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In [1], we introduced the cylindrical Gaussian mea-
sure on a vector subspace of the (infinite-dimensional)
Hilbert space that corresponds to the fundamental solu-
tion to the Cauchy problem for the heat equation that
contains the Levy Laplacian [2, 3]; it is possible to
define this measure by the correlation functional whose
value on every vector from its domain is equal to the
Cesaro mean of the sequence of squares of its
coordinates in an appropriate (orthonormal) basis. This
correlation functional is a scalar product that corre-
sponds, in a natural sense (defined below), to the linear
functional on a certain operator algebra, which is called
the Levy trace. The Levy trace, which vanishes at
completely continuous operators and equals 1 at the
identity operator, defines, in its turn, the multiplicative
functional that we call the Levy determinant. This
paper deals with a deduction of the Cameron—Martin—
Girsanov-Maruyama and Reimer formulas for the
Gaussian measures generated by the Levy Laplacian,
including the measure that corresponds to the Levy-
Wiener process (its definition is adduced below); in
these formulas, we use both the Levy trace and
the Levy determinant.! At first, we describe some
properties of logarithmic derivatives of cylindrical
measures (we do not assume them to be countably
additive); in this part of our paper, there are several
points in common with the results of [4]. We also note
that the recent substantial increase of interest in the
Levy Laplacian is connected with the discovery [5] of
the equivalence of the Yang-Mills equations to the
equation that contains the Levy Laplacian. For previous
results concerned with the Levy Laplacian, see [6].

'In [1], we used the term “the Brownian Levy motion”; we hope
that there is no great danger of confusing this object with the ran-
dom field that has the same name,
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1. LOGARITHMIC DERIVATIVES

Throughout the rest of this paper, we use terminol-
ogy and notations from [7, 8], as a rule, without expla-
nations; we assume that all vector spaces under consid-
eration are real, unless otherwise stipulated. For every
two vector spaces E and G in duality, we denote by
A(G) the algebra of G-cylindrical subsets of E; we
denote by 6(G) the c-algebra generated by this alge-
bra; if, further, F is a locally convex space (LCS), then
MG, F) is the vector space of all F-valued G-cylindri-
cal measures on E [i.e., on Ax(G)] that have bounded
variation in every continuous seminorm on F. We use
the symbol M :(G) rather than IWx(G, R'). Note that if
T is one more vector space dual to the space G, then the
algebras of sets U(G) and AHG) [and, consequently,
the vector spaces Jz(-) and J(-)] are (canonically)
isomorphic. If G is an LCS, E is a space of (certain)
linear continuous functionals on G, and y is a function
on E that is the Fourier transform (FT) of a countable
additive measure v € I (F) that admits a (unique)
extension to a Radon measure on G [if the measure v €
MAE, F), then its FT ®v is defined by the equality

dV(z) = J.exp(iz(x))v(dx)], 1 € Mx(G), and the function

®v: G — C is continuous, then the integral of the func-
tion \ with respect to the measure 7 (which is not
countably additive, generally speaking) is defined by
the following formula (cf. [9]):

[wtomiax = [en@)vid).
E G

A function g: G — C is called E-cylindrical if there
exist n € N, n elements a,, ..., a, of the space E, and a
function @: R* — C such that g(x) = ¢({(ay, x), ... {ay,
x)). If @ is a polynomial, then the cylindrical function is
called polynomial.

If G is a LCS, then Emg (E) is the subspace of the
space JM(E) that consists of all countably additive

measures that admit a unique extension to a Radon
measure on G, with respect to which all polynomial
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E-cylindrical functions are integrable. We also note that
integrals of G-cylindrical functions with respect to
measures from I (G), as well as products of such
functions and measures, are defined in a natural way
(though, of course, they do not always exist); with the
help of such products, one defines integrals of products
of G-cylindrical functions and Fourier transforms of

a .
measures from ¥ (E) with respect to measures from

MAG).

A vector field (respectively, a time-dependent vector
field) on the vector space E with values in a (vector)
subspace T of the space G* is a mapping i: E = T
(respectively, a mapping k: R' X E = T). If G is an LCS,
then vectzG is the vector space of all vector fields on £
with values in the strong conjugate space G' to the
space G that are Fourier transforms of measures from

M (E); vect, G is the vector space of all time-depen-
dent vector fields k on E with values in G' such that
k(t, -) € vectzG for every t € R\.

Definition 1. The differentiability subspace of the
measure v € J(G) is the (vector) subspace of the
space G' that is denoted by the symbol D(v) and
defined in the following way: A € D(v) if and only if
there exists a function By(4, -): D(v) = R!, which
is called the logarithmic derivative of the measure v in
the direction h, for which the function B,(4, -)DU is
v-integrable, and the equality

[BREOBy(, x)v(dx) = —[(DR) (x)hv(ds)

holds for any measure u € NG (E). In this case, the

measure V is called differentiable relative to the sub-
space D(v), and the mapping B, is called the logarith-
mic derivative (or the logarithmic gradient) of the mea-
sure v (cf. [10]).

Remark 1. Since (®W)'(-)h = Ok, )W), the equal-
ity from Definition 1 is equivalent to the following
equality:

[@m@B.(h V(dx) = [(@V)(D)i{h, DR(d2).

Example 1. Assume that Yis a Gaussian G-cylindri-
cal measure on E with the correlation operator B: G —
G* and the zero mean (by definition, this means that

—(Bz, 7)
Oyz)=¢ ). If the function @y is continuous, then
Dy=ImB and B(h, x) =—(Bh, h) for h € Dy (indeed, by
virtue of properties of the Fourier transformation,
‘h( B, )

2

(@) - i m) = le (B~'h)).

ACCARDI, SMOLYANOV

2. MEASURES CONNECTED
WITH THE LEVY LAPLACIAN

Assume that S; is the vector space of infinite
sequences of real numbers defined in the following
way: (x,) € S, if and only if there exists a continuous
almost-periodic function @: R! — R! such that x, = ¢(n)
for every n € N. If one equips this space with the “Levy
scalar product” (-, -);, which is (correctly) defined by
the equality

k

1 1 1 11

(), @)e = lim 2 3 %2,

n=1

then it becomes a Hilbert space, which we denote by
the same symbol. Assume also that H is the (separable)
Hilbert space, b = (e,) is its orthonormal basis, E| is
the image of the space /, under the embedding /; — H,

{x,)— Zx,, e,, equipped with the norm induced by the

norm of the space /,, E is a Banach space that is a vector
subspace of the space E;, and the canonical embedding
E — E, is continuous. Under these assumptions,
the injective (continuous) mapping S, —> (E', o(E', E)),

(x,) — zx,, e, is correctly defined; the image of the

space S§; under this mapping will be denoted by
the symbol §, and the scalar product in S induced by
Ehe )Levy scalar product will be denoted by the symbol
‘s °/PL:

Denote: K is the vector subspace of the space §*
generated by the set E U §'; we identify the spaces S and
Sithus, f Ksz=21+2,z1€ E,5pe §(=5),ae§
(cE"), then

(a,2) = a(z;) +(a, 2} p;-

Remark 2. The duality between $* and S (defined
by the bilinear form (a, x) —> a(x)) induces a duality
between S and E, which coincides with that induced by
the duality between E' and E (and, of course, also the
canonical duality between S and K); these dualities will
be used below.

Proposition 1. 6((E) = 6¢(5").

Proposition 2. Any countably additive number-
valued E-cylindrical measure on U (E) has a unique
extension to a Radon measure on S.

This follows from Corollary 5 from [11, p. 74] and
Proposition 1.

Definition 2. The Levy trace that corresponds to the
basis b is the functional on some vector subspace V; of
the space of all linear mappings from E in E' denoted
by the symbol tr; and defined in the following way: A€
V. & (Ae,, e,) € S,;if A e V, then

tr A = ((Ae, €,), (1)),
where (1)=1,1, 1, ... (€ S)).

Definition 3. The Levy Laplacian that corresponds
to the basis b is the mapping A; of the subspace V; of
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the space F of number-valued functions on S into the
space F that is defined in the following way: g € Vp if
only if g is Giteaux twice differentiable relative to
the subspace E at every point x € S, where (in natural
' notations) g'(x) € V, for all x; if g € Vp, then
(Ar8)(x) = tr 8"(x).

Remark 3. This definition is slightly different from
that used in [1, 2].

Remark 4. Assume that A is an operator of trace
class in S and A* is its extension to E defined by the
equality {Ax, z) = (x, A*z);. Then tr;A* = trA, where tr
is the (usual) trace of A in §.

Definition 3. The Levy-Gauss measure [with a
parameter ¢ € (0, o0)] is the S-cylindrical measure V¢,
(on E, or, which is equivalent, on K) whose Fourier
transform is defined by the equality

@va(x) = exp-221)

Thus, the Levy—Gauss measure is the S-cylindrical
Gaussian measure whose correlation operator B is
defined by the relation § 3 x —> x € § = §'(cS5*). This
measure defines the Green measure of the Cauchy
problem for the heat equation that contains the Levy
Laplacian [1].

Proposition 3. Dvg, = S and By(h, x) = —h, x) for
V=Vg, he S, x € K; in particular, B,(h, x) = —(h, x),
forh,x € §.

Definition 4 (cf. [1]). Assume that F([0, 1], K) is the
vector space of all K-valued functions on [0, 1], Py is
the space of all S-valued measures on [0, 1] that have
single-point supports, connected by the natural duality.
The Levy—Wiener measure on F([0, 1], K) generated by
the Levy Laplacian is the Ps-cylindrical Gaussian mea-
sure w; (on F([0, 1], K)) whose Fourier transform is
defined by the equality

®w,(n) = exp( ] [min(s, D (n@em(an). |

Propeosition 4. The space Dw; can be described as
follows: g € Dwy if and only if there exists an S-valued
square integrable function f on [0, 1] such that g(t) =

t

Jf(r)d‘l:forte [0, 11.
0

3. SHIFTS ALONG INTEGRAL CURVES
OF VECTOR FIELDS

Assume that 2 € vecty S and g is the mapping R! X

K — K into K such that a(0, x) = x and a, (¢, x) =
h(t, a(t, x)) for every x € K. Assume also that v €
M (S). Then the t-shift of the measure v € IMx(S)
along the integral curves of the vector field & is
Vol. 54 1996
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the measure vy, that has the following property: for

any measure p e Mg (K),

[@w a1 vidn = [(@WxVadn).
The logarithmic derivative of the measure v & ()

along the vector field 4 is the function BC : K — R! that
has the following property: for every measure L €

IM¢ (K), the equality
[@ry@h(x)vidx) = - [onxpiv(dn)

is valid.

Proposition 5. If, for all x € K, the derivative of the
mapping h relative to the subspace S is an operator of
trace class in S, then the logarithmic derivative of the
measure Vg along the vector field h exists and is

defined by the equality BC'GL (x) = tr 7'(x) = (x, ).

Theorem 1. In the assumptions of the previous
proposition the t-shift of the measure Vg along the
integral curves of the vector field h (exists and) is
defined by the equality

(Vou) = exthth'(a(r,x))dr
0

- %((a(t, x), a(t, x)) - (%, x))}VGL-

This theorem is deduced from a proposition that is
similar to Theorem 2 from [3], and Proposition 5.

4, SHIFTS ALONG VECTOR FIELDS

If h € vect,S, then the ¢-shift of measure v € ix(S)
along the vector field  is the measure vy, such that for
every measure | € ig(K)

[onex- v = [Ouva(d).

The shift along the vector field k coincides with the
shift along integral curves of the auxiliary vector field
that satisfies the equality h(x) = k(t, x + th(x)) (if this
vector field exists).

Theorem 2. Assume that h € vectS and the condi-
tions of Proposition 5 are fulfilled. If, for every t € R',
the mapping V,: x = x + th(x) is invertible (and some
additional conditions of analytic character are

fulfilled), then
(Ver)y = det, (1 +h'(x))

h(x)h
X exp (— w%@ -{x, h(X)))Vc;L,/.{T.}N_,.;,

s
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trin(f + K'(x))

where det; (I + h'(x))=e is “the Levy determi-

nant”. One uses here, in particular, the following

equalities:
1

epr.trLk;(’t, . (-))dt
0

= exptr, [H (W7 (W)W (W (W)

= exptr, j B (x)(I + Th'(x))dt
= exptr,In(I + th'(-))d1
(Ix=x Vxe ).

Now, assume that £ is a vector field in F([0, 1], K)
that takes its values in Dw,, and

1

h(x)(o) = _[F(x(s), 5, o)ds,
0

where F is continuous, and F(x(s), s, &) = 0 for s 2 o
or F(x(s),s,a)=0fors < a. Thentrh'(x) = jF(x(s)),

s, $)ds = 0 and, moreover, tr(h'(x))" =0, so that tr In(/ +
R(x))=0.

Theorem 3. Under the above assumption, (w), =
pw;, where

1
p(x) = CXP{—J((h(X))'(t)(h(x))'(t))Ldt
0

1
2 [{ By 0 @)
0

(this is an analog of the Girsanov-Maruyama formula
for nonanticipating functionals, one can prove a simi-
lar formula for the general case in the same way).
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