element of the extension so that, for any l ∈ N ∪ {0} and m ∈ Z

c(0, 0; l,m) = 0 (20)

Lemma 5.2. On the wN generators Wn
k , for the family {c(n, k; l,m)} de-

fined by (16), the 2–cocycle identity (13) is equivalent to

((k1 n2 − k2 n1)N + (k1 − k2)) c(n1 + n2, k1 + k2;n3, k3) (21)

+((k2 n3 − k3 n2)N + (k2 − k3)) c(n2 + n3, k2 + k3;n1, k1)

+((k3 n1 − k1 n3)N + (k3 − k1)) c(n3 + n1, k3 + k1;n2, k2) = 0

Conversely any family {c(n, k; l,m)} satisfying (21) defines, through (16),

a 2–cocycle on wN .
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Proof. For all ni, ki, where i = 1, 2, 3, making use of (17) we have

0 = φ([Wn1

k1
,Wn2

k2
],Wn3

k3
) + φ([Wn2

k2
,Wn3

k3
],Wn1

k1
) + φ([Wn3

k3
,Wn1

k1
],Wn2

k2
)

= ((k1 n2 − k2 n1)N + (k1 − k3))φ(Wn1+n2

k1+k2
,Wn3

k3
)

+((k2 n3 − k3 n2)N + (k2 − k3))φ(Wn2+n3

k2+k3
,Wn1

k1
)

+((k3 n1 − k1 n3)N + (k3 − k1))φ(Wn3+n1

k3+k1
,Wn2

k2
)

= ((k1 n2 − k2 n1)N + (k1 − k3)) c(n1 + n2, k1 + k2, n3, k3)

+((k2 n3 − k3 n2)N + (k2 − k3)) c(n2 + n3, k2 + k3, n1, k1)

+((k3 n1 − k1 n3)N + (k3 − k1)) c(n3 + n1, k3 + k1, n2, k2)

The converse is clear due to the linear independence of the generators.

We notice that the sum of the first and third (resp. second and fourth)

arguments in the three 2-cocycle values c(n2 + n3, k2 + k3;n1, k1), c(n1 +

n2, k1+k2;n3, k3) and c(n3+n1, k3+k1;n2, k2) appearing in (21) is equal to

n1 +n2 +n3 (resp. k1 +k2 +k3). We are thus led to the following definition.

Definition 5.1. Given natural integers n1, n2, n3 ≥ 0 and k1, k2, k3 ∈ Z,

define S ∈ N ∪ {0} and M ∈ Z by:

S := n1 + n2 + n3 ; M := k1 + k2 + k3

and

ψS,M (ni, ki) := c(S − ni,M − ki;ni, ki) ; i ∈ {1, 2, 3} (22)
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Corollary 5.1. The skew-symmetry condition (17) becomes

ψS,M (ni, ki) = −ψS,M (S − ni,M − ki)

and (21) is equivalent to

((k1 n2 − k2 n1)N + (k1 − k2)) c(S − n3,M − k3;n3, k3) (23)

+((k2 n3 − k3 n2)N + (k2 − k3)) c(S − n1,M − k1;n1, k1)

+((k3 n1 − k1 n3)N + (k3 − k1)) c(S − n2,M − k2;n2, k2) = 0

or in ψ-form

((k1 n2 − k2 n1)N + (k1 − k2))ψS,M (n3, k3) (24)

+((k2 n3 − k3 n2)N + (k2 − k3))ψS,M (n1, k1)

+((k3 n1 − k1 n3)N + (k3 − k1))ψS,M (n2, k2) = 0

Proof. The proof follows directly from Definition 5.1.

Proposition 5.1. For any λ ∈ R the family {c(n, k; l,m)}, defined by

c(n, k; l,m) := δk+m,0 λ k (25)

defines, through (16), a 2–cocycle on wN .

Proof. Condition (17) is verified by inspection and (18) follows from the

fact that λ is real. We want to prove that (24) this is satisfied by the family

{c(n, k; l,m)}, defined by (25). Direct substitution shows that, if the family

{c(n, k; l,m)} is defined by (25), then ψS,M , defined by (22), satisfies (24).

Moreover, ψS,M (ni, ki) = δM,0 λ ki implies that c(S − ni,M − ki;ni, ki) =

δM,0 λ ki. For i = 1 we get c(S − n1,M − k1;n1, k1) = δM,0 λ k1 which for

n3 = 0 becomes c(n2, k2 + k3;n1, k1) = δM,0 λ k1. Letting k2 + k3 := K we

have that

c(n2,K;n1, k1) = δk1+K,0 λ k1

i.e. c(n, k; l,m) = δk+m,0 λ k.

Proposition 5.2. The central extension
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[Wn
k ,W

l
m] = ((k l −mn)N + (k −m)) Wn+l

k+m + δk+m,0 λ k E

of wN is trivial.

Proof. We look for a linear complex-valued function f defined on wN such

that

f
(
[Wn

k ,W
l
m]
)

= δk+m,0 k λ (26)

By the wN commutation relations (9) and the linearity of f , equation

(Ref. 26) is equivalent to

((k l −mn)N + (k −m)) f
(
Wn+l
k+m

)
= δk+m,0 k λ (27)

For k +m 6= 0 this is equivalent to

f
(
Wn+l
x

)
= 0 ; ∀x ∈ Z \ {0} (28)

For k +m = 0⇔ m = −k (27) is equivalent to

((k l + k n)N + 2k) f
(
Wn+l

0

)
= k λ⇔ ((l + n)N + 2) f

(
Wn+l

0

)
= λ

⇔ f
(
Wn+l

0

)
=

λ

(l + n)N + 2

and this, together with (28) uniquely defines a linear functional f with the

required property. Therefore the central extension of wN is trivial.

Lemma 5.3. Let z ∈ C. If z = 2 z̄ then z = 0.

Proof. If z = x + i y, x, y ∈ R, then z = 2 z̄ implies that x = 2x and

y = −2 y. Therefore x = y = 0.

Lemma 5.4. In the notation of Definition 5.1, let S ∈ N ∪ {0}, M = 0

and N > 0. Then:

(i) ψS,0(0, 1) = c(S,−1; 0, 1) = 0

(ii) For all k ∈ Z, ψS,0(0,−k) = c(S, k; 0,−k) = 0

(iii) For all n ≥ 0 and k ∈ Z, c(S − n, k;n,−k) = 0

Notice that (iii) ⇒ (ii) ⇒ (i).
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Proof. (i) For n2 = S − n1, n3 = 0, k1 = 0, k2 = −1 and k3 = 1, (21)

yields

(n1N + 1) c(S,−1; 0, 1) = (29)

((S − n1)N + 2) c(S − n1, 0;n1, 0) + (n1N + 1) c(S − n1,−1;n1, 1)

For n3 = n1, n2 = S − 2n1, k1 = 1, k2 = −1 and k3 = 0, (21) yields

((S − n1)N + 2) c(S − n1, 0;n1, 0) = (30)

(1 + n1N) c(S − n1,−1;n1, 1)− (n1N + 1) c(S − 2n1,−1; 2n1, 1)

Substituting (30) in (29) we obtain

(n1N + 1) c(S,−1; 0, 1) = (n1N + 1) c(S − n1,−1;n1, 1)

−(n1N + 1) c(S − 2n1,−1; 2n1, 1) + (n1N + 1) c(S − n1,−1;n1, 1)

which for n1 = S, since by (19) c(−S,−1; 2S, 1) = 0, after dividing out

(S N + 1), yields with the use of (17) and (18)

c(S,−1; 0, 1) = 2 c(0,−1;S, 1) = −2 c(S, 1; 0,−1) = 2 c(S,−1; 0, 1)

which, by Lemma 5.3, implies that c(S,−1; 0, 1) = 0.

(ii) For n1 = S, n2 = 0, n3 = 0, k1 = k, k2 = 1, k3 = −(k + 1), letting

ak := c(S, k; 0,−k), since by (i) a−1 = 0, (21) yields

(k − S N − 1) ak+1 = (k + 2) ak

which implies that ak = 0 for all k.

(iii) For k1 = k 6= 0, k2 = −k, k3 = 0, n1 = S−n, n2 = 0 and n3 = n, after

dividing out k 6= 0 and using c(S, k; 0,−k) = 0, (21) yields

c(S − n, k;n,−k) = − (S − n)N + 2

nN + 1
c(S − n, 0;n, 0)

for all k 6= 0. Similarly, for k1 = −k 6= 0, k2 = k, k3 = 0, n1 = 0, n2 = n

and n3 = S − n, (21) yields
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c(S − n, k;n,−k) = − nN + 2

(S − n)N + 1
c(S − n, 0;n, 0)

for all k 6= 0. Thus

(S − n)N + 2

nN + 1
c(S − n, 0;n, 0) =

nN + 2

(S − n)N + 1
c(S − n, 0;n, 0) (31)

If S = 2n then c(S − n, 0;n, 0) = c(n, 0;n, 0) = 0 by (17). If S 6= 2n then

c(S − n, 0;n, 0) = 0 by (31).

Proposition 5.3. Let S ∈ N∪{0} and M ∈ Z. In the notation of Definition

5.1, all non-trivial 2–cocycles ψS,M (n, k) on wN are given by

ψS,M (n, k) = δS,0 δM,0 k (k2 − 1)

Proof. Case (i): S = 0. Then n1 + n2 + n3 = 0 and so n1 = n2 = n3 = 0

which means that we are reduced to the standard Witt-Virasoro case W 0
k =

B̂2
k. Therefore, the only non-trivial cocycle is

ψS,M (n, k) = ψ0,M (n, k) = δM,0 k (k2 − 1)

Case (ii): S 6= 0 and M 6= 0. For n3 = k3 = 0, using c(n2, k2;n1, k1) =

−c(n1, k1;n2, k2), n1 + n2 = S and k1 + k2 = M , (21) yields

(k1 (n2N + 1)− k2 (n1N + 1)) c(S,M ; 0, 0)− (k2 + k1) c(n1, k1;n2, k2) = 0

which, letting n2 = n, k2 = k, n1 = S − n and k1 = M − k, implies that

ψS,M (n, k) = c(S − n,M − k;n, k)

= ((M − k) (nN + 1)− k ((S − n)N + 1)) c(S,M ; 0, 0) = 0

by (20).

Case (iii): S 6= 0 and M = 0. For k3 = 0, n1 = 0, k1 6= 0, using Lemma 5.4

(ii) and (iii), (24) yields
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ψS,0(n2, k2) =
n2N + 1− k2

k1

n3N + 1
ψS,0(n3, 0) +

k2

k1
ψS,0(0, k1) = 0 (32)

and the result follows by the arbitrariness of n2 and k2.

The next corollary shows that there are no non-trivial central extensions of

wN other than the Virasoro one.

Corollary 5.2. The non-trivial central extensions of wN are given by

[Wn
k ,W

l
m] = ((k l −mn)N + (k −m)) Wn+l

k+m+δn,0 δl,0 δk+m,0m (m2−1)E

Thus only the Virasoro sector of wN can be extended in a non-trivial way.

Proof. By Proposition 5.3, in the notation of Definition 5.1,

ψS,M (n1, k1) = c(S − n1,M − k1;n1, k1) = δS,0 δM,0 k1 (k2
1 − 1)

i.e.,

c(n2 + n3, k2 + k3;n1, k1) = δn1+n2+n3,0 δk1+k2+k3,0 k1 (k2
1 − 1)

which, letting n3 = k3 = 0, n1 = n, k1 = k, n2 = l and k2 = m implies that

c(n, k; l,m) = δn+l,0 δk+m,0m (m2 − 1) = δn,0 δl,0 δk+m,0m (m2 − 1)
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