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Abstract. We extend the Lie–algebra time shift technique, introduced in [2],
from the usual Weyl algebra (associated to the additive group of a Hilbert

space H) to the generalized Weyl algebra (oscillator algebra), associated to
the semi–direct product of the additive group H with the unitary group on
H (the Euclidean group of H, in the terminology of [14]). While in the usual

Weyl algebra the possible quantum extensions of the time shift are essentially
reduced to isomorphic copies of the Wiener process, in the case of the oscilla-
tor algebra a larger class of Lévy process arises.Our main result is the proof of
the fact that the generators of the quantum Markov semigroups, associated

to these time shifts, share with the quantum extensions of the Laplacian the
important property that the generalized Weyl operators are eigenoperators
for them and the corresponding eigenvalues are explicitly computed in terms
of the Lévy–Khintchin factor of the underlying classical Lévy process.

1. Introduction

The classical heat semigroup on R is the Markov semigroup canonically associ-
ated to the classical, real valued Brownian motion (Wt) via the basic formula of
Markov processes:

E0](v
◦
t (f(W0))) = E0](f(Wt)) = P tf = et∆f ; t ≥ 0,

where E0] denotes the W -conditional expectation onto the past σ-algebra of time
0, v◦t is the usual time shift in the Wiener space and f is any Borel measurable
function. In the quantum formulation of the classical, real valued Brownian mo-
tion there is also a time shift u◦t and E0] denotes the (restriction of the) vacuum
conditional expectation. However u◦t acts trivially on the initial algebra and there-
fore the generator of the corresponding semigroup is zero, in particular it cannot
coincide with the time shift of the classical Brownian motion. P.A. Meyer noticed
this discrepancy and, in the Oberwolfach 1987 quantum probability workshop,
posed the question if there exists a quantum extension of the classical time shift
in Wiener space. For any such extension the generator of the associated quantum
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Markov semigroup would provide a quantum extension of the classical laplacian.
A solution of Meyer’s problem was given by Accardi in the same workshop (see
[2]) and it was based on the idea that the Fock space time shift u◦t is the time
shift of the increment process associated to the classical Brownian motion, i.e., the
(integrated) white noise, thus its action on the algebra of measurable functionals
of the process is characterized by the property of being the unique (continuous)
endomorphism satisfying:

u◦t (Ws −Wr) :=Ws+t −Wr+t

On the other hand the usual time shift v◦t in Wiener space is the unique (contin-
uous) endomorphism of the associated algebra of measurable functions given by
the property:

v◦t (Ws) :=Ws+t

Therefore, denoting ĵt the restriction of the Wiener time shift on the time zero
algebra, v◦t is uniquely determined by the pair (ĵt, u

◦
t ) through the identity

v◦t (Ws) :=Ws+t =Wt + (Ws+t −Wt) = ĵt (W0) + u◦t (Ws −W0) .

But it is known that, in the quantum formulation of the classical Wiener process,
the initial random variable is identified to position operator q0 and the increment
(noise) is identified to the momentum process

Wt −W0 = P(0,t].

This leads to this identification

Ws =W0 +Ws −W0 = q0 ⊗ 1 + 10 ⊗ P(0,s]

So that

v◦t (Ws) = v◦t (q0⊗1+10⊗P(0,s]) = ĵt(q0⊗1)+10⊗u◦t (P(0,s]) = ĵt(q0)+10⊗P(t,t+s]

On the other hand

v◦t (Ws) = Ws+t =W0 + (Ws+t −W0) = q0 ⊗ 1 + 10 ⊗ P(0,s+t]

= q0 ⊗ 1 + 10 ⊗ P(0,t] + 10 ⊗ P(t,s+t]

From this it follows that

ĵt(q0) = q0 ⊗ 1 + 10 ⊗ P(0,t]

is a possible answer to our problem. In [2] it was shown that this is indeed the case
and that the generator of the associated quantum Markov semigroup is indeed a
quantum generalization of the classical laplacian, in the sense that its restriction
to the operators of multiplication by smooth functions coincides with the usual
laplacian.

The systematic investigation of all possible solutions to this problem when the
initial algebra is a general (not necessarily finite dimensional) Weyl algebra, begun
in paper [3] (see also [4]), led in particular to the unexpected identification of the
Lévy laplacian with a usual Volterra–Gross laplacian, corresponding to a usual
Brownian motion with values in a special Hilbert space (the Cesaro Hilbert space),
and opened the way to a multiplicity of new developments on the structure of the
heat semigroups associated to the whole hierarchy of exotic laplacians, to which
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the previously developed analytical techniques did not apply (see for example [11],
[6], [7]).

In the present paper, we extend the results of [2], [3], [4] from the usual Weyl
algebra over an Hilbert space H, which gives a projective representation of the
additive group H acting on itself by translations, to the oscillator algebra, which
gives a projective representation of the semi–direct product of the additive group
H with the unitary group on H, denoted U(H). We combine this extension of the
quantum time shifts techniques with the techniques developed by Araki, Woods,
Parthasarathy and Schmidt (see [15] for a systematic exposition and bibliogra-
phy), to construct quantum Markov processes of random walk type, i.e., obtained
by adding, to an initial operator process, the increments of a quantum indepen-
dent increment operator process. This simple additive picture at Lie algebra level
produces, after exponentiation, a projective representation of Lie groups. While in
the usual Weyl algebra the possible quantum extensions of the classical time shift
are essentially reduced to isomorphic copies of the Wiener process, in the case of
the oscillator algebra a larger class of Lévy process arises as possible candidates
for quantum extensions of the time shift. We determine the explicit form of these
time shifts and construct the associated Markov cocycles hence, via the quantum
Feynman–Kac technique ([1]), the associated quantum Markov semigroup. From
this we deduce the main result of the present paper which can be described as fol-
lows. The quantum Markov semigroup associated to the usual quantum Brownian
motion is the quantum heat semigroup and usual Weyl operators are eigenopera-
tors of its generator (the quantum laplacian). Analogously the generalized Weyl
operators, associated to the oscillator algebra, are eigenoperators of the genera-
tor of the quantum Markov semigroups canonically associated to the Lie algebra
time shifts of the oscillator algebra (which are given by classical Lévy process).
Furthermore the corresponding eigenvalues are explicitly computed in terms of
the Lévy–Khintchin factor of the underlying classical Lévy process. The standard
GKSL form of these generators can be easily computed using stochastic calculus.
Generally these generators are unbounded even in the case of finite dimensional
Brownian motion. The fact that they have a total, self-adjoint, set of linearly in-
dependent eigenoperators singles out an interesting new class of quantum Markov
semigroups (up to now the only non trivial known example in this class was the
quantum laplacian) and can be probably exploited to achieve a deeper understand-
ing of the analytical structure of this class.

2. Notations and Preliminaries

2.1. Boson Fock space. In the following all Hilbert spaces are assumed to be
complex and separable with inner product linear in the second variable denoted,
〈·, ·〉. For any Hilbert space H, we denote:

• B(H) the algebra of all bounded linear operators on H
• Γ(H) the symmetric (boson) Fock space over H
• ψu (u ∈ H) the exponential vector associated with u:

ψu :=
∑
n≥0

u⊗n

√
n!

∈ Γ(H) ; ψ0 = Φ vacuum vector.
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For any dense linear subspace S of H the family {ψu, u ∈ S} is total and linearly
independent in Γ(H). We denote by E(S) the vector space algebraically generated
by it. If S is as above a linear operator may be defined densely on Γ(H) by giving
arbitrarily its action on the family {ψu, u ∈ S}. We simply use the notation E when
S = H. The annihilation, creation and Weyl operators are defined respectively
by:

A−(v)ψu := 〈v, u〉ψu ; A+(v)ψu :=
d

ds
|s=0 ψu+sv ,

W (v)ψu = e−
1
2‖v‖

2−〈v,u〉ψu+v ; ∀v ∈ H.

The boson creation and annihilation operators satisfy the canonical commutations
relations (CCR):

[A−(u), A+(v)] = < u, v > 10 (2.1)

[A−(u), A−(v)] = [A+(u), A+(v)] = 0 , (2.2)

for any u, v ∈ H, where [x, y] := xy − yx is the commutator and 10 is the identity
operator on Γ(H).

The second quantized Γ(T ) of a self-adjoint bounded operator T on H is given
by the relation:

Γ(T )ψu := ψTu.

The differential second quantization operator Λ(T ) (or the number operator) of T
is defined via the Stone theorem by:

Γ(eitT ) =: eitΛ(T ) , t ∈ R.

Its action on E(S) is given by:

Λ(T )ψu =
1

i

d

ds
|s=0ψeisTu.

If T is a bounded but not necessarily self-adjoint operator on H, then by writing
T as ”sum” of two self-adjoint operators

T = T1 + iT2 =
T + T ∗

2
+ i

T − T ∗

2i
,

then we can define Λ(T ) by:

Λ(T ) := Λ(T1) + iΛ(T2).

Hence Λ(T ) is linear in T and the following canonical commutations relations hold
weakly on the set of the exponential vectors

[Λ(T ), A+(u)] = A+(Tu), [Λ(T ), A(u)] = −A(T ∗u) (2.3)

and

[Λ(T1),Λ(T2)] = Λ([T1, T2]). (2.4)
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2.2. Markov flows on white noise spaces. In the notations of section (2.1),
if the space H has the form

L2(R+,H0) ≡ L2(R+)⊗H0

where H0 is an Hilbert space, the associated Fock space is called a white noise
space and the space H0 a multiplicity (or polarization) space. Usually an initial
(or system) space is added to the white noise space and in the following we will
fix the choice

Hw := Γ(H0)⊗ Γ
(
L2(R+,H0)

)
.

Notice that we choose the initial space to be the Fock space over the multiplicity
space. This is a common feature in the theory of quantum time shifts (see [3])
whose motivation will be clear from the following development. This space has
two natural Hilbert space filtrations (past and future) defined (asymmetrically)
by

Ht] := Γ(H0)⊗ Γ
(
L2([0, t],H0)

)
; H[t = Γ

(
L2([t,+∞[,H0)

)
; t ≥ 0

where, here and in the following, Ht] (resp. H[t) will be identified to the subspace
Φ0⊗Ht]⊗Φ[t (resp. Φt]⊗H[t), Φ[t (resp. Φ0,Φt]) being the vacuum vector in H[t

(resp. H0,Ht]). With these notations the following factorization property holds

Hw = Γ(H0)⊗ Γ
(
L2(R+,H0)

)
= Ht] ⊗H[t.

Similarly we define the Von Neumann algebra pure noise filtration:

Bt] = B
(
Γ
(
L2([0, t],H0)

))
≡ B

(
Γ
(
L2([0, t],H0)

))
⊗ 1[t,

B[t = B
(
Γ
(
L2([t,+∞[,H0)

))
≡ 1t] ⊗ B(H[t)

and

B = B
(
Γ(L2(R+),H0)

)
≡ Bt] ⊗ B[t,

where 1t] and 1[t are respectively the identities on the spaces Γ
(
L2([0, t],H0)

)
and Γ

(
L2([t,+∞[,H0)

)
. If A0 is a C∗–subalgebra of B(Γ(H0)), we define the

filtrations:

At] := A0 ⊗ Bt], A[t := B[t, A = At] ⊗A[t = A0 ⊗ B

and denote by 10 (resp. 1) the identity on Γ(H0) (resp. Γ
(
L2(R+,H0)

)
). The

noise creation, annihilation and conservation increment processes, acting on the
space Γ

(
L2(R+,H0)

)
, will be denoted respectively

A+
s,t(ξ) := A+(χ[s,t] ⊗ ξ), A−

s,t(ξ) := A−(χ[s,t] ⊗ ξ), Λs,t(ξ) := Λ(Mχ[s,t]
⊗ T ).

(2.5)
If s = 0, we simply write

A+
t (ξ) := A+

0,t(ξ), A−
t (ξ) := A−

0,t(ξ), Λt(T ) := Λ0,t(T ) (2.6)

and, when no ambiguity is possible, the same notation will be used for their natural
action on Γ(H0) ⊗ Γ

(
L2(R+,H0)

)
. Denote by θt, the right shift on L2(R+,H0),

so that ∀t ≥ 0

θtf(s) =

{
f(s− t), if s ≥ t ≥ 0;
0, if 0 ≤ s ≤ t.

(2.7)
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The operator θt is isometric with θ∗t f(s) = f(s + t). The white noise time shift
is the 1–parameter endomorphism semigroup of B

(
Γ(H0)

)
⊗ B

(
Γ
(
L2(R+,H0)

))
characterized by the property that, for all b0 ∈ B(Γ(H0)), b ∈ B

(
Γ
(
L2(R+,H0)

))
and t ≥ 0 one has:

u◦t (b0 ⊗ b) = b0 ⊗ Γ(θt)bΓ(θ
∗
t ). (2.8)

The shift u◦t is a normal, injective ∗–endomorphism and satisfies the following:

(1) For s, t ≥ 0, u◦su
◦
t = u◦s+t.

(2) For s ≥ 0, u◦s(A) = A0 ⊗ 1s] ⊗ B[s.

The vacuum conditional expectations, defined on the algebra A and with values
in the past filtration algebra are defined by:

Et](bt] ⊗ b[t) := 〈Φ[0, b[tΦ[0〉bt], bt] ∈ At], b[t ∈ A[t. (2.9)

Definition 2.1. A stochastic process on A0 is a family {jt : A0 −→ At], t ≥ 0}
of ∗–homomorphisms with j0(x) = x⊗ 1. A stochastic process is called normal if
for each t ≥ 0, jt is σ-weakly continuous.

Let (jt)t≥0 be a normal stochastic process on A0. We define j̃t as the unique

normal ∗–homomorphism j̃t : A0 ⊗ 1[0,t] ⊗ B[t −→ A characterized by

j̃t(x⊗ 1) = jt(x), j̃t(1⊗ b[t) = jt(1)⊗ b[t. (2.10)

Each j̃t can be extended in an obvious way to the algebraic linear span of the
elements of the form x⊗ 1[0,t] ⊗ Y[t, where x ∈ A0, Y[t is an operator on H[t.

Definition 2.2. A stochastic process on A0 is said to be a Markov cocycle if, in
the notations of (2.10), it satisfies the cocycle equation: for all s, t ≥ 0 and x ∈ A0

j0(x) = x⊗ 1 ; js+t(x) = j̃s ◦ u◦s ◦ jt(x). (2.11)

It is said to be σ-weakly continuous if the map (t, x) 7−→ jt(x) is continuous w.r.t
the σ-weak topology of the Von Neumann algebras involved.

According to the Feynman-Kac formula to every Markov cocycle (jt) on A0,
one can associate Markov semigroup (P t) on A0, characterized by the identity:

P t(x) = E0]jt(x) (2.12)

for all t ≥ 0, x ∈ A0. Moreover the cocycle identity (2.11) and condition (2.12)
imply that for each s, t ≥ 0

Es] ◦ js+t = js ◦ P t. (2.13)

In the following we will take the initial space Γ(H0) to be Γ(H).

3. The Generalized Weyl Operator

In this section we introduce the generalized Weyl operator associated to the
Fock representation of the oscillator Weyl algebra. We use the notations of section
(2.1).

Definition 3.1. For all unitary operator U , on H and u, v ∈ H, z ∈ C, define the
exponential operator on the set of the exponential vectors by:

Γ(u,U, v, z) := eA
+(u)Γ(U)eA

−(v)ez. (3.1)
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In the following we need some known results which we sum up in Lemmas (3.2)
and (3.3).

Lemma 3.2. For all unitary operator U on H and u, v ∈ H, one has

Γ(u,U, v, z)ψx = ez+〈v,x〉ψu+Ux ; x ∈ H. (3.2)

Proof.

Γ(u, U, v, z)ψx = ezeA
+(u)Γ(U)eA

−(v)ψx = ezeA
+(u)Γ(U)

(
e〈v,x〉ψx

)
= ez+〈v,x〉eA

+(u)
(
ψUx

)
= ez+〈v,x〉ψu+Ux.

�

Lemma 3.3. For all unitary operators Uj, on H and uj , vj ∈ H, zj ∈ C; j = 1, 2,
we have the following relation:

Γ(u1, U1, v1, z1)Γ(u2, U2, v2, z2) = Γ(u,U, v, z), (3.3)

where

u = u1 + U1u2 ; U = U1U2 ; v = v2 + U∗
2 v1 ; z = z1 + z2 + 〈v1, u2〉. (3.4)

Proof. Let x ∈ H. Using Lemma (3.2) one finds

Γ1Γ2ψx := Γ(u1, U1, v1, z1)Γ(u2, U2, v2, z2)ψx

= Γ(u1, U1, v1, z1)
(
ez2+〈v2,x〉ψu2+U2x

)
= ez2+〈v2,x〉Γ(u1, U1, v1, z1)ψu2+U2x

= ez2+〈v2,x〉ez1+〈v1,u2+U2x〉ψu1+U1(u2+U2x)

= ez1+z2+〈v1,u2〉+〈v2+U∗
2 v1,x〉ψu1+U1u2+U1U2x

= Γ(u1 + U1u2, U1U2, v2 + U∗
2 v1, z1 + z2 + 〈v1, u2〉)ψx.

�

Lemma 3.4. Let f(z) =
∑
n≥0

anz
n, be an entire function. Denoting

f̄(z) :=
∑
n≥0

anz
n , | f | (z) :=

∑
n≥0

| an | zn

-(i) Let T be a bounded operator on H, then the operator

f(T ) :=
∑
n≥0

anT
n

is well defined and bounded on H with norm less than | f | (‖T‖). Moreover, the
adjoint of f(T ) is f̄(T ∗).
-(ii) If f and g are two analytic functions then the operator (fg)(T ) := f(T )g(T )
is well defined and it is bounded on H.
-(iii) If e1 and e2 are the analytic functions defined respectively by:

e1(z) :=
+∞∑
n=1

zn−1

n!
=
ez − 1

z
, (3.5)
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e2(z) :=

+∞∑
n=2

zn−2

n!
=
ez − z − 1

z2
, (3.6)

then the operators e1(T ) and e2(T ) enjoy the following properties:

(e1(T ))
∗ = e1(T

∗), (3.7)

(e2(T ))
∗ = e2(T

∗), (3.8)

e−T e1(T ) = e1(−T ), (3.9)

e1(−T )e1(T ) = e2(T ) + e2(−T ), (3.10)

‖e1(T )‖ ≤ e1(‖T‖) ; ‖e2(T )‖ ≤ e2(‖T‖). (3.11)

Proof. The statements (i) and (ii) are clear. (3.7), (3.8) and (3.11) follow from
(i).(3.9) and (3.10) follow from the identities

e−xe1(x) = e1(−x) ; e1(−x)e1(x) = e2(−x) + e2(x), x ∈ C.

�

In the following, we denote by Bs(H), the set of all bounded self-adjoint oper-
ators on H.

Definition 3.5. For ξ ∈ H and T ∈ Bs(H), denote

uξ,T := ie1(iT )ξ ; vξ,T = −ie1(−iT )ξ ; zξ,T := −〈ξ, e2(iT )ξ〉. (3.12)

The operator W (ξ, T ) defined by

W (ξ, T ) := Γ
(
uξ,T , e

iT , vξ,T , zξ,T
)

(3.13)

is called generalized Weyl operator over H.

Proposition 3.6. For all pair (ξ, T ) ∈ H×Bs(H),W (ξ, T ) is a unitary operator
on Γ(H) whose action on the exponential vectors is given, in the notation (3.12),
by

W (ξ, T )ψx = ezξ,T+〈vξ,T ,x〉ψuξ,T+eiT x. (3.14)

Proof. (3.14) follows from (3.2). Since the domain E is dense in Γ(H), unitarity is
equivalent to

〈W (ξ, T )ϕ,W (ξ, T )ψ〉 = 〈ϕ,ψ〉 ∀ ϕ,ψ ∈ E . (3.15)

Let x, y ∈ H, then (3.14) gives

〈W (ξ, T )ψx,W (ξ, T )ψy〉 = ezξ,T+〈vξ,T ,x〉+zξ,T+〈vξ,T ,y〉

× 〈ψuξ,T+eiT x, ψuξ,T+eiT y〉

= ezξ,T+zξ,T+〈x,vξ,T 〉+〈vξ,T ,y〉+〈uξ,T+eiT x,uξ,T+eiT y〉

= ehξ,T (x,y), (3.16)

where

hξ,T (x, y) = zξ,T + zξ,T + 〈x, vξ,T 〉+ 〈vξ,T , y〉+ 〈uξ,T + eiTx, uξ,T + eiT y〉.
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Using the fact that vξ,T = −e−iTuξ,T and the properties (3.7), (3.8) and (3.10),
one has

hξ,T (x, y) = −〈ξ, e2(iT )ξ〉 − 〈ξ, e2(−iT )ξ〉 − 〈eiTx, uξ,T 〉 − 〈uξ,T , eiT y〉
+ 〈uξ,T , eiT y〉+ 〈eiTx, uξ,T 〉+ 〈uξ,T , uξ,T 〉+ 〈eiTx, eiT y〉
= −〈ξ, (e2(iT ) + e2(−iT ))ξ〉+ 〈ξ, e1(−iT )e1(iT )ξ〉+ 〈x, y〉
= 〈x, y〉.

From the expression of hξ,T and from equation (3.16), one obtains

〈W (ξ, T )ψx,W (ξ, T )ψy〉 = e〈x,y〉 = 〈ψx, ψy〉

which can be extended by linearity to whole of E . �

Remark 3.7. We use Lie algebra notations. The standard notation for the gener-
alized Weyl operator, here denoted W (ξ, T ), is W (ξ, eiT ) (see [14]). Moreover, as
shown in Theorem (3.8) below, our definition of generalized Weyl operator differs
by a phase from the standard one. Our choice has the notational advantage that
it is better suited for the transition between the Lie algebra and the Lie group
language. For example, while in the standard notation the inverse (adjoint) of
W (u,U) is given by (

W (u,U)
)∗

=W (−U∗u,U∗),

in our notation it becomes (
W (u,U)

)∗
=W (−u,U∗)

or, in Lie algebra notations, identity (3.18) below.

In the following, we will use the notations <(z) and =(z), respectively, for real
and imaginary parts of a such complex number z.

Theorem 3.8. In the notations of Definition (3.5), and denotingWE the standard
generalized Weyl operator, one has

W (ξ, T ) = ei=(zξ,T )WE(uξ,T , e
iT ). (3.17)

Moreover, (
W (ξ, T )

)∗
=W (−ξ,−T ). (3.18)

Proof. We have

WE(uξ,T , e
iT ) = Γ

(
uξ,T , e

iT ,−(eiT )∗uξ,T ,−
1

2
‖ uξ,T ‖2

)
.

But

−(eiT )∗uξ,T = −e−iTuξ,T = vξ,T
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and

−1

2
‖ uξ,T ‖2 = −1

2
〈ie1(iT )ξ, ie1(iT )ξ〉

= −1

2
〈ξ, e1(−iT )e1(iT )ξ〉

= −1

2
〈ξ,

(
e2(iT ) + e2(−iT )

)
ξ〉

= −1

2

(
〈ξ,

(
e2(iT )ξ〉+ 〈ξ, e2(−iT )ξ〉

)
=

1

2

(
zξ,T + zξ,T

)
= <(zξ,T ). (3.19)

Therefore

WE(uξ,T , e
iT ) = Γ

(
uξ,T , e

iT , vξ,T ,<(zξ,T )
)

= Γ
(
uξ,T , e

iT , vξ,T , zξ,T

)
e−i=(zξ,T )

= e−i=(zξ,T )W (ξ, T ) (3.20)

which proves (3.17). To prove Eq.(3.18) notice that, from Eq. (3.17) and using
the fact that

z−ξ,−T = zξ,T , vξ,T = u−ξ,−T ,

one deduces that(
W (ξ, T )

)∗
= e−i=(zξ,T )

(
WE(uξ,T , e

iT )
)∗

= ei=(zξ,T )WE

(
− (eiT )∗uξ,T , (e

iT )∗
)

= ei=(zξ,T )WE

(
− e−iTuξ,T , e

−iT
)

= ei=(zξ,T )WE

(
vξ,T , e

−iT
)

= ei=(z−ξ,−T )WE

(
u−ξ,−T , e

−iT
)

= W (−ξ,−T ).

�

Remark 3.9. A more direct proof of (3.17) can be obtained, noting that the action
of the standard Weyl operator is given by

WE(uξ,T , e
iT )ψx = e−

1
2‖uξ,T ‖2−〈uξ,T ,eiT x〉ψuξ,T+eiT x

and that

〈uξ,T , eiTx〉 = 〈e−iTuξ,T , x〉 = −〈vξ,T , x〉.
Therefore, from Eq. (3.19) and (3.14), one obtains

WE(uξ,T , e
iT )ψx = e<(zξ,T )+〈vξ,T ,x〉ψuξ,T+eiT x = e−i=(zξ,T )W (ξ, T )ψx.
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Theorem 3.10. The operator valued function t 7−→ W (tξ, tT ) is a strongly con-
tinuous one-parameter unitary group with generator G(ξ, T ) which is the closure
of

H(ξ, T ) := A+(ξ) +A−(ξ) + Λ(T ). (3.21)

To prove the above theorem, we need the following lemmata.

Lemma 3.11. In the notation (3.12), let

ut := utξ,tT ; vt := vtξ,tT = −e−itTut ; zt := ztξ,tT , t ∈ R, (3.22)

then the following relations hold

us + eisTut = us+t, (3.23)

vt + e−itT vs = vs+t, (3.24)

zs + zt + 〈vs, ut〉 = zs+t. (3.25)

Proof. Define
fs(z) := se1(isz).

Then fs is analytic in z and

fs(z) + eiszft(z) = s
eisz − 1

isz
+ teisz

eitz − 1

itz
= (s+ t)e1(i(s+ t)z) = fs+t(z).

While ut = ift(T )ξ for all t ∈ R, then

us + eisTut = i
(
fs(T ) + eisT ft(T )

)
ξ = ifs+t(T )ξ = us+t (3.26)

which proves (3.23). From the definition of vt in (3.22) and from (3.23), one has

vt + e−itT vs = −
(
e−itTut + e−itT e−isTus

)
= −e−i(s+t)T

(
eisTut + us

)
= −e−i(s+t)Tut+s = vs+t

then (3.24) is proved. To prove (3.25), denote

gs,t(z) = s2e2(isz) + t2e2(itz) + ste1(isz)e1(itz).

Clearly gs,t is analytic and it is not difficult to see that

gs,t(z) = (s+ t)2e2(i(s+ t)z)

then

zs + zt + 〈vs, ut〉 = −〈sξ, e2(isT )sξ〉 − 〈tξ, e2(itT )tξ〉
+ 〈−ie1(−isT )sξ, ie1(itT )tξ〉
= −〈ξ, s2e2(isT )ξ〉 − 〈ξ, t2e2(itT )ξ〉
− 〈ξ, ste1(isT )e1(itT )ξ〉
= −〈ξ,

(
s2e2(isT ) + t2e2(itT ) + ste1(isT )e1(itT )

)
ξ〉

= −〈ξ, gs,t(T )ξ〉
= −〈ξ, (s+ t)2e2(i(s+ t)T )ξ〉
= −〈(s+ t)ξ, e2(i(s+ t)T )(s+ t)ξ〉
= zs+t

hence (3.25) is proved. �



136 LUIGI ACCARDI, HABIB OUERDIANE, AND HABIB REBEI

Lemma 3.12. Let ut, vt, zt are as in Lemma (3.11), then

lim
t→0

ut = lim
t→0

vt = lim
t→0

zt = 0 (3.27)

and, for all x, y ∈ H, the function

t ∈ R 7→ h(t) := zt + 〈vt, x〉+ 〈y, ut〉+ 〈y, eitTx〉

is derivable at t = 0 and

h′(0) = i(〈ξ, x〉+ 〈y, ξ〉+ 〈Ty, x〉). (3.28)

Proof. We have

‖ut‖ =| t | ‖e1(itT )ξ‖ ≤| t | ‖ξ‖e1
(
| t | ‖T‖

)
−→ 0, as t→ 0

and

‖vt‖ = ‖ − e−itTut‖ = ‖ut‖ −→ 0, as t→ 0

and

| −t2〈ξ, e2(itT )ξ〉 |≤ t2‖ξ‖2e2
(
| t | ‖T‖

)
−→ 0, as t→ 0.

For the second part, note that h(0) = 〈y, x〉, then

h(t)− h(0)

t
=

1

t

(
− t2〈ξ, e2(itT )ξ〉+ it〈e1(−itT )ξ, x〉+ it〈y, e1(itT )ξ〉

+ 〈y, eitTx〉 − 〈y, x〉
)

= −t〈ξ, e2(itT )ξ〉+ i〈e1(−itT )ξ, x〉+ i〈y, e1(itT )ξ〉

+ 〈y, e
itT − 1

t
x〉.

Taking the limit as t → 0, one obtains h is derivable at t = 0 and Eq.(3.28)
holds. �

Proof. ( of Theorem 3.10).
We have already shown that W (ξ, T ) is unitary, for all ξ ∈ H, T ∈ Bs(H), so is for
W (tξ, tT ), t ∈ R. In the following we prove that:
-(a) W (sξ, sT )W (tξ, tT ) =W ((s+ t)ξ, (s+ t)T ), s, t ∈ R ;
-(b) the map t 7−→W (tξ, tT ) is strongly continuous.
For simplicity we use the notation:

W (t) :=W (tξ, tT ) = Γ
(
ut, e

itT , vt, zt
)
, t ∈ R (3.29)

then (a) follows from Lemma (3.11) because

W (s)W (t) = Γ
(
us, e

isT , vs, zs

)
Γ
(
ut, e

itT , vt, zt

)
= Γ

(
us + eisTut, e

isT eitT , vt + e−itT vs, zs + zt + 〈vs, ut〉
)

= Γ
(
us + eisTut, e

i(s+t)T , vt + e−itT vs, zs + zt + 〈vs, ut〉
)

= Γ
(
us+t, e

i(s+t)T , vs+t, zs+t

)
= W (s+ t).
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By the group property (a), the strong continuity is reduced to time zero. We prove
that, for all ψ ∈ Γ(H),

lim
t→0

‖W (t)ψ − ψ‖ = 0.

Let ψ = ψx, x ∈ H, then

‖W (t)ψ − ψ‖2 = 〈W (t)ψx − ψx,W (t)ψx − ψx〉

= ‖W (t)ψx‖2 − 2<
(
〈ψx,W (t)ψx〉

)
+ ‖ψx‖2

= 2‖ψx‖2 − 2<
(
ezt+〈vt,x〉〈ψx, ψut+eitT x〉

)
= 2e‖x‖

2

− 2<
(
ezt+〈vt,x〉e〈x,ut〉+〈x,eitT x〉

)
.

Using Lemma (3.11), one has

lim
t→0

〈vt, x〉 = lim
t→0

〈x, ut〉 = lim
t→0

zt = 0 ; lim
t→0

eitTx = x

then

lim
t→0

‖W (t)ψ − ψ‖2 = 0.

This limit can be extended by linearity to all ψ ∈ E . Finally an arbitrary element
ψ of Γ(H) is a limit of a sequence (ψn)n ∈ E . It follows that, for all ε > 0, there
is n0 ∈ N such that

‖ψn0 − ψ‖ ≤ ε/4.

This gives

‖W (t)ψ − ψ‖ = ‖W (t)(ψ − ψn0) + (W (t)ψn0 − ψn0) + (ψn0 − ψ)‖
≤ ‖W (t)(ψ − ψn0)‖+ ‖W (t)ψn0 − ψn0‖+ ‖ψn0 − ψ‖
= 2‖ψn0 − ψ‖+ ‖W (t)ψn0 − ψn0‖

≤ ε

2
+ ‖W (t)ψn0 − ψn0‖.

But we have already shown that lim
t→0

‖W (t)ψn0 − ψn0‖ = 0. Therefore for t suffi-

ciently small we have

‖W (t)ψn0 − ψn0‖ ≤ ε

2
.

This gives

‖W (t)ψ − ψ‖ ≤ ε

hence lim
t→0

W (t)ψ = ψ for all ψ ∈ Γ(H) which proves the property (b). By Stone’s

theorem, there is a self-adjoint operator G(ξ, T ), such that

W (t) = eitG(ξ,T ).

Let us prove that, in the notation (3.21)

H(ξ, T ) ⊂ G(ξ, T ). (3.30)
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Let x, y ∈ H, then

〈ψy,W (t)ψx〉 = ezt+〈vt,x〉〈ψy, ψut+eitT x〉

= ezt+〈vt,x〉e〈y,ut+eitT x〉

= ezt+〈vt,x〉+〈y,ut〉+〈y,eitT x〉

= eh(t), (3.31)

where h(t) is as in Lemma (3.12).
Taking the derivative of the left hand side of (3.31) at time zero, one obtains

d

dt

∣∣
t=0

(
〈ψy,W (t)ψx〉

)
= 〈ψy,

d

dt

∣∣
t=0

W (t)ψx〉

= 〈ψy,
d

dt

∣∣
t=0

eitG(ξ,T )ψx〉

= 〈ψy, iG(ξ, T )ψx〉. (3.32)

On the other hand the derivative of the right hand side of (3.31) gives

d

dt

∣∣
t=0

eh(t) = h′(0)eh(0) = i(〈ξ, x〉+ 〈y, ξ〉+ 〈Ty, x〉)e〈y,x〉. (3.33)

But we have

〈ψy, iH(ξ, T )ψx〉 = 〈ψy, i(A
+(ξ) +A−(ξ) + Λ(T ))ψx〉

= i
(
〈A−(ξ)ψy, ψx〉+ 〈ψy, A

−(ξ)ψx〉
+ 〈A−(Tx)ψy, ψx〉

)
= i

(
〈y, ξ〉+ 〈ξ, x〉+ 〈y, Tx〉

)
〈ψy, ψx〉

= i
(
〈y, ξ〉+ 〈ξ, x〉+ 〈y, Tx〉

)
e〈y,x〉. (3.34)

Combining Eqs.(3.31)–(3.34), one obtains

〈ψy, iH(ξ, T )ψx〉 = 〈ψy, iG(ξ, T )ψx〉 (3.35)

this gives (3.30) which ends the proof. �
Lemma 3.13. Let D be the set of self-adjoint bounded operators on H with spec-
trum in [−π, π[

D := {T ∈ Bs(H); σ(T ) ⊂ [−π, π[}
Then for all unitary operator U ∈ U(H) there exists a unique operator Tπ ∈ D
such that

U = eiTπ .

Proof. Existence. Let U be a unitary operator. Since U is normal, the Von
Neumann algebra generated by U is abelian hence, by a theorem of Von Neumann
(see [17]), it is generated by a single self-adjoint operator T . Denote F : R →
[−π, π[ the map defined by

F (x) := (x mod 2π) ; x ∈ R.
Clearly F is a measurable, bounded, real valued function on R. Therefore Tπ :=
F (T ), defined by the spectral theorem, is bounded, self-adjoint and by construction
satisfies

eiT = eiTπ = U.



LÉVY PROCESSES THROUGH TIME SHIFT ON OSCILLATOR WEYL ALGEBRA 139

Moreover, denoting T =
∫
xET (dx) the spectral decomposition of T , one has

‖Tπ‖2 =

∫
R
| F (x) |2 dET (x)

≤ π2

∫
R
dET (x)

= π2.

Uniqueness. Let T1 ∈ D be an operator such that eiT1 = eiTπ = U . Then the
spectra of T1 and Tπ can differ only by multiples of 2π. Since both T1 and Tπ are
in D, this implies that T1 = F (T1) = F (Tπ) = Tπ. �

Theorem 3.14. For all (ξj , Tj) ∈ H × Bs(H); j = 1, 2, the generalized Weyl
relations hold

W (ξ1, T1)W (ξ2, T2) = eiγξ,TW (ξ, T ) (3.36)

where the pair (ξ, T ) ∈ H × D and γξ,T ∈ R are uniquely determined by the
relations

eiT1eiT2 = eiT , (3.37)

e1(iT )ξ = e1(iT1)ξ1 + eiT1e1(iT2)ξ2, (3.38)

γξ,T = i
(
〈ξ1, e2(iT1)ξ1〉+ 〈ξ2, e2(iT2)ξ2〉 − 〈ξ, e2(iT )ξ〉

+ 〈e1(−iT1)ξ1, e1(iT2)ξ2〉
)
. (3.39)

Remark 3.15. The reality of γξ,T , given by Eq. (3.39), i.e.

S := −(iγξ,T + iγξ,T ) = 0

can be directly checked as follows: From Eqs. (3.7) and (3.8), one has, for all
self-adjoint bounded operator T on H,(

e1(iT )
)∗

= e1(−iT ) ;
(
e2(iT )

)∗
= e2(−iT ).

Then

〈ξ, e2(iT )ξ〉 = 〈e2(iT )ξ, ξ〉 = 〈ξ, e2(−iT )ξ〉 ∀ T ∈ Bs(H), ξ ∈ H.

From Eq. (3.39), one has

S =
(
〈ξ1, e2(iT1)ξ1〉+ 〈ξ2, e2(iT2)ξ2〉 − 〈ξ, e2(iT )ξ〉

+ 〈e1(−iT1)ξ1, e1(iT2)ξ2〉
)
+

(
〈ξ1, e2(−iT1)ξ1〉+ 〈ξ2, e2(−iT2)ξ2〉

− 〈ξ, e2(−iT )ξ〉+ 〈e1(iT2)ξ2, e1(−iT1)ξ1〉
)

= 〈ξ1,
(
e2(iT1) + e2(−iT1)

)
ξ1〉+ 〈ξ2,

(
e2(iT2) + e2(−iT2)

)
ξ2〉

− 〈ξ,
(
e2(iT ) + e2(−iT )

)
ξ〉+ 〈e1(−iT1)ξ1, e1(iT2)ξ2〉

+ 〈e1(iT2)ξ2, e1(−iT1)ξ1〉. (3.40)
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Using Eqs. (3.9) and (3.10), Eq. (3.40) becomes

S = 〈ξ1, e1(−iT1)e1(iT1)ξ1〉+ 〈ξ2, e1(−iT2)e1(iT2)ξ2〉 − 〈ξ, e1(−iT )e1(iT )ξ〉
+ 〈e−iT1e1(iT1)ξ1, e1(iT2)ξ2〉+ 〈e1(iT2)ξ2, e−iT1e1(iT1)ξ1〉
= 〈e1(iT1)ξ1, e1(iT1)ξ1〉+ 〈e1(iT2)ξ2, e1(iT2)ξ2〉 − 〈e1(iT )ξ, e1(iT )ξ〉
+ 〈e1(iT1)ξ1, eiT1e1(iT2)ξ2〉+ 〈eiT1e1(iT2)ξ2, e1(iT1)ξ1〉. (3.41)

Denote
η = e1(iT )ξ, ηj = e1(iTj)ξj ; j = 1, 2. (3.42)

Then Eq.(3.38) becomes

η = η1 + eiT1η2 (3.43)

and from equation (3.41), one obtains

S = ‖ η1 ‖2 + ‖ η2 ‖2 − ‖ η ‖2 +〈η1, eiT1η2〉+ 〈eiT1η2, η1〉
= ‖ η1 ‖2 + ‖ η2 ‖2 − ‖ η1 + eiT1η2 ‖2 +〈η1, eiT1η2〉+ 〈eiT1η2, η1〉
= ‖ η1 ‖2 + ‖ η2 ‖2 −

(
‖ η1 ‖2 + ‖ eiT1η2 ‖2 +〈η1, eiT1η2〉+ 〈eiT1η2, η1〉

)
+ 〈η1, eiT1η2〉+ 〈eiT1η2, η1〉
= 0.

Proof. ( of Theorem 3.14).
Let (ξj , Tj) ∈ H × Bs(H); j = 1, 2.
Using the notations of Eq. (3.12) in Lemma (3.6), one obtains

W (ξ1, T1)W (ξ2, T2) = Γ(uξ1,T1 , e
iT1 , vξ1,T1 , zξ1,T1)Γ(uξ2,T2 , e

iT2 , vξ2,T2 , zξ2,T2).
(3.44)

Denote
uj = uξj ,Tj ; vj = vξj ,Tj ; zj = zξj ,Tj ; j = 1, 2.

Using (3.3), Eq. (3.44) becomes

W (ξ1, T1)W (ξ2, T2) = Γ
(
u1 + eiT1u2, e

iT1eiT2 , v2 + e−iT2v1, z1 + z2 + 〈v1, u2〉
)
.

(3.45)
While eiT1eiT2 is unitary then by Lemma (3.13) there exists a unique operator
T ∈ D such that Eq. (3.37) holds. But it is well known (see [16]) that the

Bernoulli series
∑
n≥0

bn
n!
xn is convergent with radius equal to 2π and with sum

e−1(x) :=
x

ex − 1
=

1

e1(x)
; | x |< 2π.

It follows that for all operator T ∈ B(H) with norm ‖T‖ < 2π, e1(T ) is invertible
in B(H) with inverse equal to e−1(T ). Since σ(iT ) ⊂ i[−π, π[, then iT is of norm
less than 2π. From these prescriptions e1(iT ) is invertible with inverse e−1(iT ).
Denote ξ, the unique vector of H defined by

ξ := e−1(iT )
(
e1(iT1)ξ1 + eiT1e1(iT2)ξ2

)
so that Eq. (3.38) holds and

u1 + eiT1u2 = i
(
e1(iT1)ξ1 + eiT1e1(iT2)ξ2

)
= ie1(iT )ξ =: uξ,T . (3.46)
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On the other hand, we have

v2 + e−iT2v1 = −i
(
e1(−iT2)ξ2 + e−iT2e1(−iT1)ξ1

)
= −i

(
e−iT2e1(iT2)ξ2 + e−iT2e−iT1e1(iT1)ξ1

)
= −ie−iT2e−iT1

(
eiT1e1(iT2)ξ2 + e1(iT1)ξ1

)
= −i(eiT1eiT2)−1e1(iT )ξ

= −i(eiT )−1e1(iT )ξ

= −ie−iT e1(iT )ξ

= −ie1(−iT )ξ
= : vξ,T . (3.47)

Let γξ,T ∈ C defined by

iγξ,T := z1 + z2 + 〈v1, u2〉 − zξ,T , (3.48)

where zξ,T be as in (3.12). Combining (3.45) with Eqs.(3.46)–(3.48), we deduce
that

W (ξ1, T1)W (ξ2, T2) = Γ(uξ,T , e
iT , vξ,T , zξ,T )e

iγξ,T

= eiγξ,TW (ξ, T ). (3.49)

�

Remark 3.16. The set of all generalized Weyl operators

W := {W (ξ, T ) ; ξ ∈ H, T ∈ Bs(H)}

is not linearly independent. In fact, for example, W (0,−π1) =W (0, π1).

In the following we will look for a domain D, of pairs of the form (ξ, T ) with the
property that the associated Weyl operatorsW (ξ, T ) are linearly independent and
which is maximal with respect to this property. To this goal define the equivalence
relation ∼, on H× Bs(H), by

(ξ1, T1) ∼ (ξ2, T2) ⇐⇒ there exists α ∈ C ; such thatW (ξ2, T2) = αW (ξ1, T1)

(in this case necessarily |α| = 1). Denote by
(
H × Bs(H)

)
/ ∼, the set of equiv-

alence classes for this relation. For all equivalence class, we can choose only one
representant (ξ, T ) in some domain D ⊂ H × Bs(H), hence we construct a bijec-
tion between D and

(
H× Bs(H)

)
/ ∼. Note that several choices of domain D are

possible. Intuitively there is a some domain D0 which is chosen in a natural way.
This domain will be called the principal domain of generalized Weyl operators, but
here we will not discuss this choice. (see [9] for an example of principal domain of
quadratic Weyl operator). In the spirit to deal with some properties of generalized
Weyl operators, such as independence linearity, we assume, in the following, that
a such domain D is fixed. Clearly, from above prescriptions, that the linear span
of W, coincides with the linear span of the set of W (ξ, T ), of which (ξ, T ) in D.
Note also that this space is in fact a ∗–algebra and this comes from theorems (3.8)
and (3.14).
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Definition 3.17. The C∗–subalgebra of B
(
Γ(H)

)
, generated by W is called os-

cillator Weyl algebra over H, we denote it by Wg(H).

Lemma 3.18. For all (ξj , Tj) ∈ D; j = 1, 2,(
(ξ1, T1) = (ξ2, T2)

)
⇐⇒

(
uξ1,T1 = uξ2,T2 and e

iT1 = eiT2

)
.

Proof. Let (ξj , Tj) ∈ D; j = 1, 2 such that

uξ1,T1 = uξ2,T2 ; eiT1 = eiT2 .

Then

vξ2,T2 : = −ie1(−iT2)ξ2 = −e−iT2
(
ie1(iT2)ξ2

)
= −e−iT2uξ2,T2 = −e−iT1uξ1,T1

= vξ1,T1

this gives

W (ξ2, T2) : = Γ(uξ2,T2 , e
iT2 , vξ2,T2 , zξ2,T2) = Γ(uξ1,T1 , e

iT1 , vξ1,T1 , zξ2,T2)

= ezξ2,T2
−zξ1,T1Γ(uξ1,T1 , e

iT1 , vξ1,T1 , zξ1,T1)

= ezξ2,T2
−zξ1,T1W (ξ1, T1)

which implies (ξ2, T2) ∼ (ξ1, T1) but (ξ1, T1), (ξ2, T2) ∈ D, then (ξ1, T1) = (ξ2, T2).
�

Lemma 3.19. Let j = 1, ...,m, m ∈ N∗ and (ξj , Tj) ∈ D satisfying

(ξj , Tj) 6= (ξk, Tk) ∀j, k = 1, ...,m, j 6= k. (3.50)

Denote

fj : H 3 y 7−→ fj(y) = uξj ,Tj + eiTjy

then, there exists x ∈ H separating maps fj,

(i.e. fj(x) 6= fk(x) ∀ j, k = 1, ...,m, j 6= k.)

Proof. From condition (3.50) and Lemma (3.18), we deduce that for j, k = 1, ...,m,
j 6= k,

uξj ,Tj 6= uξk,Tk
or eiTj 6= eiTk . (3.51)

Denoting

J = {(j, k) ∈ {1, ...,m}2 , Ej,k := eiTj − eiTk 6= 0}
-a) If J = ∅, then for all j, k = 1, ...,m, one has eiTj = eiTk then from (3.51), one
has (uξj ,Tj 6= uξk,Tk

∀ j 6= k), then fj(x) 6= fk(x) ∀j 6= k ∀x ∈ H. Hence all x of H
separates maps fj . -b) If J 6= ∅, we consider

F =
⋃

(j,k)∈J

ker(Ej,k).

-b.i) Let us prove, in a first step, that F 6= H. By contradiction, assuming that
F = H. While the reunion of finite subspaces is a vectorial space only if, one
among them contains all the others, then there exists some (j0, k0) ∈ J such that

H =
⋃

(j,k)∈J

ker(Ej,k) = ker(Ej0,k0)
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This gives

eiTj0 = eiTk0

then by definition of J, (j0, k0) /∈ J absurd. -b.ii) In a second step, assuming by
contradiction, that

∀x ∈ H\F , ∃ (j, k) ∈ J, fj(x) = fk(x). (H)

Fix x ∈ H\F and consider xn = x
n ∈ H\F , n ≥ 1. ( it is easily checked that

x
n ∈ H\F ). By hypothesis (H), there exists (for xn) a pair (jn, kn) ∈ J such that

fjn(xn) = fkn(xn). (3.52)

While J is a finite set then, the sequence (jn, kn) has a stationary subsequence,
what we take the same notation. Then for n sufficiently big, (jn, kn) = (j0, k0) ∈ J
and Eq. (3.52), becomes

fj0(xn) = fk0(xn)

which gives

uξj0 ,Tj0
− uξk0

,Tk0
= (eiTk0 − eiTj0 )xn. (3.53)

Taking the limit as n −→ +∞, one has

uξj0 ,Tj0
− uξk0

,Tk0
= 0

and Eq. (3.53) becomes

(Ej0,k0)xn := (eiTk0 − eiTj0 )xn = 0.

Then xn ∈ ker(Ej0,k0) and also x = nxn ∈ ker(Ej0,k0) ⊂ F which is not true by
definition of x, (i.e. absurd). From above prescriptions, we conclude that there
exists x0 ∈ H\F , separating maps fj corresponding to all pair (j, k) ∈ J . The case
for which the pair (j, k) /∈ J , is similar to the one for which J = ∅. In Conclusion,
x0 separates maps corresponding to all pair (j, k), j, k = 1, ...,m, j 6= k. �

Proposition 3.20. The set of generalized Weyl operators

W(D) := {W (ξ, T ), (ξ, T ) ∈ D}
is linearly independent.

Proof. Let (ξj , Tj) ∈ D, αj ∈ C, j = 1, ...,m, m ≥ 1, satisfying conditions (3.50)
of Lemma (3.19) and

m∑
j=1

αjW (ξj , Tj) = 0. (3.54)

By Lemma (3.19), there exists x0 ∈ H separating maps fj . Applying Eq. (3.54)
to exponential vector ψx0

, one obtains
m∑
j=1

αje
zξj,Tj

+<vξj,Tj
,x0>ψfj(x0) = 0 (3.55)

Since the exponential vectors are linearly independent, then

αje
zξj,Tj

+<vξj,Tj
,x0> = 0

which implies αj = 0 for all j = 1, ...,m. �
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4. Lie Algebra Time Shift

4.1. Lie algebra time shift as ∗–homomorphism of Lie algebras. Let L
be a complex ∗–Lie algebra. Let

{X+
α , X

−
α , X

0
β ; α ∈ F ; β ∈ F0}

where F, F0 are disjoint sets, be set of generators of L satisfying the following
conditions:

(X0
β)

∗ = X0
β ∀β ∈ F0,

(X+
α )∗ = X−

α ∀α ∈ F.

We assume that there exists a single central element, denoted 10, among the gen-
erators and that it is of X0-type (i.e. self-adjoint). We will denote Cγ

α,β(ε, ε
′, ε”)

the structure constants of L with respect to the generators (Xε
α), i.e. with α, β ∈

F ∪ F0, ε, ε
′, ε′′ ∈ {+,−, 0}, and assuming summation over repeated indices:

[Xε
α, X

ε′

β ] =
∑
γ∈F0

Cγ
α,β(ε, ε

′, 0)X0
γ +

∑
γ∈F

Cγ
α,β(ε, ε

′,+)X+
γ +

∑
γ∈F

Cγ
α,β(ε, ε

′,−)X−
γ .

In the following we will consider only locally finite Lie algebra, i.e. such that, for
any pair α, β ∈ F ∪ F0 only a finite number of structure constants Cγ

α,β(ε, ε
′, ε”)

are different from zero.

Definition 4.1. Let be given:
- a ∗–Lie algebra L with canonical set of generators

{Xε
α, ε ∈ {+,−, 0}, α ∈ F ∪ F0}

with Lie-bracket as in the above definition
- a measurable space (S,B(S))
- a ∗–sub-algebra C ⊂ L∞

C (S,B(S)).
The current algebra over S of {L, Xε

α}, with test function algebra C, is the ∗–Lie
algebra L(S, C) defined as follows:
– as a vector space L(S, C) is the algebraic linear span of the family

{Xε
α(f), f ∈ C, ε ∈ {+,−, 0}, α ∈ F0 ∪ F}

and the generators are independent in the sense that∑
ε,α

Xε
α(fε,α) = 0 ; ⇐⇒ fε,α = 0 ∀ε, α

– the map f 7−→ Xε
α(f) is linear for ε = +, 0 and anti–linear for ε = −

– the Lie–brackets are defined by

[Xε
α(f), X

ε′

β (g)] =
∑
γ,ε′′

Cγ
α,β(ε, ε

′, ε′′)Xε′′

γ (fεε
′′
gε

′ε′′)

where, for a test function f , we use the notation

fε = f ; if ε = +, 0 ; fε = f ; if ε = −
and operations

εε′ = ε′ε =

{
+, if (ε, ε′) ∈ {(+, 0), (+,+), (0, 0), (−,−)} ;
−, if (ε, ε′) ∈ {(+,−), (0,−)}
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– the involution is defined by

(Xε
α(f))

∗ := Xε∗

α (fεα)

with

+∗ := − ; −∗ := + ; 0∗ := 0 ; εα = +, if α ∈ F ; εα = −, if α ∈ F0.

Example 4.2. The one-mode Heisenberg Lie algebra heis(1), is the complex ∗–Lie
algebra generated as vector space by a+, a−, 1 with involution 1∗ = 1 ; (a+)∗ =
a− and Lie bracket

[a−, a+] = 1 ; [a±, 1] = 0.

The current algebra of heis(1) over R is the Lie algebra generated by the set

{a+(f), a−(f), 1 ; f ∈ C := L2(R) ∩ L∞(R)}

which are linearly independent in the sense that, ∀f, g ∈ C, λ ∈ C

a+(f) + a−(g) + λ1 = 0 ⇒ f = g = 0, λ = 0.

The involution and the Lie bracket are given by

(a+(f))∗ = a−(f)

and

[a−(f), a+(g)] = 〈f, g〉1 ; [a+(f), a+(g)] = [a−(f), a−(g)] = [a±(f), 1] = 0.

Definition 4.3. A unitary representation of a Lie algebra L is a triple:

{H, π,D},

where: D ⊆ H is a total subset of L which is a core for each π(a) (a ∈ L)

π : L → La(D) (adjointable linear maps from lin-span(D) → H)

π(a)+, i.e. the H–adjoint of π(a) is defined on D and

π(a)+ = π(a∗),

π([a, b]) = [π(a), π(b)] ∀ a, b ∈ L,
where the identity is meant weakly on D.

Definition 4.4. Let L be a real or complex ∗–Lie algebra with center Centre(L).
A central decomposition of L is a direct sum of vector spaces

L = Centre(L)⊕ L0,

where L0 is a sub–Lie algebra of L.

Remark 4.5. Let L and G be a real or complex ∗–Lie algebras and Φ : L −→ G a
∗–isomorphism of Lie algebras. Clearly if L has a central decomposition

L = Centre(L)⊕ L0,

then G has the central decomposition

G = Φ(Centre(L))⊕ Φ(L0).



146 LUIGI ACCARDI, HABIB OUERDIANE, AND HABIB REBEI

In the following all Lie algebras are identified with their images under the cor-
responding unitary representations and these are omitted from the notations. We
assume that all Lie algebras have a scalar center, i.e. with central decomposition

L = C10 ⊕ L0.

If given a ∗–Lie algebra, denote by Ls the real subspace of L, of self-adjoint non
central elements, i.e. such that Ls ⊂ L0 and a∗ = a for all a ∈ Ls. For I ⊂ R,
denote by CI , the space of test functions in C with support in I.

Definition 4.6. Let be given:
- a complex ∗–Lie algebra L with scalar center C10,
- a space of test functions C,
- a current algebra L(R, C) of L over R.
A Lie algebra time shift is a family of homomorphisms of ∗–Lie algebras

ĵt : L −→ L⊗ 1 + 10 ⊗ L([0, t], C[0,t]) (4.1)

with the following structure:

ĵt(X) := T (X)⊗ 1 + 10 ⊗ T[0,t](X) (4.2)

with the property that the exponential map exists and the map jt, defined by

jt(e
iX) := eiĵt(X) , X ∈ Ls (4.3)

is well defined and extends to a ∗–homomorphism of the C∗–algebra generated by
the set

{eiX , X ∈ Ls}.

Note that in the above definition the map T must be a ∗–Lie algebra homo-
morphism of L and T[0,t] is a ∗–Lie algebra homomorphism from L to its current
algebra over [0, t]. In the following we take T = Id, i.e. T (X) = X, for all X ∈ L.

4.2. An example of Lie algebra time shift of Losc(H). In this section we
give an example of Lie algebra time shift of the oscillator Lie algebra.

Definition 4.7. The oscillator Lie algebra algebra over an Hilbert space H, is the
complex ∗–Lie algebra Losc(H) generated as vector space by

A+(u), A−(u),Λ(T ), 10 (the identity on H), u ∈ H \ {0}, T ∈ B(H) \ {0}
which are linearly independent and satisfying the commutation relations from (2.1)
to (2.4).

In the definition (4.6), taking L = Losc(H) and sets of indices F = H \
{0}, F0 = B(H). Losc(H), is generated as vector space by the set

{Xε
α ; α ∈ F ∪ F0 ; ε = +,−, 0},

where: If α = u ∈ F , X±
α = A±(u) and if α = T ∈ F0 \ {0}, X0

α = Λ(T ) and
X0

0 = 10. The current algebra, Losc(R,B(R)), of Losc(H) over R is given by the
following -the space of test functions is C = L2(R) ∩ L∞(R), -for all f ∈ C,

Xε
α(f) =

 A±(f ⊗ u), if ε = ± and α = u ∈ F ;
Λ(Mf ⊗ T ), if ε = 0 and α = T ∈ F0 \ {0};
(
∫
f(x)dx)10, if ε = 0 and α = 0 ,
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where the operatorMf , is the multiplication by f . Since f⊗u ∈ H′ := L2(R)⊗H ≡
L2(R,H) and Mf ⊗ T acts on H′, the representation space of this current algebra
is

Γ(L2(R)⊗H) ≡ Γ(L2(R,H)).

If f = χ[0,t], denote X
ε
t (α) := Xε

α(χ[0,t]), then we have

A+
t (u) = A+(χ[0,t] ⊗ u) ; A−

t (u) = A−(χ[0,t] ⊗ u) ; Λt(T ) = Λ(Mχ[0,t]
⊗ T ).

(4.4)
This shows clearly, with these notations, that the operators A±

t (u) and Λt(T ) are
in the current algebra Losc([0, t], C[0,t]).

The Lie algebra time shift can be defined by its action on generators of Losc(H)
which takes the form:

ĵt(X
ε
α) = Xε

α ⊗ 1 + 10 ⊗
∑
γ,ε′

Xε′

t (γ). (4.5)

Several choices of ∗–homomorphisms of Lie algebras are possible. In our case, we
consider only a class of ∗–Lie algebra homomorphisms and we study in which cases
they are a Lie algebra time shifts.

To this goal, let us fix:
- (i) a continuous unital ∗–homomorphism ρ : B(H) −→ B(H),
- (ii) a surjective ρ–1–cocycle, i.e. a linear map δ : B(H) −→ H with the property

δ(T ′T ) = ρ(T ′)δ(T ) ∀T, T ′ ∈ B(H). (4.6)

Then the cocycle property implies that the linear functional L : B(H) −→ C,
defined by

L(T ) := 〈δ(1), δ(T )〉 ∀T ∈ B(H) (4.7)

is hermitian and satisfies:

L(TT ′) = 〈δ(T ∗), δ(T ′)〉 ∀T, T ′ ∈ B(H). (4.8)

In fact we have

L(T ) = 〈δ(T ), δ(1)〉 = 〈ρ(T )δ(1), δ(1)〉 = 〈δ(1), ρ(T ∗)δ(1)〉
= 〈δ(1), δ(T ∗)〉 = L(T ∗)

and

L(TT ′) = 〈δ(1), δ(TT ′)〉 = 〈δ(1), ρ(T )δ(T ′)〉 = 〈ρ(T ∗)δ(1), δ(T ′)〉
= 〈δ(T ∗), δ(T ′)〉.

Example 4.8. Let u be a fixed vector in H. Taking ρ(T ) := T and δ(T ) = ρ(T )u,
one finds L(T ) = 〈u, ρ(T )u〉.
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With the following choices:

ĵt(A
+(ξ)) := A+(ξ)⊗ 1 + 10 ⊗

(
A+

t (T1ξ) +A−
t (T2ξ)

)
, (4.9)

ĵt(A
−(ξ)) := A−(ξ)⊗ 1 + 10 ⊗

(
A+

t (T2ξ) +A−
t (T1ξ)

)
, (4.10)

ĵt(Λ(T )) := Λ(T )⊗ 1 + 10 ⊗
(
A+

t (δ(T )) +A−
t (δ(T

∗)) + Λt(ρ(T ))

+ tL(T )1
)
, (4.11)

ĵt(10) = 10 ⊗ 1 + 10 ⊗Rt, (4.12)

ĵt will be a R–linear ∗–map whenever T1, T2 are R–linear operators on H and Rt

is a self-adjoint operator acting on Γ(L2(R,H)).

Proposition 4.9. The map ĵt, defined by the equations from (4.9) to (4.12), is a
∗–Lie algebra homomorphism if and only if T1 = T2 = 0 and Rt = 0 for all t ≥ 0.
In this case, denoting

Ht(ξ, T ) := A+
t (ξ) +A−

t (ξ) + Λt(T ) (4.13)

one has

ĵt
(
H(ξ, T )

)
= H(ξ, T )⊗ 1+ 10 ⊗

(
Ht

(
δ(T ), ρ(T )

)
+ tL(T )1

)
∀(ξ, T ) ∈ H×B(H).

(4.14)

Proof. The ∗–property is easily verified from the construction. The map ĵt is a
∗–Lie algebra morphism if and only if for all X,Y ∈ {A+(ξ), A−(ξ),Λ(T ), 10}, one
has

ĵt([X,Y ]) = [ĵt(X), ĵt(Y )],

this is equivalent to the following conditions:

〈ξ, η〉Rt = t
(
〈T1ξ, T1η〉 − 〈T2η, T2ξ〉

)
, (4.15)

〈T2ξ, T1η〉 = 〈T2η, T1ξ〉, (4.16)

ρ(T )T1ξ = T1ξ, (4.17)

ρ(T ∗)T2ξ = −T2ξ, (4.18)

〈δ(T ∗), T1ξ〉 = 〈T2ξ, δ(T )〉 (4.19)

for all ξ, η ∈ H and T ∈ B(H). Taking T = 1 (the identity of B(H)) in (4.18),
since ρ(1) = 1, it follows that T2 = 0. Therefore (4.19) implies that also T1 = 0
because δ is surjective. From this we see that (4.15) implies that Rt = 0 for all

t ≥ 0. Given the above, from the real linearity of ĵt and the notation (4.13), one
sees that Eq. (4.14) is the sum of (4.9), (4.10) and (4.11). �

Defining a map jt on the set W(D) by the following:

jt
(
W (ξ, T )

)
= jt

(
eiH(ξ,T )

)
:= eiĵt(H(ξ,T )). (4.20)

Then

jt
(
W (ξ, T )

)
= e

i
(
H(ξ,T )⊗1

)
+i

(
10⊗

(
Ht(δ(T ),ρ(T ))+tL(T )1

))
= eiH(ξ,T ) ⊗ eiHt(δ(T ),ρ(T ))eitL(T )

= W (ξ, T )⊗Wt

(
δ(T ), ρ(T )

)
eitL(T ), (4.21)
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where we have used the notation

Wt(ξ, T ) := eiHt(ξ,T ).

Note that from definition of D, the map jt is well defined by Eq. (4.20). Since
W(D) is a linearly independent set, then jt can be extended by linearity to whole
the linear span of W(D) and we have the following theorem.

Theorem 4.10. The action of jt given by (4.21) holds also for all (ξ, T ) ∈ H ×
Bs(H). Moreover, jt extends to a ∗–isomorphism from the C∗–algebra Wg(H) onto

its image. Furthermore the map ĵt is a Lie algebra time shift.

For the proof of this theorem we need the following lemma.

Lemma 4.11. Let f(z) =
∑

n≥0 anz
n be an entire function and ρ and δ as in

(4.6). Then we have:
(i) For all T ∈ B(H),

f(ρ(T )) = ρ(f(T )). (4.22)

-(ii) For all T ∈ B(H), ξ ∈ H,
f(χ[0,t] ⊗ T )(χ[0,t] ⊗ ξ) = χ[0,t] ⊗ f(T )ξ. (4.23)

Proof. Note that from Lemma (3.4), ρ(f(T )) and f(ρ(T )) are well-defined. More-
over, since ρ is continuous,
-(i)

f(ρ(T )) =
∑
n≥0

an
(
ρ(T )

)n
=

∑
n≥0

anρ(T
n)

(continuity) = ρ
(∑
n≥0

anT
n
)
= ρ(f(T )),

-(ii)

f(χ[0,t] ⊗ T )(χ[0,t] ⊗ ξ) =
∑
n≥0

an
(
χ[0,t] ⊗ T

)n
(χ[0,t] ⊗ ξ)

=
∑
n≥0

anχ[0,t] ⊗ Tnξ = χ[0,t] ⊗
∑
n≥0

anT
nξ

= χ[0,t] ⊗ f(T )ξ.

�
Proof. (of Theorem 4.10).

Step I. In this Step we will prove the first part of Theorem. Let (ξ, T ) ∈ D then

jt

(
W (ξ, T )

)
= W (ξ, T )⊗Wt

(
δ(T ), ρ(T )

)
eitL(T )

= W (ξ, T )⊗ Γ(Ut, e
iTt , Vt, Zt)e

itL(T ), (4.24)

where

Tt = χ[0,t] ⊗ ρ(T ) , Ut = ie1(iTt)
(
χ[0,t] ⊗ δ(T )

)
, Vt = −e−iTtUt

and
Zt = −〈χ[0,t] ⊗ δ(T ), e2(iTt)

(
χ[0,t] ⊗ δ(T )

)
〉.
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Using Eqs. (4.22) and (4.23) in Lemma (4.11), we get

eiTt =
(
1⊗ 1

)
+
(
χ[0,t] ⊗ ρ(eiT − 1)

)
, (4.25)

Ut = e1

(
(χ[0,t] ⊗ ρ(iT )

)(
χ[0,t] ⊗ δ(iT )

)
= χ[0,t] ⊗ e1

(
ρ(iT )

)
δ(iT )

= χ[0,t] ⊗ ρ
(
e1(iT )

)
δ(iT ) = χ[0,t] ⊗ δ

(
e1(iT )iT

)
= χ[0,t] ⊗ δ(eiT − 1), (4.26)

Vt = −eχ[0,t]⊗ρ(−iT )
(
χ[0,t] ⊗ δ(eiT − 1)

)
= −χ[0,t] ⊗ ρ

(
e−iT

)
δ(eiT − 1)

= −χ[0,t] ⊗ δ
(
e−iT (eiT − 1)

)
= χ[0,t] ⊗ δ(e−iT − 1), (4.27)

Zt = −〈χ[0,t] ⊗ δ(T ), χ[0,t] ⊗ ρ
(
e2(iT )

)
δ(T )〉 = −t〈δ(T ), δ

(
e2(iT )T )

)
〉

= tL
(
e2(iT )(iT )

2
)
= tL(eiT − iT − 1). (4.28)

Injecting right-hand sides of Eqs. (4.26)–(4.28) in (4.24), one obtains

jt

(
W (ξ, T )

)
=W (ξ, T )⊗Γ

(
χ[0,t]⊗δ(eiT −1), eiTt , χ[0,t]⊗δ(e−iT −1), tL(eiT −1)

)
.

(4.29)
Note that from (4.25), arguments of exponential operator Γ in the right-hand side
of the above equation dependent of eiT . Now taking (ξ′, T ′) ∈ H × Bs(H) then
there exists a pair (ξ, T ) ∈ D such that W (ξ′, T ′) = eiαW (ξ, T ), α ∈ R. But

from definition of generalized Weyl operator given in Eq. (3.13) we get eiT = eiT
′
.

Then by linearity of jt we obtain

jt

(
W (ξ′, T ′)

)
= eiαjt

(
W (ξ, T )

)
= eiαW (ξ, T )⊗

Γ
(
χ[0,t] ⊗ δ(eiT − 1), eiTt , χ[0,t] ⊗ δ(e−iT − 1), tL(eiT − 1)

)
= W (ξ′, T ′)⊗

Γ
(
χ[0,t] ⊗ δ(eiT

′
− 1), eiT

′
t , χ[0,t] ⊗ δ(e−iT ′

− 1), tL(eiT
′
− 1)

)
= W (ξ′, T ′)⊗Wt

(
δ(T ′), ρ(T ′)

)
= eiĵt(H(ξ′,T ′) (4.30)

which proves that we can take the same expression of jt for all W (ξ, T ).

Step II. Assuming, provisionally, that for all ξ, ξ1, ξ2 ∈ H and T, T1, T2 ∈ Bs(H),
the following relations hold(

jt
(
W (ξ, T )

))∗
= jt

((
W (ξ, T )

)∗)
(4.31)

and

jt

(
W (ξ1, T1)W (ξ2, T2)

)
= jt

(
W (ξ1, T1)

)
jt

(
W (ξ2, T2)

)
, (4.32)
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then jt is a ∗–homomorphism from the ∗–algebra generated by the set of general-
ized Weyl operators onto At]. In fact if

w =
∑

1≤j≤n

αjWj ,

then

(jt(w))
∗ =

(
jt
(∑
1≤n

αjWj

))∗
=

∑
1≤j≤n

ᾱj

(
jt(Wj)

)∗
=

∑
1≤j≤n

ᾱjjt(W
∗
j )

= jt

( ∑
1≤j≤n

ᾱjW
∗
j

)
= jt

(
w∗). (4.33)

On the other hand, let w1 =
∑

1≤j≤n αjWj ; w2 =
∑

1≤j≤n βjWj , then

jt(w1w2) = jt

( ∑
1≤j,k≤n

αjβkWjWk

)
=

∑
1≤j,k≤n

αjβkjt
(
WjWk

)
=

∑
1≤j,k≤n

αjβkjt(Wj)jt(Wk) =
∑

1≤j≤n

αjjt(Wj)
∑

1≤k≤n

βkjt(Wk)

= jt(w1)jt(w2). (4.34)

Eqs. (4.33) and (4.34) imply that jt is a ∗–homomorphism. From the expres-
sion of jt in equation (4.21), we see that it is an injective map. Since jt is a
∗–homomorphism of ∗–algebra and identity preserving then it is automatically
continuous. Hence it can be extended to the C∗–algebra generated by the set of
Weyl operators Wg(H). Hence it is a ∗–isomorphism from Wg(H) onto its image.

Step III. Here, we prove the ∗–property (4.31). We have(
jt
(
W (ξ, T )

))∗
=

(
eiĵt(H(ξ,T ))

)∗
= e−i

(
ĵt(H(ξ,T ))

)∗

= e−iĵt

((
H(ξ,T )

)∗)
= e−iĵt

(
H(ξ,T )

)
= jt

(
e−iH(ξ,T )

)
= jt

((
W (ξ, T )

)∗)
.

Step IV. In this step we investigate to prove the multiplicative property (4.32).
From Theorem (3.14) and linearity of jt, we get

jt

(
W (ξ1, T1)W (ξ2, T2)

)
= jt

(
eiγξ,TW (ξ, T )

)
= eiγξ,T jt

(
W (ξ, T )

)
= eiγξ,TW (ξ, T )⊗ Γ

(
Ut, e

iTt , Vt, ζt
)
, (4.35)

where eiTt , Ut and Vt are as in Eqs. (4.25)–(4.27) and ζt = tL(eiT − 1). Similarly
we obtain

jt

(
W (ξ1, T1)

)
jt

(
W (ξ2, T2)

)
=

(
W (ξ1, T1)⊗ Γ

(
U

(1)
t , eiT

(1)
t , V

(1)
t , ζ

(1)
t

))
×

(
W (ξ2, T2)⊗ Γ

(
U

(2)
t , eiT

(2)
t , V

(2)
t , ζ

(2)
t

))
= eiγξ,TW (ξ, T )⊗

[
Γ
(
U

(1)
t , eiT

(1)
t , V

(1)
t , ζ

(1)
t

)
× Γ

(
U

(2)
t , eiT

(2)
t , V

(2)
t , ζ

(2)
t

)]
,
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where U
(j)
t , eiT

(j)
t , V

(j)
t and ζ(j) ; j = 1, 2 are as Ut, e

iTt , Vt and ζt respectively.
Using Lemma (3.3), we get

jt

(
W (ξ1, T1)

)
jt

(
W (ξ2, T2)

)
= eiγξ,TW (ξ, T )⊗ Γ

(
U ′, eiT

′
, V ′, ζ ′

)
, (4.36)

where

U ′ = U
(1)
t + eiT

(1)
t U

(2)
t ; eiT

′
= eiT

(1)
t eiT

(2)
t ; V ′ = V

(2)
t + e−iT

(2)
t V

(1)
t

and

ζ ′ = ζ
(1)
t + ζ

(2)
t + 〈V (1)

t , U
(2)
t 〉.

Then

U ′ = χ[0,t] ⊗ δ(eiT1 − 1) + eχ[0,t]⊗ρ(iT1)
(
χ[0,t] ⊗ δ(eiT2 − 1)

)
= χ[0,t] ⊗ δ(eiT1 − 1) + χ[0,t] ⊗ eρ(iT1)δ(eiT2 − 1)

= χ[0,t] ⊗
(
δ(eiT1 − 1) + ρ(eiT1)δ(eiT2 − 1)

)
= χ[0,t] ⊗

(
δ(eiT1 − 1) + δ(eiT1(eiT2 − 1)

)
= χ[0,t] ⊗ δ(eiT1eiT2 − 1)

= χ[0,t] ⊗ δ(eiT − 1)

= Ut.

The same computations give eiT
′
= eiTt , V ′ = Vt and ζ

′ = ζt. Finally comparing
Eqs. (4.35) and (4.36), one has (4.32). �

5. The Generator of the Quantum Lévy Process

In this section, we use the notations of Section (2.2) and we consider the C∗–
algebra A0 = Wg(H) and the stochastic process

jt : A0 :−→ At]

given on the generalized Weyl operators by Eq. (4.21). We have the following
theorem:

Theorem 5.1. The stochastic process jt is a Markov cocycle.

Proof. Clearly that j0
(
W (ξ, T )

)
= W (ξ, T )⊗ 1 for all (ξ, T ) ∈ H ⊗ Bs(H). Then

by ∗–homomorphism properties we obtain j0(a) = a⊗ 1 for all a ∈ A0. Let j̃t be
as in Eq. (2.10) of Section (2.2). Then from (4.21), one has

jt
(
W (ξ, T )

)
=W (ξ, T )⊗ eX[0,t] ,

where, in the notation (4.13):

X[0,t] = i
(
Ht(δ(T ), ρ(T )) + tL(T )1

)
.
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Using Eqs. (2.7) and (2.8), one has

j̃s ◦ u◦s ◦ jt
(
W (ξ, T )

)
= j̃s ◦ u◦s

(
W (ξ, T )⊗ eX[0,t]

)
= j̃s

(
W (ξ, T )⊗ Γ(θs)e

X[0,t]Γ(θ∗s)
)

= j̃s

(
W (ξ, T )⊗ 1[0,s] ⊗ eX[s,s+t]

)
= j̃s

((
W (ξ, T )⊗ 1

)(
10 ⊗ 1[0,s] ⊗ eX[s,s+t]

))
= j̃s

(
W (ξ, T )⊗ 1

)
j̃s

(
10 ⊗ 1[0,s] ⊗ eX[s,s+t]

)
.

From Eq. (2.10), we get

j̃s ◦ u◦s ◦ jt
(
W (ξ, T )

)
= js

(
W (ξ, T )

)(
js(10)⊗ eX[s,s+t]

)
=

(
W (ξ, T )⊗ eX[0,s]

)(
10 ⊗ 1s] ⊗ eX[s,s+t]

)
= W (ξ, T )⊗ eX[0,s] ⊗ eX[s,s+t]

= W (ξ, T )⊗ eX[0,s]+X[s,s+t]

= W (ξ, T )⊗ eX[0,s+t]

= js+t

(
W (ξ, T )

)
which proves the cocycle identity (2.11). �

Theorem 5.2. Let P t be the Markov semigroup associated to the process jt via
Eq. (2.12). Then its action on the generalized Weyl operators is given by

P t
(
W (ξ, T )

)
= etL(eiT−1)W (ξ, T ). (5.1)

Moreover, W (ξ, T ) are eigenoperators of its generator G0 so that

G0

(
W (ξ, T )

)
= L(eiT − 1)W (ξ, T ). (5.2)

Proof. With help of Eqs. (2.12), (4.21), (2.9), (4.28) respectively, we get

P t
(
W (ξ, T )

)
= E0]jt

(
W (ξ, T )

)
= E0]

(
W (ξ, T )⊗Wt(δ(T ), ρ(T ))e

itL(T )
)

= 〈Φ[0,Wt(δ(T ), ρ(T ))e
itL(T )Φ[0〉W (ξ, T )

= eitL(T )〈Φ[0,Wt(δ(T ), ρ(T ))Φ[0〉W (ξ, T )

= eitL(T )〈Φ[0, e
ZtΦ[0〉W (ξ, T )

= eitL(T )+tL(eiT−iT−1)W (ξ, T )

= etL(eiT−1)W (ξ, T ).

�

Remark 5.3. Taking the state L such that L(T ) = 〈u, Tu〉, where u is a vector of
H with norm equal to 1, Eq. (5.1) becomes

G0

(
W (ξ, T )

)
= 〈u, (eiT −1)u〉W (ξ, T ) =

(∫
σ(T )

(eix−1)µT,u(dx)
)
W (ξ, T ), (5.3)
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where µT,u is the spectral measure of T associated to u. In the above equation,
the eigenvalues of G0

η :=

∫
σ(T )

(eix − 1)µT,u(dx),

are explicitly computed in terms of the Lévy-Khintchin factor of the underlying
classical Lévy process and the generalized Weyl operators, associated to the os-
cillator Lie–algebra, are eigenoperators of the generator of the quantum Markov
semigroups canonically associated to the quantum extension of the classical Lévy
process induced by these Lie algebra shifts.
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