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1 Introduction

The plan of this paper is the following.
In section (2), after recalling some basic points of the structure theory

of classical stochastic process, we illustrate how quantum probability can
substantiate Hida’s vision about the ”elementality” of white noise, i.e. that
any other (purely non deterministic) process can be in some sense “built”
from it.

In section (3) we briefly mention how the idea of white noise approach to
stochastic calculus was suggested by the stochastic limit of quantum theory
and how it lead to the idea of developing a calculus for the non linear powers
of white noise. In section (4 this idea is illustrated in the case of the square
of white noise).

In section (5) we show how the classical processes, unified by the square
of white noise emerged in different contexts of classical probability, mathe-
matical physics, and statistics.

In section (6) we describe our attempt, developed in past years, to extend
the results obtained for the square to higher powers of white noise. The
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obstructions which make this dream hard to achieve (the so called no go
theorems) are quickly reviewed in section (7).

Finally in the Appendix, following the original paper [Meix34], we give a
proof of Meixner’s classification theorem.

2 Elemental processes

The structure theory of classical stochastic processes is one of the highlights of
classical stochastic analysis and it has been accomplished through the work of
generations of probabilists. Cornerstones in this long and broad avenue have
been the Wald decomposition; the De Finetti, Kolmogorov, Levy, Khintchin
structure theory of independent increment processes; P. Levy martingale
representation theorem and his innovation equation

δX(t) = Φ(X(s); s ≤ t, Y (s), t, dt)

which opened the way to Ito stochastic calculus and the corresponding theory
of stochastic differential equations; the Hida–Cramer representation theory
for Gaussian processes; the Kunita–Watanabe extension of Levy martingale
representation theorem to non continuous trajectory martingales; the sys-
tematic work by Doob, Meyer and many others, . . .

The intuitive picture emerging from these developments is that any ”generic”
stochastic process (i.e. whose trajectories are not too irregular) can be built
starting from:

(i) deterministic processes
(ii) distribution derivatives of stationary independent increment processes

{Żt}
in the sense that it can be decomposed as a sum of integrals of such

processes.
Moreover, any stationary independent increment process {Żt}, in its turn,

has the following Lévy–Ito decomposition :

Zt = mt+ σBt +Xt

where
m is a constant
Bt is a Brownian motion
Xt is a compound Poisson process
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Finally any compound Poisson process Xt can be expressed as an integral
of independent Poisson processes Pu,t with intensity of jumps equal to u

XT =

∫ T

0

dt

∫
Pu,tdβ(u)

and where the baricentric measure of this decomposition dβ(u) is called the
Levy measure and has support in R \ {0}.

These decompositions justify Hida’s terminology according to which the
i.e.r.v’s (idealized elemental random variables ) are:

{Ḃt} the distribution derivatives of the standard Brownian motion
{Ṗu,t} the distribution derivatives of the standard Poisson process with

intensity u
and this fact can be symbolically expressed by the formula:

Xt = f(t, {Ḃ}, {Ṗu}) = f(t, {Ḃs , s ∈ R} ; {Ṗu,s , s ∈ R, u ∈ R\{0}}) (1)

expressing (in a unique way) the stochastic process Xt as a (non–random)
functional of:

(i) the standard deterministic processes: t 7→ t
(ii) the standard white noise: Ḃs

(iii) the standard Poisson processes with intensity u ∈ R \ {0}: Ṗu,s
Clearly equation (1) is purely symbolic because both Ḃs and Ṗu,s are

random variable valued distributions and there is no natural way to define a
nonlinear function of a distribution.

Notice moreover that, at this level of development, the standard white
noise: Ḃs and the standard Poisson densities Ṗu,s appear on a totally
equal level!

In the mid 1970’s Hida initiated his programme on white noise analysis
from which slowly it begun to emerge a more radical vision, namely:

there is only one elemental process: standard white noise!
I call this a ”vision” because it was never formulated as a precise math-

ematical conjecture, nevertheless the outstanding role of white noise is a
constant in Hida’s mathematical thought [Hida01]. This is indeed a bold
vision, because apparently the noises Ḃs and Ṗu,s look like totally disjoint
objects!

The first substantial support to Hida’s vision came from Hudson and
Parthasarathy discovery [HuPa84b] that, from the quantum probabilistic
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point of view, the standard Poisson process with intensity u can be con-
sidered as a ”function” of the quantum white noise. More precisely (cf. the
end of this section for the definitions involved):

Theorem: Let Pu,t denote the classical scalar valued standard Poisson
process with intensity u. Then

Ṗ(u,t) =
√
uḂt +

√
uḂ+

t + Ḃ+
t Ḃt

This achievement was an important event for probability and created a great
impression in classical probabilists such as P.A. Meyer, because it showed that
the Brownian motion and the Poisson process which, in classical probability,
are not apparently connected, in quantum probability become expressible as
sums of three fundamental objects (two if one considers, as usual in physics,
the pair {Ḃt, Ḃ

+
t } as a single object: the quantum Brownian motion)

Notice however that the number process and the quantum Brownian mo-
tion are independent in the very strong sense that a sum of stochastic in-
tegrals over these processes is zero if and only if each integrand is zero. In
other terms: the white noise point of view is necessary in order to achieve the
full reductionistic programme (Hida’s vision) of expressing the two building
blocks of classical stochastic processes (Wiener and Poisson) as functions of
a single more fundamental object: the quantum white noise. Notice in addi-
tion that, in order to achieve this reduction one needs the ”square modulus
of the white noise” Ḃ+

t Ḃt = |Ḃt|2 (which is for the number process what the
white noise is for Brownian motion). This ”quadratic functional of the white
noise” is the first example of the basic role played by the ”nonlinear powers
the white noise”.

Using the above reduction Parthasarathy [Parth92] proved that any in-
finitely divisible distribution can be represented as vacuum distribution of a
stochastic process in the space of the Boson Fock Brownian motion.

This result has now been developed into one of the basic new ideas of
quantum probability: the quantum decomposition of a classical ran-
dom variable [AcBo97].

Another important step in the direction of Hida’s vision will be discussed
in the following section.
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3 White noise approach to classical and quan-

tum stochastic calculus

The white noise approach to classical and quantum stochastic calculus came
out from the experience accumulated in the solution of many concrete prob-
lems in physics and in mathematics. The main steps in this development
are:

1) The development of quantum stochastic calculus: Hudson and Parthasarathy
(1982)

2) The proof that quantum stochastic differential equations are ”fast
time” (t → t/λ2) limits of Hamiltonian equations: Accardi, Frigerio, Lu
(1987)

3) The proof that white noise Hamiltonian equations are ”fast time” limits
of Hamiltonian equations: Accardi, Lu, Volovich (1993)

4) The combination of 2) and 3) into the statement that (classical and
quantum) stochastic equations can be expressed as (causally) normally or-
dered forms of (classical and quantum) white noise Hamiltonian equations
[AcLuVo99], [AcLuVo02].

The equivalence between white noise Hamiltonian equations and stochas-
tic differential equations is quite nontrivial and the connection between the
coefficients of the two types of equations is strongly nonlinear.

The advantage of the white noise Hamiltonian equations over their (clas-
sical or quantum) stochastic equivalent is that the formal unitarity conditions
are the obvious ones, used by every physicist, which correspond to the for-
mal self–adjointness of the Hamiltonian. The relationship expressing the
coefficients of the stochastic equation as (nonlinear) functions of the coeffi-
cients of the corresponding white noise Hamiltonian equation explains the
deep origins of the Hudson–Parthasarathy unitarity conditions and gives a
”microscopic” interpretation of them in terms of the original (non stochastic
neither white noise) Hamiltonian equations of which the stochastic and white
noise equations are approximations.

A systematic development with several new results can be found in the
PhD thesis of Wided Ayed [Ayed05].

Recall that the standard scalar valued, classical white noise is a classical
mean zero, Gaussian, operator valued distribution process with variance

〈wswt〉 = δ(t− s)
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This implies that the standard white noise is a stationary, additive, indepen-
dent increment process.

Definition: A quantum stochastic process is a family

x = {x(t) : t ∈ Rd}

of Hilbert space operators. Such a process is said to be classical if
(i) For all t ≥ 0, each x(t) is a QM ”observable” i.e

x(t) = x(t)∗ ; ∀t

(ii) For all t, s,
[x(t), x(s)] = x(t)x(s)− x(s)x(t) = 0

the commutator (here and in the following) will always be meant weakly on
some dense domain.

Definition: A boson Fock (d–dimensional) white noise (equivalently
called, in the physical literature, a free boson Fock field over L2(Rd)) is a
pair bt, b

+
s of operator valued distributions acting on a Hilbert space H, sat-

isfying the commutation relations:

[bt, b
+
s ] = δ(t− s) t ∈ Rd [algebra]

and such that there exists a unit vector Φ ∈ H satisfying:

btΦ = 0 [Fock prescription]

For the precise meaning of these expressions, including domains, etc. ... cf.
[AcAyOu03].

The definition above best illustrates one of the basic general principles of
QP namely that:

algebra implies statistics.
In fact the above definition of white noise, which is purely algebraic,

implies the Brownian motion statistics in the sense that it implies that the
random variables

Wt −Ws :=

∫ t

s

du(b+u + bu) ; W0 = 0

mutually commute, are independent on disjoint intervals and

〈Φ, eiWtΦ〉 = 〈Φ, ei
∫ t
0
ds(b+s +bs)Φ〉 = e−

t2

2
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equivalently:

Wt = Bt +B+
t =

∫ t

0

ds(b+s + bs)

is the increment process of a classical Brownian motion (this is the quan-
tum decomposition of the classical Brownian motion). Similarly one has the
quantum decomposition of the classical white noise

wt = bt + b+t

In this sense one can say that in classical probability wt is ”elemental”
(atomic), but in quantum probability it is not.

The connection between (the increment process of) quantum Brownian
motion and quantum white noise is the same as in the classical case:

B+
t =

∫ t

0

dsb+s , Bt =

∫ t

0

dsbs

Conversely a naive approach would suggest the conjecture that the relation
between quantum Brownian motion and quantum white noise is:

bt :=
d

dt
Bt , b+t :=

d

dt
B+
t

However application of this rule without constraints leads to the wrong results
as illustrated by the Hamiltonian white noise equations.

4 Nonlinear powers of white noise

Given the identification between the standard (d–dimensional) quantum white
noise and the free boson Fock fields over L2(Rd), one can formulate what has
been one of the fundamental unsolved problems of theoretical physics since
over 30 years:

to give a reasonable construction of ”local powers of free quan-
tum fields”.

This means that one would like to associate well defined mathematical
objects to symbolic expressions of the form:

wnt , b
h
t , b

+k
t
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in such a way to preserve as many properties as possible of the discrete
approximations of these objects (which are well defined!). In other terms we
would like to give a meaning to the ill defined ”powers of an operator valued
distributions”. Since these objects are very singular some ”renormalization”
is needed to achieve this goal.

In the literature one can find many ”renormalization techniques”. The
usual technique consists in introducing appropriate cut–offs and then trying
to remove them with some limiting procedure and after having subtract some
quantities tending to ∞. The main problem met up to now with this tech-
nique is the following dichotomy. After renormalization the resulting field
is:

(i) either trivial (Gaussian or simple perturbation thereof)
(ii) or completely uncontrollable
This dichotomy is well illustrated in the paper by Segal [Sega70a] which is

devoted to the simplest renormalization problem: that involving the squares
of quantum fields.

Segal proves that the square of the usual time zero, scalar, Fock, Klein-
Gordon field on Rd, cannot correspond to a self-adjoint operator acting on
the same Fock space of the field unless d = 1. However his techniques are
not able to provide:

– any information where this operator lives
– any information on its spectral distribution in interesting states
Thus, even for squares of fields the situation was very obscure until 1999.

In 1999 a new idea was introduced in this problem. The main point of
this new idea was to postulate new, renormalized, commutation relations
for the higher powers of white noise and then construct some Hilbert space
realization of them. More precisely: one starts from the standard boson
algebra

[bt, b
+
s ] = δ(t− s)

and computes formally the higher powers commutators

[bht , b
+k
s ]

combining the 1-st order commutation relations with the renormalization
rule:

δ(t− s)n = cn−1δ(t− s) ∀n ∈ N \ {0}
Then one takes the result of this manipulation as the definition of the Lie
algebra of the renormalized higher powers of white noise.
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The second much more difficult step consists in trying to construct some
Hilbert space realization, for example by introducing the Fock prescription:

b+kt bhtΦ = 0 ; h ≥ 1

which, also in this case, uniquely determines the statistics.
For the second powers, in the Fock case, this programme was realized

in [AcLuVo99] and led to the definition of the renormalized square of white
noise (RSWN) as the Lie algebra with generators

b+ϕ“=”

∫
dtϕ(t)b2t ; bϕ = (b+ϕ )+

nϕ“=”

∫
dtϕ(t)b+t bt

where ϕ is some test function, and Lie brackets given by the commutation
relations:

[bϕ, b
+
ψ ] = γ〈ϕ,ψ〉 + nϕψ

[nϕ, bψ] = −2bϕψ

[nϕ, b
+
ψ ] = 2b+ϕψ

(b+ϕ )+ = bϕ ; n+
ϕ = nϕ

where γ is a strictly positive constant called ”the renormalization constant”.
The Fock representation of this Lie algebra consists in realizing these

operators on a Hilbert space H with a unit vector Φ satisfying:

bϕΦ = 0

Theorem: (Accardi, Lu, Volovich 1999) The Fock representation of the
renormalized square of white noise (RSWN) exists.

Soon after this result it was recognized by Accardi, Franz and Skeide
[AcFrSk00] that the Lie algebra of the renormalized square of white noise is
isomorphic to (a central extension of) sl(2,R). This has 3 generators

B− , B+ , M

and relations
[B−, B+] = M
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[M,B±] = ±2B±

The paper [AcFrSk00], combining the well developed theory of unitary repre-
sentations of sl(2,R) with Schürmann’s representation theorem for quantum
independent increment processes [Schü93], obtains:

(i) a classification of all the unitary representations of this current algebra
satisfying an irreducibility condition

(ii) a classification of all the classical sub–processes of the RSWN as well
as the identification of their vacuum distributions.

An unexpected fall out of this identification was an unexpected connection
with the Meixner classes [Meix34].

In order to illustrate this connection let us first consider the case of the 1–
st order quantum white noise b+t , bt and the family of classical (self–adjoint)
processes that can be obtained by linear combinations from it and the num-
bers process b+t bt. A simple calculation shows that these processes are of the
form

x(t) = α+ z B(t) + z̄ B+(t) + βN(t)

where α, β ∈ R and z ∈ C. In more usual white noise notations:

ẋ(t) = α+ z bt + z̄ b+t + βb+t bt

The constant part α is central and we omit it. Also the case z = 0 is trivial
and we omit it. Then, up to the ”time rescaling” t 7→ t/|z|, the ”gauge
transformation” bt 7→ eiθbt, where z = |z|eiθ and a renaming of β, we are left
with the family

ẋ(t) = bt + b+t + βN(t)

Remembering the Hudson–Parthasarathy decomposition of the white and
Poisson noises, we see that, depending on the parameter β, this family only
1 critical case, namely: β = 0 which corresponds to classical scalar valued
standard Brownian motion

x(t) = b(t) + b+(t)

If β 6= 0 then, fixing a complex square root of
√
λ =

√
β−1

after another rescaling and gauge transformation we obtain:

x(t) =
√
λB(t) +

√
λB+(t) +N(t)
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which is the classical scalar valued standard Poisson process with intensity
λ.

A similar calculation applied to the RSWN shows that the family of
classical processes that can be obtained by linear combinations from the 2–d
order processes b+2

t , b2t and the numbers process b+t bt has the form:

x(t) = α + z b2t + z̄ b+2
t + βb+t bt

where α, β ∈ R and z ∈ C. Again up to centering, rescaling and a gauge
transformation:

xβ(t) := b+2
t + b2t + βb+t bt = B+

t +Bt + βNt

where β is a real number. It can be proved that here there are 2 critical
cases:

β = ±2

the value +2 corresponding to the square position (classical) white noise, i.e.

| b+t +bt |2= b+2
t +b2t +b

+
t bt+btb

+
t + = b+2

t +b2t +2b+t bt+δ(0) ≡ b+2
t +b2t +2b+t bt

and the value −2 to the renormalized square of the momentum white noise,
i.e.

(b+t − bt)/i

the vacuum distribution of both these critical processes is the Gamma–
distribution

µ(dx) =
|x|m0−1

Γ(m0)
e−βxχβR+

whose parameter m0 > 0 is uniquely determined by the choice of the unitary
representation of sl(2,R) corresponding to the representation of the renor-
malized square of white noise algebra [ACFRSK00]

In this functional realization the number vectors become the Laguerre
polynomials which are orthogonal for the gamma distribution.

Since the Gamma–distributions are precisely the distributions of the χ2–
random variables, this result confirms the naive intuition that the distribution
of the renormalized square of white noise should be a Gamma–distributions

For |β| < 2 the jumps are not strong enough and one still has a density

µ(dx) = C exp

(
−(2 arccos β + π)x

2
√

1 − β2

)∣∣∣∣∣Γ
(
m0

2
+

ix

2
√

1 − β2

)∣∣∣∣∣

2
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where C is a normalization constant. The orthogonal polynomials corre-
sponding to this probability measure are the of the second kind, or Meixner-
Pollaczek polynomials.

For m0 integer or half–odd there are explicit formulae for the densities
due to Grigelionis:

|Γ (n+ ix)|2 =
πx(1 + x2) . . . ((n− 1)2 + x2)

sinh(πx)
, n = 1, 2, . . . , , x ∈ R

∣∣∣∣Γ
(

1

2
+ ix

)∣∣∣∣
2

=
π

cosh(πx)
, x ∈ R

∣∣∣∣Γ
(
n+

1

2
+ ix

)∣∣∣∣
2

=
π(1

4
+ x2) . . . ((n− 1)n+ 1

4
+ x2)

cosh(πx)
, n = 1, 2, . . . ; x ∈ R

Finally, for |β| > 2 the jumps dominate and the probability measure is
atomic, namely the negative binomial (Pascal) distribution:

µ = C
∞∑

n=0

c2n(m0)n
n!

δsgn(β((c−1/c)(n+m0/2))

where (m0)n denotes the Pochammer symbol

(m0)n = m0(m0 + 1) · · · (m0 + n− 1)

and

C−1 =
∞∑

n=0

c2n(m0)n
n!

= (1 − c2)−m0

c = β/2 −
√

(β/2)2 − 1

if β > +2
−β/2 −

√
(β/2)2 − 1

if β < −2.
The orthogonal polynomials associated to a centered Pascal (negative

binomial) distribution are the Meixner polynomials of the first kind:

Pn(x) = (−1)n
n∏

k=1

n+m0 − 1

n
Mn

(
x

c− 1/c
− m0

2
;m0; c

2

)
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if β > +2 and

n∏

k=1

n +m0 − 1

n
Mn

(
− x

c− 1/c
+
m0

2
;m0; c

2

)

if β < −2.

5 Emergence of the square of white noise in

different contexts

The connection between the gamma processes and the current representa-
tions of SL(2,R) was studied in [TsiVeYo01] independently of [AcFrSk00]
(where this connection was established for all the Meixner classes).

The Lévy processes, corresponding to the Pascal measures were intro-
duced by Bruss and Rogers [BruRo91] in the context of optimal selection
strategies based on relative ranks, when the total number of options is un-
known.

In the paper [Grig01] Grigelionis uses the term “Meixner distribution” to
denote the class of probability measures on R whose characteristic function
(Fourier transform of the probability density) has the form

f̂ (z) =

(
cos(β/2)

cosh((αz − iβ)/2)

)2δ

with z ∈ R,−π < β < π, δ > 0, µ ∈ R. This class of probability mea-
sures was introduced by Schoutens and Teugels [SchTeu98] who established
their connection with the Meixner–Pollaczek polynomials and proved that the
measures in this class correspond to Levy processes (the explicit construction
of the Fock representation in [AcLuVo99] can be considered a different proof
of this result).

The papers by Nualart and Schoutens [NUSCH00] and by Schoutens and
Teugels [SchTeu98] study the gamma, Pascal, and Meixner processes as main
examples of generalized chaotic representation for square–integrable random
variables in terms of the orthogonalized Teugels martingales (which are the
centered power jump processes related to the original process). They use
the one–dimensional polynomials of Meixner’s type in order to carry out the
orthogonalization procedure of the Teugels martingales .
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We refer to [Grig01], [Grig99], [Grig00c] for several interesting properties
of these distributions and explicit formulae related to them.

In particular, in [Grig01], the Meixner process was proposed as a model for
risky assets and an analogue of the Black and Sholes formula was established
for them.

The infinite dimensional and multidimensional analogues of orthogonal
polynomials associated to a given measure have been widely studied both in
the Gaussian case and in the Poisson case (CHIHA, KOKUOL).

The programme to extend this analysis to more general probability mea-
sures was developed by Berezansky [BEREZb98], [BEREZa97], [BEKO94],
[BELILY95] who introduced in this connection the notion of Jacobi field of
operators, and his school [LYTV02a], [LYTV02b], [LYTV95c].

An infinite–dimensional analogue of the Laguerre polynomials and the
associated Jacobi fields, corresponding to the gamma case, i.e. to the class
(III) in Meixner’s classification, was studied in [KonLit00], [KoSiStr97].

In conclusion it should be added that the square of white noise (RSWN)
was introduced as an example of interacting Fock space and in the attempt to
extend to infinite dimensions the canonical connection between orthogonal
polynomials and interacting Fock spaces established, in the 1–dimensional
case, in [AcBo97] and, in the 1–dimensional case, in [AcKuSt02].

6 Higher powers of white noise

The next step of our programme is: to extend, if possible, the results ob-
tained for the square to higher powers of white noise. We are developing
this programme jointly with Andreas Boukas including collaborations with
Uwe Franz, in the attempt to overcome the obstructions posed by the no–go
theorems (cf. below), and with Rene Schott and Massimo Regoli, on Lie
algebra and algorithmic aspects: among other things we are trying to extend
the symbolic programme developed by Feinsilver and Schott [FeinScho93] for
calculations on Lie algebras.

Our programme is to characterize those independent increment stationary
processes (SIIP or Levy processes) which arise as renormalized higher powers
of the standard (Fock) quantum white noise. For a short period, in 2003, we
believed we had realized this dream but, as I will try to explain below, the
situation is more subtle and the problem is related to some long standing
open problems in the classical theory of SIIP.
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Definition
The renormalized boson Fock white noise ( simply RBF white

noise in the following ) over a Hilbert space H with vacuum (unit) vector
Φ is the locally finite Lie ∗–algebra canonically associated to the associative
unital ∗–algebra of operator–valued distributions on H with generators

b†nt , bkt , k, n ∈ N , t ∈ Rd

and relations
[bt, b

†
s] = δ(t− s)

[b†t, b
†
s] = [bt, bs] = 0

(bs)
∗ = b†s

bt Φ = 0

δ(t)l = c l−1 δ(t) , c > 0 , l = 2, 3, ....

Lemma The Lie algebra, associated to the RBF white noise (renormalized
boson Fock white noise), is the Lie algebra with generators

b†kt b
n
t =: bkn(t)

central element b0t b
†0
t =: E and relations

(b†ks b
n
t )

† = (b†nt )bks

[bnt , b
†
s

k
] = εn,0εk,0

∑

l≥1

(
n

l

)
k(l) c l−1 b†s

k−l
bn−lt δ(t− s)

where: k = 0, 1, 2, ...,
εn,k := 1 − δn,k

k(l) = k(k − 1)(k − 2) · · · (k − l + 1)

k(l) = 0 if l > k(
n
l

)
= 0 if l > k

These conditions guarantee that no negative powers of the white noise
functionals appear.

In terms of the smeared generators

Bn
k (f) =

∫

Rd

f(t) b†t
n
bkt dt (2)
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with involution
(Bn

k (f))∗ = Bk
n(f̄)

and central elements

B0
0(f) = E

∫

Rd

fdt

the relations become

[BN
K (ḡ), Bn

k (f)] = εK,0εn,0
∑

L≥1

{(
K

L

)}
n(L) cL−1 BN+n−L

K+k−L (ḡf)−

−εk,0εN,0
∑

l≥1

{(
k

l

)}
N (l) cl−1BN+n−l

K+k−l (ḡf)

Now let us deduce some necessary conditions for the existence of the Fock
representation.

Lemma (Boson Independent increments) Suppose that in the scalar
product

〈BKN
0 (fN ) . . .BK1

0 (f1)Φ, B
nM
0 (gM ) . . .Bn1

0 (g1)Φ〉

the supports of any two test functions either coincide or are disjoint.
Denote by I the family of all supports of all the test functions appearing

in the scalar product. Then the above scalar product is equal to

∏

I∈I

〈
∏

{h:supp(fh)=I}

BKh
0 (fh)Φ,

∏

{k:supp(gk)=I}

BKk
0 (gk)Φ〉

where if {λ : supp(φλ) = I} = ∅ we interpret

∏

{λ:supp(φλ)=I}

BKλ
0 (φλ)

as 1.

7 No go theorems

The main result of [AcLuVo99] was the existence of the Fock representation
for the second order white noise. In [AcFrSk00] it was shown, among other
things, that this representation can be interpreted as a representation of the
current algebra over the Lie algebra sl(2,R). The analogue representation
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for the first order white noise, which corresponds to the Heisenberg–Weyl
algebra, had been known in physics for over 70 years.

Now: a current algebra over a Lie algebra is a functional version of the Lie
algebra itself. More precisely it is an algebra of functions on some measure
space (X, ν), (which in the case of [AcLuVo99] was Rd) with values in this
Lie algebra (such algebras were introduced and widely studied in the 1960’s
and, in the more recent mathematical literature, they are sometimes called
”Kac–Moody algebras”).

Now it might seem, at first glance, natural to conjecture that, if a Lie
algebra has a Fock (lowest weight) representation, then the associated current
algebra too have one. This is certainly true if the measure space (X, ν) has
a finite number of points because in this case the current representation is a
finite tensor product of the original one.

For example the Lie algebra generated by the Heisenberg–Weyl algebra
and sl(2,R), called the Schrödinger algebra, has been widely studied in
the literature and, since the Schrödinger representation exists in any finite di-
mension, the associated current algebra over (X, ν) has a Fock representation
for any space X with a finite number of points.

In the paper [Śnia99], devoted to the extension of the results of [AcLuVo99]
to the free case, Śniady proved the following result.

Theorem The joint Fock representation of the first and second order
white noise, i.e. of the Schrödinger algebra, cannot exist.

This theorem was generalized in [AcFrSk00] and further generalized by
Accardi, Boukas and Franz [AcBouFr05] whose result, reported below, de-
stroyed the hopes of a naive generalization, the higher powers of white noise,
of the results obtained for the second power.

Theorem 1 In the notation (2), denote

Bn
k :=

∫

Rd

χI(t) b
†
t

n
bkt dt

where χI is the characteristic function of the interval I ⊆ R (taking value 1
on I and 0 elsewhere). Let L be a Lie ∗–algebra with the following properties:

(i) L contains Bn
0 , and B2n

0

(ii) the BN
K satisfy the higher power commutation relations .

17



Then L does not have a Fock representation if the interval I is such that

µ(I) ≤ 1

c
(3)

where c denotes the renormalization constant.

This theorem means that we cannot hope to have a single representation
including all the higher powers of white noise: the best one can hope is to
form, for each n, the smallest Lie algebra generated by Bn

0 and B0
n and look

for a representation of it.
The difficulty with this programme is that, as soon as n ≥ 3 these Lie

algebras are infinite dimensional and not so widely studied. In particular
one cannot apply the general methods of [AcFrSke00], which heavily used
the known theory of irreducible unitary representations of sl(2,R), and one
has to go back to the direct method of [AcLuVo99] which however, in these
cases is much more complex due to the more complex structure of the higher
order commutation relations.

At the moment we do not know if such a representation exists even in the
case n = 3.

The following considerations show that this difficulty is related to and old
open problem of classical probability.

In the case of 2–d order noise and of higher orders with a single renor-
malization constant, the current algebra restricted to a single block Lie–span
{Bh

k (χ[0,1])} is isomorphic to the 1–mode Lie algebra

Lie–span–{a+hak}

Lemma 1 Let (b±t ) be the Boson Fock scalar white noise.
Suppose that the k–th power of white noise exists for some natural integer

k and admit a Fock representation. then the process

{W k
[s,t],Φ,−∞ < s < t < +∞}

defined formally by some renormalization of

W k
[s,t] =

∫ t

s

(b+u + bu)
kdu

should be a stationary additive independent increment process on R.
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Lemma 2 The map

ak →
∫ 1

0

bkt dt =: B
(k)

[0,1]

with the [AcBouFr05] renormalization, is a Lie algebra isomorphism.

Corollary. The Fock statistics of (B
(k)

[0,1]) is the same as that of (ak).

Proof . This statistics is uniquely determined by the Lie algebra structure.

Lemma 3 The vacuum distribution of
∫ 1

0

(b+t + bt)
ndt =

∫ 1

0

wnt dt

coincides with that of
(a+ + a)n

Proof . The statistics is uniquely determined by the Lie algebra structure

Corollary. If the Fock representation of the n–th power of white noise exists,
then the vacuum distribution of

(a+ + a)n

must be infinitely divisible.

Proof . ¿From Lemma (3) it follows that the distribution of (a+ + a)n is the

same as the distribution of
∫ 1

0
dt(b+t +bt)

n and from Lemma (1) we know that
this is infinitely divisible.

Theorem 2 A necessary condition for the existence of the n–th power of
white noise, renormalized as in [AcBouFr05] is that the n–th power of a
classical Gaussian random variable is infinitely divisible.

In classical probability the n–th powers of the standard (1–dimensional,
mean 0, variance 1) Gaussian random variable and their distributions have
been widely studied. In particular it is known that, ∀k ≥ 1, γ2k is infinitely
divisible.

However it is not known if, ∀k ≥ 1, γ2k+1 is infinitely divisible.
This suggests the conjecture that the above mentioned programme might

be realizable if one starts from even powers (which fortunately are closed
under Lie brackets).
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Appendix: Meixner’s classification theorem

8 Orthogonal generating functions

The purpose of this appendix is to give an exposition of the problem studied
by Meixner and of its method of solution. To this goal we begin with some
general definitions.

Definition 1 Let µ be a probability measure on R with moments of any
order and let Pn(x) (x ∈ R; n ∈ N), denote the orthogonal polynomials of µ
normalized so that

P0(x) ≡ 1 ; leading term of Pn(x) = 1 (4)

A function
F : R × R → R (5)

is called an orthogonal generating function if

F (x, t) =
∑

n

Pn(x)
tn

n!
(6)

where the series in (6) converges weakly in L2(R, µ).

Problem. Under which conditions is a function F : R × R the orthogonal
generating function of some probability measure on R?

It is easy t0 verify that a necessary condition (??) is that, denoting 〈·, ·〉
the scalar product in L2(R, µ), one has

〈1, F (·, t)〉 = 〈P0, F (·, t)〉 = 1

In other words ∫

R
F (x, t)µ(dx) = 1 ; ∀ t (7)

Theorem 3 Now suppose that condition (7) is satisfied with a function
F (x, t) of the special form

F (x, t) = exu(t)f(t) (8)

where u : R → R is an invertible function such that
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u(0) = 0 (9)

and f is a function such that

f(0) = 1 (10)

u′(0) = 1 (11)

If one assumes that u is invertible, then the Laplace transform of µ is uniquely
determined in its domain, by the formula

∫

R
exτµ(dx) =: µ̃(τ ) =

1

f(u−1(τ ))
(12)

Proof. Then (7) becomes
∫

R
exu(t)f(t)µ(dx) = 1 (13)

Introducing the change of variable

u(t) =: τ ; t = u−1(τ ) (14)

the identity (15) or equivalently
∫

R
exu(t)µ(dx) =

1

f(t)
(15)

becomes (12).

Remark. The meaning of Theorem (3) is that a probability measure µ,
satisfying (7) and (8), is uniquely determined by the pair (f, u) provided
that u is invertible.

In his paper [Meix34] Meixner:

(i) determines all pairs of functions (f, u) satisfying conditions (7) and (8)
for some probability measure µ

(ii) shows that for each such pair (f, u), u is invertible

(iii) explicitly determines all the corresponding probability measure.
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This justifies the following

Definition 2 A probability measure µ on R is called a Meixner measure
if

(i) µ admits an orthogonal generating function F (x, t)

(ii) F (x, t) has the form (8) for some pair of functions (f, u) called the
associated pair.

Finally let us prove that the ansatz (8) is coherent, i.e. that the series
expansion of its right hand side has the form (6) with the Pm(x) satisfying
condition (4). This follows from the following:

Lemma 4 Let f(t) be a formal power series with constant term

f(0) = 1

and let u(t) be a formal power series with constant term u(0) = 0 and with
linear term coefficient u1 = 1, i.e.

u(t) = t(1 + [t] + . . . )

Then there exist polynomials Pn(x), with leading coefficient equal to 1,

Pu(x) = xn + an,1x
n−1 + · · · + an,n

such that the following formal expansion holds

f(t)exu(t) =
∞∑

n=0

Pn(x)

n!
tn (16)

Proof. By assumption

f(t) =
∑

n≥0

fnt
n ; f0 = 1

u(t) =
∑

n≥0

unt
n = t+ ũ2(t) ; u0 = 0 ; u1 = 1
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We define the degree of a formal power series
∑

n≥0 anx
n, the smallest n ∈ N

such that an 6= 0. For example, f has degree 0, u has degree 1 and ũ2 degree
≥ 2. Moreover

f(t)exu(t) =
∑

n≥0

xn

n!
u(t)nf(t) =

∑

n≥0

xn

n!
[t+ ũ2,n(t)]

nf(t)

Our assumption on u implies that

u(t)n = [tn + ũ2n(t)]

deg ũ2,n(t) ≥ n + 1 (u2n)

and
f(t) = [1 + f̃ (t)]

with deg f̃ (t) ≥ 1. Therefore

u(t)nf(t) = [t+ũ2(t)]
n[1+f̃ (t)] = [tn+ũ2,n(t)][1+f̃(t)] = tn+ũ2,n+t

nf̃+ũ2,nf̃

with
deg tnf̃ ≥ n + 1 ; deg ũ2,nf̃ ≥ 2(n+ 1)

therefore
u(t)nf(t) = tn +Bn(t)

with deg Bn(t) ≥ n+ 1. Therefore

f(t)exu(t) =

n−1∑

k=0

xk

k!
u(t)kf(t) + xn

tn

n!
|,+xnBn(t)

n!
+ Cn+1(t)

with deg Cn+1(t) ≥ n+ 1. Therefore

Pn(x) = ∂nt |t=0f(t)exu(t) =

n−1∑

k=0

xk

k!
ck + xn

which proves that the leading coefficient of Pn(x) is equal to 1.
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9 The equations for f and for v = u−1

Denote v the inverse formal power series of u, i.e. by definition

u(v(t)) = v(u(t)) = t

and denote

D :=
d

dx

Then the following identity is clearly satisfied:

v(D)exu(t)f(t) = v(u(t))exu(t)f(t) = texu(t)f(t) (17)

Taking ∂nt of both sides of (17) one finds

v(D)∂nt e
xu(t)f(t) = ∂nt (te

xu(t)f(t)) = t∂nt e
xu(t)f(t) + n∂n−1

t exu(t)f(t)

evaluating this at t = 0 and keeping (17) into account, one finds

v(D)Pn(x) = nPn−1(x) (18)

On the other hand the Pn(x) are the orthogonal polynomials of some measure
ψ on R if and only if there exist two sequences (ln) and (kn) of real numbers
such that

kn ≤ 0 ; ∀n
and

Pn+1(x) = (x+ ln+1)Pn(x) + kn+1Pn−1(x) (19)

with the convection that
P−1(x) = 0

Denoting x the multiplication by x and using the identity

[v(D), x] = v′(D)

we find, combining (18) and (19):

v(D)Pn+1(x) = (n+1)Pn(x) = (x+ln+1)nPn−1(x)+v
′(D)Pn(x)+kn+1(n−1)Pn−2(x)

(20)
while the usual Jacobi relation (19) is

nPn(x) = (x+ ln)nPn−1(x) + nknPn−2 (21)
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Subtracting (21) from (20) one finds

Pn(x) = (ln+1 − ln)nPn−1(x) + v′(D)Pn(x) +

(
kn+1

n
− kn
n− 1

)
n(n − 1)Pn−2

or equivalently

(1 − v′(D))Pn = (ln+1 − ln)nPn−1 +

(
kn+1

n
− kn
n− 1

)
n(n− 1)Pn−2 (22)

Replacing n by n+ 1 we find

(1 − v′(D))Pn+1 = (ln+2 − ln+1)(n+ 1)Pn +

(
kn+2

n+ 1
− kn+1

n

)
n(n+ 1)Pn−1

Applying v(D) to both sides and dividing by n + 1 one obtains

(1 − v′(D))Pn = (ln+2 − ln+1)nPn−1 +

(
kn+2

n+ 1
− kn+1

n

)
n(n− 1)Pn−2 (23)

Now, Pn(x) cannot be identically zero because its leading coefficient is equal
to 1. Therefore comparing (22) and (23) we conclude that there exist con-
stants λ, κ such that

ln+1 − ln = λ⇔ ln+1 = nλ + 1 (24)

kn+1

n
− kn
n− 1

= κ⇔ kn+1 = n((n − 1)κ + k2) (25)

Notice that, since the kn are all negative, also κ must be negative.
Moreover, given (24) and (25), (19) becomes:

Pn+1(x) = (x+ l1 + nλ)Pn(x) + n(k2 + (n− 1)κ)Pn−1(x)

We know that k2 ≤ 0 and it cannot be = 0, otherwise ψ is a multiple of
a δ–measure, hence in (16) Pn(x) = 0, ∀n > 1 and, since P0(x) = 1 by
assumption, equation (16) becomes

f(t) = e−xu(t)

which can be satisfied for any x, t ∈ R if and only if

u(t) ≡ 0 , f(t) ≡ 1
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which corresponds to a trivial solution. Thus for all non trivial solutions one
must have

k2 < 0

Since

f(t) =
∑

n≥0

Pn(0)

n!
tn

it follows that

f ′(t) =
∑

n≥1

Pn(0)
tn−1

(n − 1)!
=
∑

n≥0

Pn+1(0)
tn

n!

=
∑

n≥0

(l1 + nλ)Pn(0)
tn

n!
+
∑

n≥1

Pn−1(0)(k2 + (n− 1)κ)
tn

(n − 1)!

∑

n≥0

nλPn(0)
tn

n!
= λt

∑

n≥1

Pn(0)
tn−1

(n− 1)!
= λtf ′(t)

∑

n≥1

k2Pn−1(0)
tn

(n− 1)!
= k2t

∑

n≥1

Pn−1(0)
tn−1

(n − 1)!
= k2t

∑

n≥0

Pn(0)
tn

n!

= k2tf(t)

κ
∑

n≥0

n(n− 1)Pn−1(0)
tn

n!
= κt2

∑

n≥2

Pn−1(0)
tn−2

(n − 2)!
= κt2

∑

n≥1

Pn(0)
tn−1

(n − 1)!

= κt2f ′(t)

¿From these identities one deduces that

f ′(t) = l1f(t) + λtf ′(t) + k2tf(t) + κt2f ′(t)

or equivalently f satisfies the equation

f ′(t)

f(t)
=

l1 + k2t

1 − λt− κt2
(26)

Moreover from (18) and (22) we find

(1 − v′(D))Pn(x) = λv(D)Pn(x) + κv(D)2Pn(x) ; ∀n (27)
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Therefore, as operators on L2

pol(R, µ)

1 − v′(D) = λv(D) + κv(D)2

or equivalently
v′ = 1 − λv − κv2 (28)

Therefore the pair (f, v) (equivalently (f, u)) is uniquely determined by the
solutions of the equations (26), (28) respectively. Notice that the same poly-
nomial

1 − λt− κt2 (29)

appears in both equations. According to the various possible values of the
parameters λ, κ, we distinguish 5 possibilities:

(I) λ = κ = 0 ((29) has degree 0)

(II) κ = 0; λ 6= 0 ((29) has degree 1)

(III) λ2 = −4κ 6= 0 (29) has degree 2 and one non zero root of multiplicity
2)

(IV) λ2 > −4κ > 0 (29) has degree 2 and 2 distinct non zero real roots)

(V) 0 < λ2 < −4κ (29) has degree 2 and 2 non zero complex conjugate
roots)

The five Meixner classes are defined by t the solutions of equations (28),
(26) corresponding to the values of the parameters (λ, κ) in the classes defined
above.

Remark. In fact Meixner ([Meix34], Section 6) calls class (II) what we have
called class (III) and conversely.

Moreover Meixner does not classify his five classes in terms of the param-
eters (λ, κ) but in terms of two auxiliary parameters (α, β), related to (λ, κ)
by the equations

α + β = λ

αβ = −κ

In the following section we will describe the translation code between our
parametrization and Meixner’s.
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10 Meixner’s parametrization

Theorem 4 (i) For any real numbers λ, κ there exist complex numbers α, β
such that the following identity holds

1 − λt− κt2 = (1 − αt)(1 − βt) (30)

or equivalently
α + β = λ (31)

αβ = −κ (32)

(ii) The pair (λ, κ) uniquely determines the pair (α, β) up to the permutation

(α, β) → (β, α)

(iii) If in addition
κ ≤ 0 (33)

then there are only four possibilities

λ = κ = 0 ⇔ α = β = 0 (34)

κ = 0 ; λ 6= 0 ⇔ (α, β) = (λ, 0) (35)

κ 6= 0 ; λ = 0 ⇔ (α, β) = (−i|κ|1/2, i|κ|1/2) (36)

κ 6= 0; λ 6= 0 ⇔ (α, β) =

(
λ

2
−
√
λ2

4
+ κ,

λ

2
+

√
λ2

4
+ κ

)
=: (t−, t+)

(37)
where, in all the above identities (α, β) has been identified to (β, α) and
the square roots are the positive ones.

Moreover the last possibility (37) splits into three according to the fol-
lowing situations:

λ2

4|κ|2 =
1

|κ| ⇔ λ2

4
= |κ| (38)

i.e. only one real solution
λ2

4
> |κ| (39)

i.e. two distinct real solutions

λ2

4
< |κ| (40)

i.e. two complex conjugate solutions.
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(iv) The five Meixner classes are characterized by the following values of the
pair (λ, κ):

(I) λ = κ = 0

(II) λ, κ 6= 0, λ = ±2|κ|1/2

(III) κ = 0; λ 6= 0

(IV) λ, κ 6= 0; λ2 > 4|κ|
(V) λ, κ 6= 0; λ2 < 4|κ|.

Let us first discuss the equation

0 = 1 − λt− κt2 (41)

If
λ = κ = 0 (42)

there are no solutions.
If

κ = 0 ; λ 6= 0 (43)

there is only one solution

tκ0 =
1

λ

If
κ 6= 0 ; λ = 0 (44)

then (41) becomes
0 = 1 − κt2 = 1 + |κ|t2

which has only 2 purely imaginary complex conjugate solutions:

tλ0,± = ±i

√
1

|κ|

If both
κ, λ 6= 0 (45)

then equation (41) can be written

0 = |κ|t2 − λt+ 1 ⇔ 0 = t2 − λ

|κ| t+
1

|κ| =

(
t− λ

2|κ|

)2

− λ2

4|κ|2 +
1

|κ|
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which has exactly one solution if and only if (38) holds.
In this case the solution is

t1s =
λ

2|κ|

and, due to the relation (38) there are 2 possibilities

λ

2
= ±|κ|1/2 (46)

giving rise to the solutions

t1s,± = ± 1

|κ|1/2 (47)

The two remaining possibilities, beyond (38) are (39) and (40).
Condition (39) corresponds to two distinct real solutions

t± =
λ

2|κ| ± λ2

4|κ|2 − 1

|κ| =
1

|κ|

(
λ

2
±
√
λ2

4
− |κ|

)
(48)

Condition (40) corresponds to two complex conjugate solutions

s± =
1

|κ|

(
λ

2
± i

√
|κ| − λ2

4

)
(49)

Now let us consider the identity (30) which is equivalent to

1 − λt− κt2 = 1 − (α + β)t+ αβt2

It is clear that the pair (α, β) is a solution if and only if the pair (β, α) is.
Equating coefficients we find (31), (32).
¿From these we deduce

−κ = (λ − β)β = λβ − β2

i.e.

β2 − λβ − κ = 0 ↔
(
β − λ

2

)2

− λ2

4
− κ = 0 ⇔ β − λ

2
= ±

√
λ2

4
+ κ
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This gives the solutions

β± =
λ

2
±
√
λ2

4
+ κ

α± =
λ

2
∓
√
λ2

4
+ κ

which satisfy the condition

(β+, α+) = (α−, β−)

Let us discuss the possible solutions of the system (32), (31) corresponding
to the various possibilities for the parameters λ and κ.

(34) is obvious.
Clearly (42) holds if and only if

α = β = 0 (50)

Now suppose that (44) holds then

β+ = λ 6= 0 ; β− = 0

α+ = 0 ; α− = λ 6= 0

that is, exactly one number, in the pair (α, β) is 6= 0.
Conversely, if this is the case, then λ must be 6= 0, otherwise

α± = −β±

and it is impossible that exactly one is 6= 0. Moreover this condition can be
fulfilled only if λ2/4 + κ is real.

In this case one has always

β+ > 0 ; α− > 0

Thus the condition that exactly one in the pair (α, β) is different from zero
can be fulfilled only if either

α+ =
λ

2
−
√
λ2

4
+ κ = 0
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or

β− =
λ

2
−
√
λ2

4
+ κ = 0

Thus the two conditions coincide and are both equivalent to

κ = 0

This proves (35).
Now suppose that condition (44) holds. Then the system (32), (31) be-

comes
α = −β (51)

κ = β2 (52)

Since κ 6= 0, this means that β must be purely imaginary and 6= 0. Con-
versely, if this is the case and (51) holds, then (45) holds. This proves (36).

If condition (45) holds, then the system (32), (31) has 2 distinct solutions
satisfying

(α+, β+), (α−, β−) = (β+, α+) (53)

Conversely, if this is the case, then (45) must hold because, if either λ or κ
are zero, then (53) cannot define two distinct solutions.

Finally note that the above discussion is valid in both cases when the
solutions of (41) are real or complex, i.e. if either condition (39) or (40)
hold.

This proves (37).
This completes the proof of (iii).
The 1–st Meixner class is clearly characterized by the condition

λ = κ = 0

The condition characterizing the 2–d Meixner class is equivalent to the case
(37) under condition (38), i.e. when equation (41) has a unique non zero real
solution.

The 3–d Meixner class is equivalent to the case (35).
The 4–th Meixner class is equivalent to the case (37) under the condition

(39), corresponding to two distinct real nonzero solutions.
The 5–th Meixner class is equivalent to the case (37) under the condition

(40), corresponding to two complex conjugate solutions.
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11 Solutions of the equation for v

In the present section we discuss the solutions of equation (28) corresponding
to the various Meixner classes.

Class I: λ = κ = 0. In this case equation (28) becomes

v′ = 1 (54)

By assumption
u(t) = t+ t2u2(t)

where u2(t) is an arbitrary formal power series. Moreover

t = v(u(t)) = v0 + v1u(t) +
∑

n≥2

vnu(t)
n

Thus
0 = v(0) = v0 (55)

and the unique solution of (54) with initial condition (55) is

v(τ ) = τ (56)

Class II: λ, κ 6= 0, λ = ±2|κ|1/2. In this case equation (28) becomes

v′(τ ) = 1 ∓ 2|κ|1/2v(τ ) + v(τ )2|κ| = (1 ∓ |κ|1/2v(τ ))2

This gives

t+ c =

∫
dv

(1 ∓ |κ|1/2v)2
=: I

which is of the form ∫
a+ bt

ct∓ 1)2
dt

with
b = 0 ; a = 1 ; c = |κ|1/2

Therefore the solution is

I = − |κ|−1/2

|κ|1/2v ∓ 1
=

1

|κ|v ± |κ|1/2
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This gives

t+ c =
1

|κ|v ± |κ|1/2
or

1

(t+ c)|κ| ∓ 1

|κ|1/2 = v(t)

and condition (55) is satisfied if and only if

c = ± 1

|κ|1/2

This gives

v(t) =

(
1

(t± |κ|−1/2)|κ|
p

1

|κ|1/2

)
=

1

|κ|t± |κ|1/2
∓ 1

|κ|1/2

=
|κ|1/2 ∓ (|κ|t± |κ|1/2)
|κ|1/2(|κ|t± |κ|1/2)

=
∓|κ|1/2t

|κ|1/2(|κ|t± |κ|1/2)
= ∓ t

|κ|t± |κ|1/2
(57)

Class III: κ = 0; λ 6= 0. In this case equation (28) becomes

v′ = 1 − λv ⇔
∫

dv

1 − λv
= t+ c

Thus

t+ c = −1

λ
ln(1 − λv)

etec = (1 − λv)−1/λ ⇔ e−λte−λc = 1 − λv

v =
1

λ
(1 − e−λte−λc)

The condition
v(0) = 0

fixes c = 0, so that

v(τ ) =
1

λ
(1 − e−λτ) (58)

Class IV: λ, κ 6= 0; λ2 > 4|κ|
In this case equation (28) becomes

v′ = |κ|
(
v2 − λ|κ| v +

1

|κ|

)
= |κ|(v − t+)(v − t−)
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or equivalently

|κ|t+ c =

∫
dv

(v − t+)(v − t−)
= ln

[
(v − t+)

(v − t−)

](t++t−)−1

with

(t+ + t−)−1 =
|κ|
λ

This gives

|κ|t+ c = ln

(
v − t+
v − t−

)|κ|/λ

e|κ|t+c =

(
v − t+
v − t−

)|κ|/λ

eλteλc/|κ| =
v − t+
v − t−

and the condition v(0) = 0 fixes

eλc/|κ| =
t+
t−

eλtt+(v − t−) = t−(v − t+) ⇔ (eλtt+ − t−)v = eλtt+t− − t+t−

v =
eλt − 1

eλtt+ − t−
t+t− =

1

|κ|
eλt − 1

eλtt+ − t−

In conclusion

v(τ ) =
eλτ − 1

eλττ+ − τ−
(59)

where

τ± :=
λ

2

(
1 ±

√
1 − 4|κ|

λ2

)
(60)

Class V: λ, κ 6= 0; λ2 < 4|κ|
The result is the same as in the case of Class IV, i.e. (59).
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12 Solutions of the equation for f

Class I
λ = κ = 0 (61)

In this case
f ′(t)

f(t)
= l1 + k2t⇔ f(t) = el1t+

1
2
k2t2

and the condition
f(0) = 1

is satisfied.

Class II
Let us consider the case

κ 6= 0 (62)

λ2 = 4|κ| (63)

In this case we have

ln f(t) =

∫
l1 + k2t

(|κ|1/2t∓ 1)2
dt = log(|κ|1/2t∓1)k2 |κ|

(
− l1
|κ|1/2 ∓ k2

|κ|

)
1

|κ|1/2t∓ 1

f(t) =
exp

(
− l1

|κ|1/2 ∓ k2
|κ|

)
1

|κ|1/2 t∓ 1

(|κ|1/2t∓ 1)|k2|/|κ|

Class III
If

λ 6= 0 ; κ = 0 (64)

then

∂ lnf(t) =
l1/|K2| − t

1/λ − t
· |k2|
λ

Therefore in case (64)

ln f(t) =
|k2|
λ

(
t+ ln

(
1

λ
− t

) 1
λ
− l1

|k2 |
)

f(t) = et
|k2|
λ

(
1

λ
− t

) |k2 |
λ

(
1
λ
− l1

|k2 |

)
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Classes IV and V
These classes are characterized by the condition

λ2 6= 4|κ| 6= 0 (65)

(real roots, class IV; complex conjugate roots, class V). In this case the
characteristic polynomial 1 − λt− κt2 has 2 different roots t± such that

|κ|1/2t± =
λ

2|κ|1/2 ±

√
λ2

4|κ| − 1 (66)

Therefore the solution of equation (26) is

ln f(t) =
1

|κ|
l1 + k2t

(t− t+)(t− t−)
dt =

∫
l1 + k2t

|κ|t2 − λt+ 1
dt (67)

The solution of (67) satisfying

0 = ln f(1) = ln 1

is given by
lnf(t) = ln(1 − t/t+)A(1 − t/t−)B (68)

A =
a+ bt+
t+ − t−

=
1

|κ|
l1 + k2t+
t+ − t−

=
l1 + k2t+√
λ2 − 4|κ|

B = − a+ bt

t+ − t−
= − 1

|κ|
l1 + k2t

t+ − t−
= − l1 + k2t−√

λ2 − 4|κ|
It is convenient to write

e1√
λ2 − 4|κ|

=: λ1 ;
k2√

λ2 − 4|κ|
=: κ2 (69)

With these notations

A = λ1 + κ2t+ ; B = −(λ1 + κ2t−) (70)

and (68) becomes equivalent to

f(t) =

[
(1 − t/t+)

(1 − t/t−)

]λ1
[
(1 − t/t+)t+

(1 − t/t−)t−

]κ2

(71)

Remark. In the paper p] (pg. 10) Meixner assumes that

l1 = 0

therefore, due to (69), in order to recover his expression for f(t), one has to
put λ1 = 0 in (71).
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13 The equations for u

Now notice that, if
u(t) = τ ⇔ u−1(τ ) = t

then

t = u−1(u(t)) = v(u(t)) ⇒ 1 = v′(u(t))u′(t) ⇔ v′(u(t)) =
1

u′(t)

Therefore if v′(τ ) = F (v(τ )) then

1

u′(t)
= v′(u(t)) = F (v(u(t))) = F (t)

and in our case this becomes

1

u′(t)
= 1 − λv(u(t))− κv2(u(t)) = 1 − λt− κt2

or

u′(t) =
1

1 − λ− κt2

u(t) =

∫
dt

1 − λt− κt2
=

∫
dt

|κ|t2 − λt + 1

Therefore in the case (61)

u(t) =

∫
dt = t

because u(0) = 0.
In the case (64)

u(t) =

∫
dt

1 − λt
; λ 6= 0

Therefore

u(t) = ln
1

(1 − λt)1/λ

In case (63), i.e.
λ = ±2|κ|1/2 6= 0

u(t) =

∫
dt

(|κ|1/2[±1)2
= − 1

|κ|1/2 (|κ|1/2t± 1)−1
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In case (65) the polynomial (29) has two roots given by (66). Therefore

u(t) =

∫
dt

|κ|(t− t+)(t− t−)
=

1

|κ|

∫
dt

t− t+
− 1

|κ|

∫
dt

t− t−

=
1

|κ| ln
t− t+
t− t−

= ln

(
t− t+
t− t−

)1/|κ|

I α = β = λ = κ = 0
αψ(x) = ex

2/2kdx

Hermite’s polynomials.
II α = β 6= 0

α > 0ψ′(x) =

{(
−x− k2

α

)−1−k2/α2

ex/α −∞ < x < −k2
α

0 −k2
α
< x <∞

α < 0ψ′(x) =

{
0 −∞ < x < −k2

α(
x+ k2

α

)
− 1 − k2/α

2ex/α −k2
α
< x <∞

confluent hypergeometric polynomials
III α 6= 0, β = κ = 0

αψ(x) =
∞∑

n=0

1

n!

(
− k2

α2

)n
δ− k2

α
−α

n

Charlier’s polynomials
IV α 6= β, κ 6= 0, α, β real
e.g. |α| > |β|

dψ(x) =
∞∑

n=0

(
−β
α

)n(
k2/αβ
n

)
δ− k2

α
−(α−β)n

V α 6= β, κ 6= 0 α = β

∃ Im α > 0
α = |α|eiϕ
β = |α|e−iϕ

ψ′(x) =

(
−β
α

)x/(β−α)

Γ

(
x

β − α
+

k2

β(β − α)

)
Γ

(
x

α− β
+

k2

α(α− β)

)

∣∣∣∣arg
(
−β
α

)∣∣∣∣ < π − π < arg (−β/α) < π
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14 Moments of the Meixner measures

In this section we derive a simple formula which expresses the moments of a
Meixner measure in terms of the associated Meixner pair.

Taking ∂t–derivatives of both sides of (15) one obtains

∂t

∫

R
exu(t)µ(dx) =

∫
xu′(t)exu(t)µ(dx) = ∂t

1

f(t)

or equivalently, writing

u(n)(t) := ∂tu
(n−1)(t) ; u(0)(t) := u(t) (72)

∫

R
xexu(t)µ(dx) =

1

u(1)(t)
∂t

1

f(t)
(73)

In particular, putting t = 0 in (73) and using (9) one finds the first moment
of µ, i.e.

m1(µ) =

∫

R
xµ(dx) =

1

u(1)(0)
∂t|t=0

1

f(t)
(74)

Taking derivatives of both sides of (73) one finds
∫

R
x2u′(t)exu(t)µ(dx) = ∂t

1

u(1)(t)
∂t

1

f(t)

or equivalently
∫

R
x2exu(t)µ(dx) =

1

u(1)(t)
∂t

1

u(1)(t)
∂t

1

f(t)
(75)

Now, considering u(1) as a multiplication operator in L2(R, µ) and ∂t as an
operator in the same space, one can introduce the notation

Λu :=
1

u(1)
∂t (76)

So that, if ϕ is another multiplication operator in L2(R, µ):

Λuϕ(t) =
1

u(1)(t)
(∂tϕ)(t) (77)

In these notations (75) becomes
∫

R
x2exu(t)µ(dx) = Λ2

u

1

f
(t) (78)
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which gives the second moment of µ by evaluating (78) at t = 0

m2(µ) =

∫

R
x2µ(dx) = Λ2

u

1

f
(0) (79)

Now suppose by induction that,
∫

R
xnexu(t)µ(dx) = Λn

u

1

f
(t) (80)

then, taking derivatives of both sides, one finds
∫

R
xn+1u′(t)exu(t)µ(dx) = ∂tΛ

n
u

1

f
(t)

or equivalently
∫

R
xn+1exu(t)µ(dx) =

1

u(1)(t)
∂tΛ

n
u

1

f
(t) = Λn+1

u

1

f
(t)

and therefore (80) holds for each n ∈ N. In particular, taking t = 0 in (80)
one finds the n–th moment of u:

mn(µ) =

∫

R
xnµ(dx) = Λn

u

1

f
(0) ; ∀n ∈ N (81)

In other words:

Theorem 5 Suppose that a probability measure µ on R has an orthogonal
generating function of the form (8) for a pair of C∞–functions (u, f) from R
to R. Then µ is polynomially determined by the pair (u, f) through formula
(81).
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