CENTRAL EXTENSION OF VIRASORO TYPE SUBALGEBRAS OF THE ZAMOLODCHIKOV- w_{∞} LIE ALGEBRA

LUIGI ACCARDI
Centro Vito Volterra, Università di Roma Tor Vergata via Columbia, 2- 00133 Roma, Italy
E-mail: accardi@Volterra.mat.uniroma2.it
ANDREAS BOUKAS
Centro Vito Volterra, Università di Roma Tor Vergata via Columbia, 2- 00133 Roma, Italy
E-mail: andreasboukas@yahoo.com

Abstract

It is known that the centerless Zamolodchikov- $w_{\infty} *-$ Lie algebra of conformal field theory does not admit nontrivial central extensions, but the Witt *-Lie algebra, which is a sub-algebra of w_{∞}, admits a nontrivial central extension: the Virasoro algebra. Therefore the following question naturally arises: are there other natural sub-algebras of w_{∞} which admit nontrivial central extensions other than the Virasoro one? We show that for certain infinite dimensional closed subalgebras of w_{∞}, which are natural generalizations of the Witt algebra the answer is negative.

Keywords: Witt algebra; Virasoro algebra; Central extensions

1. Introduction

The centerless Virasoro (or Witt)-Zamolodchikov- $w_{\infty} *$-Lie algebra (cf. ${ }^{3}{ }^{6}$) is the infinite dimensional $*$-Lie algebra, with generators

$$
\begin{equation*}
\left\{\hat{B}_{k}^{n}: n \in \mathbb{N}, n \geq 2, k \in \mathbb{Z}\right\} \tag{1}
\end{equation*}
$$

commutation relations

$$
\begin{equation*}
\left[\hat{B}_{k}^{n}, \hat{B}_{K}^{N}\right]=(k(N-1)-K(n-1)) \hat{B}_{k+K}^{n+N-2} \tag{2}
\end{equation*}
$$

and involution

$$
\begin{equation*}
\left(\hat{B}_{k}^{n}\right)^{*}=\hat{B}_{-k}^{n} \tag{3}
\end{equation*}
$$

where $\mathbb{N}=\{1,2, \ldots\}$.
The central extensions of the w_{∞} algebra have been widely studied in the physical literature. In particular, Bakas proved in Ref. 3 that the $w_{\infty}{ }^{*-}$ Lie algebra does not admit non-trivial central extensions. That was done by showing that, after a suitable contraction which yields the w_{∞} commutation relations, the central terms appearing in the algebra W_{∞}, which is defined as a $N \rightarrow \infty$ limit of the Zamolodchikov type Lie algebras W_{N}, vanish. A direct proof of the triviality of all central extensions of w_{∞} based on the cocycle definition of a central extension and avoiding the ambiguities that arise from passing to the (non-unique) limit of W_{N}, was given in Ref. 1.

The $*$-Lie sub-algebra of the w_{∞} algebra, generated by the family $\left\{\hat{B}_{k}^{2}\right.$: $k \in \mathbb{Z}\}$ is the Witt algebra which admits the Virasoro non trivial central extension

$$
\begin{equation*}
\left[\hat{B}_{m}^{2}, \hat{B}_{n}^{2}\right]=(m-n) \hat{B}_{m+n}^{2}+\delta_{m+n, 0} m\left(m^{2}-1\right) E \tag{4}
\end{equation*}
$$

where traditionally $E=c / 12$ where $c \in \mathbb{C}$ is the "central charge".
In this paper we examine whether certain infinite dimensional closed subalgebras of w_{∞}, which are natural generalizations of the Witt algebra, can also be non-trivially centrally extended.

2. Closed subalgebras of w_{∞}

In this section we investigate the structure of the Lie sub-algebras of w_{∞}. More precisely, we investigate which subsets of the generators of w_{∞} are such that the Lie algebra (resp. *-Lie algebra) generated by them, is a proper sub-algebra of w_{∞}. To this goal notice that, if $\hat{\mathcal{S}}$ is any subset of the generators of w_{∞}, then there exists a unique partition $\left\{\hat{\mathcal{S}}_{+} \hat{\mathcal{S}}_{0}, \hat{\mathcal{S}}_{-}\right\}$of $\hat{\mathcal{S}}$ defined by

$$
\begin{aligned}
\hat{\mathcal{S}}_{+} & :=\left\{\hat{B}_{k}^{n} \in \hat{\mathcal{S}}: k>0\right\} \\
\hat{\mathcal{S}}_{0} & :=\left\{\hat{B}_{k}^{n} \in \hat{\mathcal{S}}: k=0\right\} \\
\hat{\mathcal{S}}_{-} & :=\left\{\hat{B}_{k}^{n} \in \hat{\mathcal{S}}: k<0\right\}
\end{aligned}
$$

From (3) we know that a generator \hat{B}_{k}^{n} is self-adjoint if and only if $k=0$. Therefore $\hat{\mathcal{S}}_{0}$ is a self-adjoint set. Moreover the set $\hat{\mathcal{S}}$ generates a $*$-subalgebra if and only if $\left(\hat{\mathcal{S}}_{+}\right)^{*}=\hat{\mathcal{S}}_{-}$. Denote $\hat{\mathcal{L}}(\hat{\mathcal{S}})$ the Lie sub-algebra of w_{∞} generated by $\hat{\mathcal{S}}$. From (2), we see that the sets $\hat{\mathcal{S}}_{+}, \hat{\mathcal{S}}_{-}$generate Lie sub-algebras $\hat{\mathcal{L}}\left(\hat{\mathcal{S}}_{+}\right), \hat{\mathcal{L}}\left(\hat{\mathcal{S}}_{-}\right)$of $\hat{\mathcal{L}}(\hat{\mathcal{S}})$, while $\hat{\mathcal{S}}_{0}$ generates a Lie $*$-sub-algebra $\hat{\mathcal{L}}\left(\hat{\mathcal{S}}_{0}\right)$. Denote $\mathbb{N}_{\geq 2}:=\{n \in \mathbb{N}: n \geq 2\}$. The map $\hat{B}_{k}^{n} \mapsto(n, k) \in \mathbb{N} \geq 2 \times \mathbb{Z}$ defines a one-to-one correspondence between the set of generators (1) and the set $\mathbb{N} \geq 2 \times \mathbb{Z}$. Therefore the sub-set of generators $\hat{\mathcal{S}}$ will be in one-to-one correspondence with a subset $\mathcal{S} \subseteq \mathbb{N} \geq 2 \times \mathbb{Z}$. The images of the subsets $\hat{\mathcal{S}}_{\varepsilon}$ where $\varepsilon \in\{+, 0,-\}$ under this correspondence will be denoted by $\mathcal{S}_{\varepsilon}$.

We want to study the following problem: which subset of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ corresponds to those generators (1) which belong to $\hat{\mathcal{L}}(\hat{\mathcal{S}})$ (resp. $\hat{\mathcal{L}}\left(\hat{\mathcal{S}}_{\varepsilon}\right), \varepsilon \in$ $\{+, 0,-\})$? This sub-set will be denoted by $\mathcal{L}(\mathcal{S})$ (resp. $\left.\mathcal{L}\left(\mathcal{S}_{\varepsilon}\right), \varepsilon \in\{, 0,-\}\right)$. The answer to this question, for a generic $\hat{\mathcal{S}}$, is very difficult therefore we begin to analyze a simpler problem, namely: Can we construct interesting families of subsets $\hat{\mathcal{S}} \subseteq \mathbb{N}_{\geq 2} \times \mathbb{Z}$ with the property that the linear span of such a subset is a proper Lie $*-$ sub-algebra of w_{∞} ? Notice that, if $\hat{B}_{k}^{n}, \hat{B}_{K}^{N} \in \hat{\mathcal{S}}$, then from (2) one sees that, if $k(N-1)-K(n-1) \neq 0$ then the generator $\hat{B}_{k+K}^{n+N-2} \in \hat{\mathcal{L}}(\hat{\mathcal{S}})$.
Moreover, the set $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ is an associative semi-group under the composition law

$$
\begin{equation*}
(n, k) \dot{+}(N, K):=(n+N-2, k+K) \tag{5}
\end{equation*}
$$

In fact, it is the product of the semi-group $\mathbb{N}_{\geq 2}$ with composition law

$$
\begin{equation*}
n \dot{+} N:=n+N-2 \tag{6}
\end{equation*}
$$

and the (semi-) group \mathbb{Z} with the usual addition. Thus the set $\mathcal{L}(\mathcal{S})$ will be contained in the sub-semi-group of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ generated by \mathcal{S}. Conversely, if \mathcal{S}_{0} is any sub-semi-group of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$, then the linear span of $\hat{\mathcal{S}}_{0}:=\left\{\hat{B}_{k}^{n}\right.$: $\left.(n, k) \in \mathcal{S}_{0}\right\}$ is a Lie-sub-algebra of w_{∞} and it is a Lie $*$-sub-algebra if and only if \mathcal{S}_{0} is a self-adjoint subset under the involution

$$
(n, k) \in \mathbb{N}_{\geq 2} \times \mathbb{Z} \mapsto(n,-k) \in \mathbb{N}_{\geq 2} \times \mathbb{Z}
$$

For this reason, it is interesting to study the sub-semi-groups of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ under the composition law (Ref. 5). An interesting class of these semigroups are those of the form

$$
\begin{equation*}
\mathcal{S}=\mathcal{S}_{1} \times \mathcal{S}_{2} \tag{7}
\end{equation*}
$$

where \mathcal{S}_{1} is a sub-semi-group of $\mathbb{N}_{\geq 2}$ with composition law (6) and \mathcal{S}_{2} a sub-semi-group of \mathbb{Z}. The composition law (6) has an identity, given by the number 2 , which is in $\mathbb{N}_{\geq 2}$. Hence $\{2\} \times \mathbb{Z}$ is a self-adjoint sub-semi-group of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$. Therefore the linear span of the set $\left\{\hat{B}_{k}^{2}: k \in \mathbb{Z}\right\}$ is a Lie *-sub-algebra of w_{∞} which is precisely the Witt (or centerless Virasoro) algebra.

Notice that $\{2\}$ is the only finite sub-semi-group of $\mathbb{N}_{\geq 2}$. In fact if S is such a semigroup and $n \in S$, then $\forall \nu \in \mathbb{N} \cup\{0\}$

$$
\begin{equation*}
n \dot{+} \ldots \dot{+} n \quad(\nu-\text { times })=\nu n-2(\nu-1)=\nu(n-2)+2 \in S \tag{8}
\end{equation*}
$$

and, for varying ν, this is a finite set if and only if $n=2$. Notice also that the sub-semi-group of $\mathbb{N}_{\geq 2}$ generated by the single element $n \in \mathbb{N} \geq 2$ is the set of elements of the form (8) for $\nu \in \mathbb{N} \cup\{0\}$. Denoting by S_{n} this semigroup, one has that $S_{n} \times \mathbb{Z}$ is a self-adjoint sub-semi-group of $\mathbb{N}_{\geq 2} \times \mathbb{Z}$. Therefore $\forall n \in \mathbb{N}_{\geq 2}$ the linear span of the set

$$
\left\{\hat{B}_{k}^{\nu(n-2)+2}: \nu \in \mathbb{N} \cup\{0\}, k \in \mathbb{Z}\right\}
$$

is a closed Lie $*$-sub-algebra of w_{∞}. Letting $N=n-2 \geq 0$ and (for fixed N)

$$
W_{k}^{n}:=\hat{B}_{k}^{n N+2}
$$

we arrive at the following definition.
Definition 2.1. For any natural integer $N \geq 0$ we denote w_{N} the $*$-Lie subalgebra of w_{∞} defined by

$$
w_{N}:=\operatorname{span}\left\{W_{k}^{n}: n \in \mathbb{N} \cup\{0\}, k \in \mathbb{Z}\right\}
$$

with Lie brackets (inherited from w_{∞})

$$
\begin{equation*}
\left[W_{k}^{n}, W_{m}^{l}\right]=((k l-m n) N+(k-m)) W_{k+m}^{n+l} \tag{9}
\end{equation*}
$$

For $N=0, w_{0}$ is the Witt algebra.

The question of the existence of non-trivial central extensions of w_{N} is the subject of this paper.

Notice that w_{N} is a direct generalization of the Witt algebra w_{0}. Furthermore, notice that the Witt algebra is the vector space generated by the generators of the form $\left\{\hat{B}_{k}^{\varphi(k)}: k \in \mathbb{Z}\right\}$ where φ is the constant function $\varphi(k)=2, \forall k \in \mathbb{Z}$.

One may wonder if there exist other functions $\varphi: \mathbb{Z} \rightarrow \mathbb{N}_{\geq 2}$ with this property. The following Lemma shows that this is not the case.

Lemma 2.1. Let $\varphi: \mathbb{Z} \rightarrow \mathbb{N}_{\geq 2}$ be a function such that the linear span of $\left\{\hat{B}_{k}^{\varphi(k)}: k \in \mathbb{Z}\right\}$ is a*-Lie algebra. Then φ is the constant function $\varphi(k)=2, \quad \forall k \in \mathbb{Z}$.

Proof. The condition $\left(\hat{B}_{k}^{\varphi(k)}\right)^{*}=\hat{B}_{-k}^{\varphi(k)}$ for all $k \in \mathbb{N}$ implies that $\varphi(k)=$ $\varphi(-k)$. This, together with the condition

$$
\left[\hat{B}_{k}^{\varphi(k)}, \hat{B}_{-k}^{\varphi(-k)}\right]=2 k(\varphi(k)-1) B_{0}^{\varphi(k) \dot{+} \varphi(-k)} ; \quad \forall k \in \mathbb{Z}
$$

gives that, $\forall k \in \mathbb{Z}$

$$
\varphi(0)=\varphi(k) \dot{+} \varphi(k)=2 \varphi(k)-2 \Leftrightarrow 2 \varphi(k)=\varphi(0)+2 \Leftrightarrow \varphi(k)=\frac{1}{2} \varphi(0)+1
$$

But then the condition

$$
\left[\hat{B}_{0}^{\varphi(0)}, \hat{B}_{k}^{\varphi(k)}\right]=-k(\varphi(0)-1) \hat{B}_{k}^{\varphi(k) \dot{+} \varphi(0)}
$$

gives that

$$
\varphi(k) \dot{+} \varphi(0)=\varphi(k) \Leftrightarrow \varphi(0)=2
$$

Therefore $\forall k \in \mathbb{Z}, \varphi(k)=\frac{1}{2} \varphi(0)+1=2$.

A class of examples not of product type, i.e. defined by semi-groups not of the form (7), might be built as follows. Suppose that $\left[\hat{B}_{k}^{n}, \hat{B}_{k^{\prime}}^{n^{\prime}}\right]=0$, $\left[\hat{B}_{k}^{n}, \hat{B}_{k^{\prime \prime}}^{n^{\prime \prime}}\right] \neq 0$, and $\left[\hat{B}_{k^{\prime}}^{n^{\prime}}, \hat{B}_{k^{\prime \prime}}^{n^{\prime \prime}}\right] \neq 0$. Then the $*$-algebra generated by $\left\{\hat{B}_{k}^{n}, \hat{B}_{k^{\prime}}^{n^{\prime}}, \hat{B}_{k^{\prime \prime}}^{n^{\prime \prime}}\right\}$ should not be of product type.

3. Abelian sub-algebras of \boldsymbol{w}_{∞}

Lemma 3.1. Any subset of the set

$$
\begin{equation*}
\mathcal{A}_{0}:=\left\{\hat{B}_{0}^{n}: n \in \mathbb{N}_{\geq 2}\right\} \tag{10}
\end{equation*}
$$

consists of commuting self-adjoint generators. The set (10) is a maximal set with this property and generates a maximal Abelian *-sub-algebra of w_{∞}.

Proof. The commutativity of the set (10) is clear from (2). The same identity shows that if $X \in W_{\infty}$, then $\forall n \in \mathbb{N}_{\geq 2},\left[\hat{B}_{0}^{n}, X\right]$ is a linear combination of the (linearly independent) generators of the form \hat{B}_{k}^{n} with $k \neq 0$. Therefore either $X \in \mathcal{A}_{0}$ or X cannot commute with \mathcal{A}_{0}. This proves maximality. That \mathcal{A}_{0} is a $*$-sub-algebra follows from the fact that the generators are self-adjoint.

Lemma 3.2. If a subset $\hat{\mathcal{S}}$ of generators of the form (1) contains an element of the form \hat{B}_{0}^{n}, then $\hat{\mathcal{S}}$ can be a commutative subset if and only if

$$
\begin{equation*}
\hat{B}_{k}^{m} \in \hat{\mathcal{S}} \Rightarrow k=0 \tag{11}
\end{equation*}
$$

Proof. From Lemma 3.1 we know that (11) is a sufficient condition for commutativity of $\hat{\mathcal{S}}$. Let us prove that, under the conditions of the Lemma, it is also necessary. Suppose that $\hat{B}_{k}^{m} \in \hat{\mathcal{S}}$ and that $k \neq 0$. Then (2) implies that $0=\left[\hat{B}_{0}^{n}, \hat{B}_{k}^{m}\right]=k(m-1) \hat{B}_{k}^{n+m-2}$. Since by assumption $m, n \geq 2$ and $\hat{B}_{k}^{n+m-2} \neq 0$, it follows that $k=0$, against the assumption.

Lemma 3.3. Two generators $\hat{B}_{k}^{n}, \hat{B}_{K}^{N}$ with $k, K \neq 0$, commute if and only if $\operatorname{sgn}(k)=\operatorname{sgn}(K)=: \pm$ and there exist $p, q \in \mathbb{N} \cup\{0\}$ mutually prime, such that, for some $k^{\prime}, K^{\prime} \geq 1:(n, k)=\left(1+q k^{\prime}, \pm p k^{\prime}\right)$ and $(n, K)=$ $\left(1+q K^{\prime}, \pm p K^{\prime}\right)$.

Proof. We have that

$$
0=\left[\hat{B}_{k}^{n}, \hat{B}_{K}^{N}\right]=(k(N-1)-K(n-1)) \hat{B}_{k+K}^{n+N-2}
$$

Since $\hat{B}_{k+K}^{n+N+2} \neq 0$, this is equivalent to $k(N-1)-K(n-1)=0$. Since $N, n \geq 2$, this is possible if and only if k and K have the same sign. In this case the condition is equivalent to

$$
\frac{k}{n-1}=\frac{K}{N-1}=: \pm \frac{p}{q}
$$

where p and q are mutually prime natural integers and the \pm sign is the common sign of k and K. This means that $k= \pm p k^{\prime}, n-1=q k^{\prime}$ and $K= \pm p K^{\prime}, N-1=q K^{\prime}$ where the sign \pm is the same in both cases and $k^{\prime}, K^{\prime} \geq 1$. This is equivalent to the statement in the Lemma.

Definition 3.1. A half-line in $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ is a subset either of the form

$$
H_{\varepsilon, p, q}:=\{(1+q k, \varepsilon p k): k \in \mathbb{N} \cup\{0\}\}
$$

where $\varepsilon \in\{ \pm 1\}$ and $q, p \in \mathbb{N} \cup\{0\}$ are mutually prime, or of the form

$$
H_{1,0, q}:=\{(1+q k, 0): k \in \mathbb{N} \cup\{0\}\}
$$

Theorem 3.1. Each of the three sets of indices $H_{1,0,1}=\{(1+k, 0): k \in$ $\mathbb{N} \cup\{0\}\}, H_{+, 1,1}=\{(1+k, k): k \in \mathbb{N} \cup\{0\}\}$ and $H_{-, 1,1}=\{(1+k,-k):$ $k \in \mathbb{N} \cup\{0\}\}$ defines a maximal family of mutually commuting generators.

Proof. We know from Lemma 3.1 that $H_{1,0,1}$ is a mutually commuting family. The same is true for $H_{+, 1,1}$ and $H_{-, 1,1}$ because of Lemma 3.3. Now let $\hat{\mathcal{S}}$ be a mutually commuting family of generators (1). If $\hat{\mathcal{S}}$ contains a generator of the form \hat{B}_{0}^{n}, for some $n \in \mathbb{N}_{\geq 2}$, from Lemma 3.2 we know that $\hat{\mathcal{S}} \subseteq H_{1,0,1}$. If this is not the case, then from Lemma 3.3 we know that $\hat{\mathcal{S}}$ is contained in some half-line $H_{\varepsilon, p, q}$ in $\mathbb{N}_{\geq 2} \times \mathbb{Z}$ with $p \neq 0$. But all half-lines of this type, with $\varepsilon=+1$ (resp. $\varepsilon=-1$), are contained in $H_{+, 1,1}$ (resp. $H_{-, 1,1}$) and this implies the statement.

Notice that, of the three families listed in Theorem 3.1, only $H_{1,0,1}$ generates a *-sub-algebra.

4. Basic facts on central extensions of Lie algebras

If L and \widetilde{L} are two complex Lie algebras, we say that \widetilde{L} is a one-dimensional central extension of L with central element E if there is a Lie algebra exact sequence $0 \mapsto \mathbb{C} E \mapsto \widetilde{L} \mapsto L \mapsto 0$ where $\mathbb{C} E$ is the one-dimensional trivial Lie algebra and the image of $\mathbb{C} E$ is contained in the center $\operatorname{Cent}(L)$ of \widetilde{L} i.e.,

$$
\left[l_{1}, E\right]_{\widetilde{L}}=0 \quad, \quad \forall l_{1} \in L
$$

where $[\cdot, \cdot]_{\tilde{L}}$ are the Lie brackets in \widetilde{L}. For $*-$ Lie algebras we also require that the central element E is self-adjoint, i.e

$$
\begin{equation*}
(E)^{*}=E \tag{12}
\end{equation*}
$$

A 2-cocycle on L is a bilinear form $\phi: L \times L \mapsto \mathbb{C}$ on L satisfying, for all $l_{1}, l_{2} \in L$, the skew-symmetry condition

$$
\phi\left(l_{1}, l_{2}\right)=-\phi\left(l_{2}, l_{1}\right)
$$

(in particular $\phi(l, l)=0$ for all $l \in L$) and the 2-cocycle identity:

$$
\begin{equation*}
\phi\left(\left[l_{1}, l_{2}\right]_{L}, l_{3}\right)+\phi\left(\left[l_{2}, l_{3}\right]_{L}, l_{1}\right)+\phi\left(\left[l_{3}, l_{1}\right]_{L}, l_{2}\right)=0 \tag{13}
\end{equation*}
$$

One-dimensional central extensions of L are classified by 2-cocycles in the sense that \widetilde{L} is a central extension of L if and only if, as vector space, it is the direct sum

$$
\widetilde{L}=M \oplus \mathbb{C} E
$$

where M is a Lie algebra isomorphic to L, and there exists a 2 -cocycle on L such that, for all $l_{1}, l_{2} \in L$, the Lie brackets in \widetilde{L} are given by

$$
\begin{equation*}
\left[l_{1}, l_{2}\right]_{\tilde{L}}=\left[l_{1}, l_{2}\right]_{L}+\phi\left(l_{1}, l_{2}\right) E \tag{14}
\end{equation*}
$$

where, in the right hand sides of (14), L is identified to $L \oplus\{0\} \subseteq L \oplus \mathbb{C} E$, and $\phi: L \times L \mapsto \mathbb{C}$ is a 2 -cocycle on L,

$$
\left[l_{1}, l_{2}\right]_{\tilde{L}}=\left[l_{1}, l_{2}\right]_{L}+\phi\left(l_{1}, l_{2}\right) E
$$

where $[\cdot, \cdot]_{L}$ are the Lie brackets in L. A central extension is trivial if the corresponding 2-cocycle ϕ is uniquely determined by a linear function f : $L \mapsto \mathbb{C}$ through the identity

$$
\begin{equation*}
\phi\left(l_{1}, l_{2}\right)=f\left(\left[l_{1}, l_{2}\right]_{L}\right) \quad, \quad \forall l_{1}, l_{2} \in L \tag{15}
\end{equation*}
$$

Such a 2-cocycle is called a 2 -coboundary, or a trivial 2-cocycle. Two extensions are called equivalent if each of them is a trivial extension of the other. This is the case if and only if the difference of the corresponding 2-cocycles is a trivial cocycle. A central extension \widetilde{L} of L is called universal whenever there exists a homomorphism from \widetilde{L} to any other central extension of L. A Lie algebra L possesses a universal central extension if and only if L is perfect (i.e. $L=[L, L]$). In this case, the universal central extension of L is unique up to isomorphism.

Notice that the 2-cocycle identity (13) implies that, if $l_{c} \in \operatorname{Cent}(L)$ is an element of the center of L, then

$$
\phi\left(\left[l_{1}, l_{2}\right]_{L}, l_{c}\right)=0 \quad ; \quad \forall l_{1}, l_{2} \in L
$$

i.e. l_{c} is ϕ-orthogonal to the derived set $[L, L]$ of L. Similarly (15) implies that a necessary condition for the 2 -cocycle ϕ to be trivial is that the center of L is ϕ-orthogonal to the whole algebra L. Because of (14) this is equivalent to say that the center of L is mapped into the center of \widetilde{L}. Therefore a sufficient condition for a 2-cocycle ϕ on L to be non trivial is that there exist $l_{c} \in \operatorname{Cent}(L)$ and $x \in L \backslash[L, L]$ such that

$$
\phi\left(x, l_{c}\right) \neq 0
$$

This practical rule is useful for Lie algebras L with a large derivative $[L, L]$.

5. Central extensions of \boldsymbol{w}_{N}

Throughout this section we assume that $\widetilde{w_{N}}$ is a central extension of w_{N}, where $N>0$ is fixed. For $N=0$, the Witt algebra w_{0} admits the wellknown non-trivial Virasoro central extension

$$
\left[W_{k}^{0}, W_{m}^{0}\right]=(k-m) W_{k+m}^{0}+\delta_{k+m, 0} m\left(m^{2}-1\right) E
$$

We denote by $c(n, k ; l, m)$ the value assumed by the corresponding 2-cocycle on the pair of generators $\left(W_{k}^{n}, W_{m}^{l}\right)$, i.e.:

$$
\begin{gather*}
c(n, k ; l, m):=\phi\left(W_{k}^{n}, W_{m}^{l}\right) \in \mathbb{C} \tag{16}\\
{\left[W_{k}^{n}, W_{m}^{l}\right]=((k l-m n) N+(k-m)) W_{k+m}^{n+l}+c(n, k ; l, m) E}
\end{gather*}
$$

The skew-symmetry of ϕ and the adjointness condition (12) imply respectively that:

$$
\begin{gather*}
c(n, k ; l, m)=-c(l, m ; n, k) \tag{17}\\
c(n, k ; l, m)=-\overline{c(n,-k ; l,-m)} \tag{18}
\end{gather*}
$$

If at least one of n, l is negative we set

$$
\begin{equation*}
c(n, k ; l, m)=0 \tag{19}
\end{equation*}
$$

Lemma 5.1. The derived set of the $w_{N} *-$ Lie algebra is itself.
Proof. From (9) we see that the derived set of the $w_{N} *$-Lie algebra is
$\operatorname{Der}\left(W_{N}\right):=\left\{W_{k+m}^{n+l}:(k l-m n) N+(k-m) \neq 0, n, l \in \mathbb{N} \cup\{0\}, k, m \in \mathbb{Z}\right\}$
Choosing $(n, k)=(0,0)$ we see that $\operatorname{Der}\left(W_{N}\right)$ contains the generators of the form W_{m}^{l} with $l \in \mathbb{N} \cup\{0\}$ and $m \in \mathbb{Z} \backslash\{0\}$. Choosing $n=0$ and $(k, m)=(1,-1)$ we see that $\operatorname{Der}\left(W_{N}\right)$ also contains the generators of the form W_{0}^{l} such that $l N+2 \neq 0$ which is always true for all $l \in \mathbb{N} \cup\{0\}$.

Combining the remark after equation (15), with Lemma 5.1 one deduces that, in any central extension of W_{N}, the central element is mapped to the central element of the extension so that, for any $l \in \mathbb{N} \cup\{0\}$ and $m \in \mathbb{Z}$

$$
\begin{equation*}
c(0,0 ; l, m)=0 \tag{20}
\end{equation*}
$$

Lemma 5.2. On the w_{N} generators W_{k}^{n}, for the family $\{c(n, k ; l, m)\} d e$ fined by (16), the 2-cocycle identity (13) is equivalent to

$$
\begin{align*}
& \left(\left(k_{1} n_{2}-k_{2} n_{1}\right) N+\left(k_{1}-k_{2}\right)\right) c\left(n_{1}+n_{2}, k_{1}+k_{2} ; n_{3}, k_{3}\right) \tag{21}\\
+ & \left(\left(k_{2} n_{3}-k_{3} n_{2}\right) N+\left(k_{2}-k_{3}\right)\right) c\left(n_{2}+n_{3}, k_{2}+k_{3} ; n_{1}, k_{1}\right) \\
+ & \left(\left(k_{3} n_{1}-k_{1} n_{3}\right) N+\left(k_{3}-k_{1}\right)\right) c\left(n_{3}+n_{1}, k_{3}+k_{1} ; n_{2}, k_{2}\right)=0
\end{align*}
$$

Conversely any family $\{c(n, k ; l, m)\}$ satisfying (21) defines, through (16), a 2 -cocycle on w_{N}.

Proof. For all n_{i}, k_{i}, where $i=1,2,3$, making use of (17) we have

$$
\begin{aligned}
& 0=\phi\left(\left[W_{k_{1}}^{n_{1}}, W_{k_{2}}^{n_{2}}\right], W_{k_{3}}^{n_{3}}\right)+\phi\left(\left[W_{k_{2}}^{n_{2}}, W_{k_{3}}^{n_{3}}\right], W_{k_{1}}^{n_{1}}\right)+\phi\left(\left[W_{k_{3}}^{n_{3}}, W_{k_{1}}^{n_{1}}\right], W_{k_{2}}^{n_{2}}\right) \\
&=\left(\left(k_{1} n_{2}-k_{2} n_{1}\right) N+\left(k_{1}-k_{3}\right)\right) \phi\left(W_{k_{1}+k_{2}}^{n_{1}+n_{2}}, W_{k_{3}}^{n_{3}}\right) \\
&+\left(\left(k_{2} n_{3}-k_{3} n_{2}\right) N+\left(k_{2}-k_{3}\right)\right) \phi\left(W_{k_{2}+k_{3}}^{n_{2}+n_{3}}, W_{k_{1}}^{n_{1}}\right) \\
&+\left(\left(k_{3} n_{1}-k_{1} n_{3}\right) N+\left(k_{3}-k_{1}\right)\right) \phi\left(W_{k_{3}+k_{1}}^{n_{3}+n_{1}}, W_{k_{2}}^{n_{2}}\right) \\
&=\left(\left(k_{1} n_{2}-k_{2} n_{1}\right) N+\left(k_{1}-k_{3}\right)\right) c\left(n_{1}+n_{2}, k_{1}+k_{2}, n_{3}, k_{3}\right) \\
&+\left(\left(k_{2} n_{3}-k_{3} n_{2}\right) N+\left(k_{2}-k_{3}\right)\right) c\left(n_{2}+n_{3}, k_{2}+k_{3}, n_{1}, k_{1}\right) \\
&+\left(\left(k_{3} n_{1}-k_{1} n_{3}\right) N+\left(k_{3}-k_{1}\right)\right) c\left(n_{3}+n_{1}, k_{3}+k_{1}, n_{2}, k_{2}\right)
\end{aligned}
$$

The converse is clear due to the linear independence of the generators.

We notice that the sum of the first and third (resp. second and fourth) arguments in the three 2-cocycle values $c\left(n_{2}+n_{3}, k_{2}+k_{3} ; n_{1}, k_{1}\right), c\left(n_{1}+\right.$ $\left.n_{2}, k_{1}+k_{2} ; n_{3}, k_{3}\right)$ and $c\left(n_{3}+n_{1}, k_{3}+k_{1} ; n_{2}, k_{2}\right)$ appearing in (21) is equal to $n_{1}+n_{2}+n_{3}$ (resp. $k_{1}+k_{2}+k_{3}$). We are thus led to the following definition.

Definition 5.1. Given natural integers $n_{1}, n_{2}, n_{3} \geq 0$ and $k_{1}, k_{2}, k_{3} \in \mathbb{Z}$, define $S \in \mathbb{N} \cup\{0\}$ and $M \in \mathbb{Z}$ by:

$$
S:=n_{1}+n_{2}+n_{3} \quad ; \quad M:=k_{1}+k_{2}+k_{3}
$$

and

$$
\begin{equation*}
\psi_{S, M}\left(n_{i}, k_{i}\right):=c\left(S-n_{i}, M-k_{i} ; n_{i}, k_{i}\right) ; i \in\{1,2,3\} \tag{22}
\end{equation*}
$$

Corollary 5.1. The skew-symmetry condition (17) becomes

$$
\psi_{S, M}\left(n_{i}, k_{i}\right)=-\psi_{S, M}\left(S-n_{i}, M-k_{i}\right)
$$

and (21) is equivalent to

$$
\begin{align*}
& \left(\left(k_{1} n_{2}-k_{2} n_{1}\right) N+\left(k_{1}-k_{2}\right)\right) c\left(S-n_{3}, M-k_{3} ; n_{3}, k_{3}\right) \tag{23}\\
+ & \left(\left(k_{2} n_{3}-k_{3} n_{2}\right) N+\left(k_{2}-k_{3}\right)\right) c\left(S-n_{1}, M-k_{1} ; n_{1}, k_{1}\right) \\
+ & \left(\left(k_{3} n_{1}-k_{1} n_{3}\right) N+\left(k_{3}-k_{1}\right)\right) c\left(S-n_{2}, M-k_{2} ; n_{2}, k_{2}\right)=0
\end{align*}
$$

or in ψ-form

$$
\begin{align*}
& \quad\left(\left(k_{1} n_{2}-k_{2} n_{1}\right) N+\left(k_{1}-k_{2}\right)\right) \psi_{S, M}\left(n_{3}, k_{3}\right) \tag{24}\\
& +\left(\left(k_{2} n_{3}-k_{3} n_{2}\right) N+\left(k_{2}-k_{3}\right)\right) \psi_{S, M}\left(n_{1}, k_{1}\right) \\
& +\left(\left(k_{3} n_{1}-k_{1} n_{3}\right) N+\left(k_{3}-k_{1}\right)\right) \psi_{S, M}\left(n_{2}, k_{2}\right)=0
\end{align*}
$$

Proof. The proof follows directly from Definition 5.1.
Proposition 5.1. For any $\lambda \in \mathbb{R}$ the family $\{c(n, k ; l, m)\}$, defined by

$$
\begin{equation*}
c(n, k ; l, m):=\delta_{k+m, 0} \lambda k \tag{25}
\end{equation*}
$$

defines, through (16), a 2-cocycle on w_{N}.
Proof. Condition (17) is verified by inspection and (18) follows from the fact that λ is real. We want to prove that (24) this is satisfied by the family $\{c(n, k ; l, m)\}$, defined by (25). Direct substitution shows that, if the family $\{c(n, k ; l, m)\}$ is defined by (25), then $\psi_{S, M}$, defined by (22), satisfies (24). Moreover, $\psi_{S, M}\left(n_{i}, k_{i}\right)=\delta_{M, 0} \lambda k_{i}$ implies that $c\left(S-n_{i}, M-k_{i} ; n_{i}, k_{i}\right)=$ $\delta_{M, 0} \lambda k_{i}$. For $i=1$ we get $c\left(S-n_{1}, M-k_{1} ; n_{1}, k_{1}\right)=\delta_{M, 0} \lambda k_{1}$ which for $n_{3}=0$ becomes $c\left(n_{2}, k_{2}+k_{3} ; n_{1}, k_{1}\right)=\delta_{M, 0} \lambda k_{1}$. Letting $k_{2}+k_{3}:=K$ we have that

$$
c\left(n_{2}, K ; n_{1}, k_{1}\right)=\delta_{k_{1}+K, 0} \lambda k_{1}
$$

i.e. $c(n, k ; l, m)=\delta_{k+m, 0} \lambda k$.

Proposition 5.2. The central extension

$$
\left[W_{k}^{n}, W_{m}^{l}\right]=((k l-m n) N+(k-m)) W_{k+m}^{n+l}+\delta_{k+m, 0} \lambda k E
$$

of w_{N} is trivial.
Proof. We look for a linear complex-valued function f defined on w_{N} such that

$$
\begin{equation*}
f\left(\left[W_{k}^{n}, W_{m}^{l}\right]\right)=\delta_{k+m, 0} k \lambda \tag{26}
\end{equation*}
$$

By the w_{N} commutation relations (9) and the linearity of f, equation (Ref. 26) is equivalent to

$$
\begin{equation*}
((k l-m n) N+(k-m)) f\left(W_{k+m}^{n+l}\right)=\delta_{k+m, 0} k \lambda \tag{27}
\end{equation*}
$$

For $k+m \neq 0$ this is equivalent to

$$
\begin{equation*}
f\left(W_{x}^{n+l}\right)=0 \quad ; \quad \forall x \in \mathbb{Z} \backslash\{0\} \tag{28}
\end{equation*}
$$

For $k+m=0 \Leftrightarrow m=-k$ (27) is equivalent to

$$
\begin{gathered}
((k l+k n) N+2 k) f\left(W_{0}^{n+l}\right)=k \lambda \Leftrightarrow((l+n) N+2) f\left(W_{0}^{n+l}\right)=\lambda \\
\\
\Leftrightarrow f\left(W_{0}^{n+l}\right)=\frac{\lambda}{(l+n) N+2}
\end{gathered}
$$

and this, together with (28) uniquely defines a linear functional f with the required property. Therefore the central extension of w_{N} is trivial.

Lemma 5.3. Let $z \in \mathbb{C}$. If $z=2 \bar{z}$ then $z=0$.
Proof. If $z=x+i y, x, y \in \mathbb{R}$, then $z=2 \bar{z}$ implies that $x=2 x$ and $y=-2 y$. Therefore $x=y=0$.

Lemma 5.4. In the notation of Definition 5.1, let $S \in \mathbb{N} \cup\{0\}, M=0$ and $N>0$. Then:
(i) $\psi_{S, 0}(0,1)=c(S,-1 ; 0,1)=0$
(ii) For all $k \in \mathbb{Z}, \psi_{S, 0}(0,-k)=c(S, k ; 0,-k)=0$
(iii) For all $n \geq 0$ and $k \in \mathbb{Z}, c(S-n, k ; n,-k)=0$

Notice that (iii) \Rightarrow (ii) \Rightarrow (i).

Proof. (i) For $n_{2}=S-n_{1}, n_{3}=0, k_{1}=0, k_{2}=-1$ and $k_{3}=1$, yields

$$
\begin{gather*}
\left(n_{1} N+1\right) c(S,-1 ; 0,1)= \tag{29}\\
\left(\left(S-n_{1}\right) N+2\right) c\left(S-n_{1}, 0 ; n_{1}, 0\right)+\left(n_{1} N+1\right) c\left(S-n_{1},-1 ; n_{1}, 1\right)
\end{gather*}
$$

For $n_{3}=n_{1}, n_{2}=S-2 n_{1}, k_{1}=1, k_{2}=-1$ and $k_{3}=0,(21)$ yields

$$
\begin{gather*}
\left(\left(S-n_{1}\right) N+2\right) c\left(S-n_{1}, 0 ; n_{1}, 0\right)= \tag{30}\\
\left(1+n_{1} N\right) c\left(S-n_{1},-1 ; n_{1}, 1\right)-\left(n_{1} N+1\right) c\left(S-2 n_{1},-1 ; 2 n_{1}, 1\right)
\end{gather*}
$$

Substituting (30) in (29) we obtain

$$
\begin{gathered}
\left(n_{1} N+1\right) c(S,-1 ; 0,1)=\left(n_{1} N+1\right) c\left(S-n_{1},-1 ; n_{1}, 1\right) \\
-\left(n_{1} N+1\right) c\left(S-2 n_{1},-1 ; 2 n_{1}, 1\right)+\left(n_{1} N+1\right) c\left(S-n_{1},-1 ; n_{1}, 1\right)
\end{gathered}
$$

which for $n_{1}=S$, since by (19) $c(-S,-1 ; 2 S, 1)=0$, after dividing out ($S N+1$), yields with the use of (17) and (18)

$$
c(S,-1 ; 0,1)=2 c(0,-1 ; S, 1)=-2 c(S, 1 ; 0,-1)=2 \overline{c(S,-1 ; 0,1)}
$$

which, by Lemma 5.3 , implies that $c(S,-1 ; 0,1)=0$.
(ii) For $n_{1}=S, n_{2}=0, n_{3}=0, k_{1}=k, k_{2}=1, k_{3}=-(k+1)$, letting $a_{k}:=c(S, k ; 0,-k)$, since by (i) $a_{-1}=0,(21)$ yields

$$
(k-S N-1) a_{k+1}=(k+2) a_{k}
$$

which implies that $a_{k}=0$ for all k.
(iii) For $k_{1}=k \neq 0, k_{2}=-k, k_{3}=0, n_{1}=S-n, n_{2}=0$ and $n_{3}=n$, after dividing out $k \neq 0$ and using $c(S, k ; 0,-k)=0,(21)$ yields

$$
c(S-n, k ; n,-k)=-\frac{(S-n) N+2}{n N+1} c(S-n, 0 ; n, 0)
$$

for all $k \neq 0$. Similarly, for $k_{1}=-k \neq 0, k_{2}=k, k_{3}=0, n_{1}=0, n_{2}=n$ and $n_{3}=S-n,(21)$ yields

$$
c(S-n, k ; n,-k)=-\frac{n N+2}{(S-n) N+1} c(S-n, 0 ; n, 0)
$$

for all $k \neq 0$. Thus

$$
\begin{equation*}
\frac{(S-n) N+2}{n N+1} c(S-n, 0 ; n, 0)=\frac{n N+2}{(S-n) N+1} c(S-n, 0 ; n, 0) \tag{31}
\end{equation*}
$$

If $S=2 n$ then $c(S-n, 0 ; n, 0)=c(n, 0 ; n, 0)=0$ by (17). If $S \neq 2 n$ then $c(S-n, 0 ; n, 0)=0$ by (31).

Proposition 5.3. Let $S \in \mathbb{N} \cup\{0\}$ and $M \in \mathbb{Z}$. In the notation of Definition 5.1, all non-trivial 2 -cocycles $\psi_{S, M}(n, k)$ on w_{N} are given by

$$
\psi_{S, M}(n, k)=\delta_{S, 0} \delta_{M, 0} k\left(k^{2}-1\right)
$$

Proof. Case (i): $S=0$. Then $n_{1}+n_{2}+n_{3}=0$ and so $n_{1}=n_{2}=n_{3}=0$ which means that we are reduced to the standard Witt-Virasoro case $W_{k}^{0}=$ \hat{B}_{k}^{2}. Therefore, the only non-trivial cocycle is

$$
\psi_{S, M}(n, k)=\psi_{0, M}(n, k)=\delta_{M, 0} k\left(k^{2}-1\right)
$$

Case (ii): $S \neq 0$ and $M \neq 0$. For $n_{3}=k_{3}=0$, using $c\left(n_{2}, k_{2} ; n_{1}, k_{1}\right)=$ $-c\left(n_{1}, k_{1} ; n_{2}, k_{2}\right), n_{1}+n_{2}=S$ and $k_{1}+k_{2}=M$, (21) yields
$\left(k_{1}\left(n_{2} N+1\right)-k_{2}\left(n_{1} N+1\right)\right) c(S, M ; 0,0)-\left(k_{2}+k_{1}\right) c\left(n_{1}, k_{1} ; n_{2}, k_{2}\right)=0$ which, letting $n_{2}=n, k_{2}=k, n_{1}=S-n$ and $k_{1}=M-k$, implies that

$$
\begin{gathered}
\psi_{S, M}(n, k)=c(S-n, M-k ; n, k) \\
=((M-k)(n N+1)-k((S-n) N+1)) c(S, M ; 0,0)=0
\end{gathered}
$$

by (20).
Case (iii): $S \neq 0$ and $M=0$. For $k_{3}=0, n_{1}=0, k_{1} \neq 0$, using Lemma 5.4 (ii) and (iii), (24) yields

$$
\begin{equation*}
\psi_{S, 0}\left(n_{2}, k_{2}\right)=\frac{n_{2} N+1-\frac{k_{2}}{k_{1}}}{n_{3} N+1} \psi_{S, 0}\left(n_{3}, 0\right)+\frac{k_{2}}{k_{1}} \psi_{S, 0}\left(0, k_{1}\right)=0 \tag{32}
\end{equation*}
$$

and the result follows by the arbitrariness of n_{2} and k_{2}.
The next corollary shows that there are no non-trivial central extensions of w_{N} other than the Virasoro one.

Corollary 5.2. The non-trivial central extensions of w_{N} are given by
$\left[W_{k}^{n}, W_{m}^{l}\right]=((k l-m n) N+(k-m)) W_{k+m}^{n+l}+\delta_{n, 0} \delta_{l, 0} \delta_{k+m, 0} m\left(m^{2}-1\right) E$
Thus only the Virasoro sector of w_{N} can be extended in a non-trivial way.
Proof. By Proposition 5.3, in the notation of Definition 5.1,

$$
\psi_{S, M}\left(n_{1}, k_{1}\right)=c\left(S-n_{1}, M-k_{1} ; n_{1}, k_{1}\right)=\delta_{S, 0} \delta_{M, 0} k_{1}\left(k_{1}^{2}-1\right)
$$

i.e.,

$$
c\left(n_{2}+n_{3}, k_{2}+k_{3} ; n_{1}, k_{1}\right)=\delta_{n_{1}+n_{2}+n_{3}, 0} \delta_{k_{1}+k_{2}+k_{3}, 0} k_{1}\left(k_{1}^{2}-1\right)
$$

which, letting $n_{3}=k_{3}=0, n_{1}=n, k_{1}=k, n_{2}=l$ and $k_{2}=m$ implies that

$$
c(n, k ; l, m)=\delta_{n+l, 0} \delta_{k+m, 0} m\left(m^{2}-1\right)=\delta_{n, 0} \delta_{l, 0} \delta_{k+m, 0} m\left(m^{2}-1\right)
$$

References

1. L. Accardi and A. Boukas, Infinite Dimensional Anal. Quantum Probab. Related Topics, 12, No. 2 (2009) 193-212.
2. L. Accardi and A. Boukas, Stochastics, 81 (2009), no. 3-4, 201-218.
3. I. Bakas, Commun. Math. Phys. 134 (1990) 487-508.
4. V. A. Fateev and A. B. Zamolodchikov, Nuclear Phys. B 280 (4) (1987) 644-660.
5. J. Fuchs and C. Schweigert, Cambridge Monographs on Mathematical Physics, Cambridge University Press (1997).
6. S. V. Ketov, Conformal field theory, World Scientific (1995).
7. C.N. Pope, Lectures on W algebras and W gravity, Lectures given at the Trieste Summer School in High-Energy Physics, August 1991.
8. A.B. Zamolodchikov, Teoret. Mat. Fiz. 65 (3)(1985) 347-359.
