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Abstract

In this paper we introduce a new scalar product on distribution
spaces based on the Cesàro mean of a sequence. We then use this scalar
product to construct a family of separable Hilbert spaces HC , called
Cesàro Hilbert spaces and naturally associated to the Lévy Laplacian.
Finally we use the essentially infinite dimensional character of the Lévy
Laplacian to construct a class of solutions of the Lévy heat equation
which has no finite dimensional (or “regular” infinite dimensional)
analogue.
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Introduction

The Lévy Laplacian ∆L, introduced by P. Lévy [18], has recently attracted
much attention for its peculiar and unexpected properties which have been
the origin of what is nowadays called “essentially infinite dimensional anal-
ysis”. This Laplacian has been studied by several authors within the frame-
work of white noise analysis, initiated by T. Hida [13], e.g [5], [10], [15], [16],
[19], [20], [22], [23], [24]. See also [9] for a Dirichlet form approach. On
the other hand Accardi, Gibilisco and Volovich [1], [2] proved that a parallel
transport is associated to a connection 1-form satisfying Yang-Mills equa-
tion if and only if it is a harmonic function for the Lévy Laplacian (defined
on an appropriate space). In other contexts, the Schröedinger and the heat
equations with the Lévy Laplacian are related to some problems of quantum
statistical physics. Finally interesting relations between Lévy Laplacian and
square of quantum white noise have been suggested in [3], [21] and [22].

During the study of the above mentioned developments, a key role has
been played by the Cesàro mean of sequences. However, the following basic
problem has remained open for a long time: to find a natural and non-trivial
vector space where the Cesàro mean defines a pre–scalar product and whose
completion for this pre–scalar product is separable. The main purpose of this
paper is to solve this problem. Namely, extending the idea in example 3 of
[8], we construct a new family of separable Hilbert spaces of distributions on
a standard triple [20] whose scalar product, called the Cesàro scalar product,
is defined in terms of a Cesàro mean and it is naturally related to the notion
of Cesàro trace.

The paper is organized as follows. In the first section we summarize some
basic definitions and results in white noise analysis. In the second section
we introduce the notion of Cesàro scalar product. Then, we construct the
Hilbert spaces HC(S, ν) and we give some of their properties. In the third
section we constract some solutions for heat equation with Lévy Laplacian
and we investigate special representations using the Cesàro trace on a suitable
Hilbert space.

1 Preliminaries

In this section, following [20], we introduce some basic notions of Hida white
noise theory.
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1.1 Standard white noise triples

Let H be a real separable (infinite dimensional) Hilbert space with inner
product 〈·, ·〉 and norm | · | =: | · |0. Let D ≥ 1 be a positive self-adjoint
operator in H with Hilbert-Schmidt inverse. Then there exist a sequence of
positive numbers 1 < λ1 ≤ λ2 ≤ . . . and a complete orthonormal basis of H,
e := {en}∞n=1 ⊆ Dom(D) such that

Den = λnen , |en|0 = 1 ,

∞∑
n=1

λ−2
n =

∥∥D−1
∥∥2

HS
< ∞

For every p ∈ R we define:

|ξ|2p :=
∞∑

n=1

〈ξ, en〉2λ2p
n = |Dpξ|20 , ξ ∈ H

The fact that, for λ > 1, the map p 7→ λp is increasing implies that:
(i) for p ≥ 0, the space Hp, of all ξ ∈ H with |ξ|p < ∞, is a Hilbert space

with norm | · |p and, if p ≤ q, then Hq ⊆ Hp;
(ii) denoting H−p the | · |−p–completion of H (p ≥ 0), if 0 ≤ p ≤ q, then

H−p ⊆ H−q.
This construction gives a decreasing chain of Hilbert spaces {Hp}p∈R with

natural continuous inclusions Hq → Hp (p ≤ q). Defining the countably
Hilbert nuclear space (see e.g. [12]):

E := projlim
p→∞

Hp
∼=

⋂
p≥0

Hp

the strong dual space E∗ of E is:

E∗ := indlim
p→∞

H−p
∼=

⋃
p≥0

H−p

and the triple
E ⊂ H ≡ H∗ ⊂ E∗ (1.1)

is called a real standard triple. The complexifications of Hp, E and H re-
spectively will be denoted

Np := Hp + iHp ; N := E + iE ; K := H + iH (1.2)

Notice that e = {en}∞n=1 is also a complete orthonormal basis of K. Thus
the complexification of the standard triple (1.1) is:

N ⊂ K ⊂ N∗
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When dealing with complex Hilbert spaces, we will always assume that the
scalar product is linear in the second factor and the duality 〈N∗, N〉, also
denoted 〈·, ·〉, is defined so to be compatible with the inner product of K.
Thus the natural embedding x ∈ N 7→ x∗ ∈ N∗ is antilinear.

A typical example of the structure described above is the standard white
noise triple (1.1):

E ≡ S (R) ⊂ H = L2 (R, dt) ⊂ E∗ = S
′
(R)

where: S (R) is the space of rapidly decreasing functions on R; L2 (R, dt) is
the Hilbert space of C-valued square-integrable functions on R; S

′
(R) is the

space of tempered distributions; D is the number operator D = − d2

dt2
+ t2 +1

and {en}∞n=1 is the orthonormal basis of L2 (R, dt) constituted by the Hermite
functions [15]

en (t) =
1√√
π2nn!

Hn (t) e−t2/2

where Hn (t) = (−1)n et2
(

d
dt

)n
e−t2 is the n–th Hermite polynomial. Then

Den = (2n + 2) en, i.e., λn = 2n + 2, n = 0, 1, 2, . . . (1.3)

Moreover,
∥∥D−p

∥∥2

HS
=

∞∑
n=0

1

(2n + 2)2p < ∞ , for p >
1

2

and for every ξ ∈ L2 (R, dt), its Hilbertian norm is given by

|ξ|p =
( ∞∑

n=0

(2n + 2)2p 〈ξ, en〉2
) 1

2

1.2 Lévy Laplacian

Let E1 be any (real or complex) nuclear Fréchet space. A function F : E1 →
R is called twice differentiable at ξ ∈ E1 if there exist F

′
(ξ) ∈ E∗

1 and
F
′′
(ξ) ∈ L (E1, E

∗
1), (the space of linear continuous operators from E1 into

E∗
1), such that

F (ξ + η) = F (ξ) + 〈F ′
(ξ) , η〉+

1

2
〈F ′′

(ξ) η, η〉+ o (η) , η ∈ E1

where the error term satisfies limt→0 o (tη) /t2 = 0. Let C2 (E1) denote the
space of everywhere twice differentiable functions F : E1 → R such that both
ξ 7→ F

′
(ξ) ∈ E∗

1 and ξ 7→ F
′′
(ξ) ∈ L (E1, E

∗
1) are continuous.
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There is a natural embedding of E∗
1 ⊗E∗

1 (algebraic tensor product) into
L (E1, E

∗
1) which identifies a generic element e∗1 ⊗ e∗2 ∈ E∗

1 ⊗E∗
1 to the linear

operator
|e∗1〉〈e∗2| = e∗1 ⊗ e∗2 : η ∈ E1 7→ 〈e∗2, η〉e∗1 ∈ E∗

1 (1.4)

where 〈·, ·〉 denote the duality 〈E∗
1 , E1〉. Notice that, if e∗1 ∈ E1 ⊆ E∗

1 , then
e∗1 ⊗ e∗2 ∈ L(E1, E1). The operator e∗1 ⊗ e∗2 will also be denoted |e∗1〉〈e∗2|. In
some cases this embedding is in fact an identification (this is the content of
the nuclear kernel theorem [12]).

A C-valued function F on E1 belongs to C2 (E1) if and only if its real
and imaginary parts have this property. In particular, choosing E1 = N (the
complexification of E) one has, for ξ ∈ N ,

F
′
(ξ) ∈ N∗ ; F

′′
(ξ) ∈ L (N,N∗)

Definition 1 In the notations of the previous subsection let E1 denote either
E or N . The Lévy Laplacian on E1 (with respect to the basis e = {en}∞n=1)
is the Cesàro mean of the second derivatives along the elements of this basis.
More precisely, it is the linear operator (∆L,DL):

DL (E1) :=
{

F ∈ C2 (E1) ; lim
n→∞

1

n

n∑
j=1

〈F ′′
(ξ) ej, ej〉 exists for all ξ ∈ E1

}

(1.5)

(∆LF ) (ξ) := lim
n→∞

1

n

n∑
j=1

〈F ′′
(ξ) ej, ej〉 , ξ ∈ E1, F ∈ DL (E1) (1.6)

Remark 2 Note that, since the existence of Cesàro mean of a sequence of
numbers {an} depends on its order, the definition of ∆L depends not only
on the choice of the complete orthonormal basis as a set, but also on the
orientation of the space, i.e., the choice of a map e : N 3 n 7→ en.

1.3 The Cesàro trace on distribution spaces

Definition 3 Let {en}∞n=1 ⊆ E1 be as in the previous subsection (i.e. E1 = E
or E1 = N) and denote by L (E1, E

∗
1)C the set of all operators A ∈ L (E1, E

∗
1)

for which the limit

TrC(A) := lim
n→∞

1

n

n∑
j=1

〈Aej, ej〉 (1.7)

exists and is finite. The map A ∈ L (E1, E
∗
1)C 7→ TrC(A) is called the Cesàro

trace on L (E1, E
∗
1).
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Remark 4 Although not explicitly written, also the set L (E1, E
∗
1)C depends

on the choice of the map e : n ∈ N 7→ en.
Definition 1 is equivalent to say that a function F ∈ C2 (E1) belongs to

DL (E1) if and only if F
′′
(ξ) ∈ L (E1, E

∗
1)C for all ξ ∈ E1. In that case we

have
(∆LF ) (ξ) = TrC

(
F
′′
(ξ)

)

In the notation (1.4) let E∗
C denote the subset of all x ∈ E∗

1 such that
x⊗ x ∈ L (E1, E

∗
1)C , i.e., the limit

TrC(x⊗ x) = lim
n→∞

1

n

n∑
j=1

〈(x⊗ x)ej, ej〉 = lim
n→∞

1

n

n∑
j=1

〈x, ej〉〈x, ej〉 (1.8)

exists and is finite. For x ∈ E∗
C , we also write

‖x‖2
C := TrC(x⊗ x) (1.9)

The set E∗
C , which is closed under multiplication by a scalar, is not necessarily

closed under addition, hence in general it is not a vector space (see [8] for
a counterexample). From the explicit form (1.8), it follows that x 7→ ‖x‖2

C

is a quadratic form on E∗
C , whose associated sesquilinear form on any vector

subspace of E∗
C can be written as

(x, y)C = TrC (x⊗ y) = lim
n→∞

1

n

n∑
j=1

〈x, ej〉〈y, ej〉 (1.10)

With a slight abuse of language (cf. the comments at the end of this section)
the map (1.10) will be called the Cesàro inner (or scalar) product.

Parseval identity implies that the Hilbert space H (resp. K) is contained
in E∗

C and that the restriction of the map x 7→ ‖x‖2
C to H (resp. K) is

identically zero.
According to the assumption that E1 is a reflexive nuclear Fréchet space,

for each a ∈ E∗
1 the series

∑∞
n=1〈a, en〉en converges in E∗

1 even in the strong
topology (which in our case coincides with the Mackey topology). In the
following the symbol

∑∞
n=1 anen will denote the (unique) element a ∈ E∗

1 for
which 〈a, en〉 = an for all n if such element exists.

It is clear that E1 ⊂ E∗
C ⊂ E∗

1 . The following example shows that these
inclusions are strict.

Example. For a =
∞∑

n=1

anen ∈ E, we have

|a|2−p =
∞∑

n=1

λ−2p
n 〈a, en〉2 =

∞∑
n=1

a2
n

λ2p
n
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In particular, if E∗ = S
′
(R), D is given by (1.3), and an = n for all n, then

|a|2−p =
∞∑

n=1

n2

(2n+2)2p . This series converges for p > 3
2
, so that a =

n∑
j=1

nen

∈ E∗. However,

‖a‖2
C = lim

n→∞
1

n

n∑
j=1

〈a, ej〉2 = lim
n→∞

1

n

n∑
j=1

j2 = +∞

which means that a /∈ E∗
C .

In conclusion, E∗
C is strictly included in E∗ (resp. in N∗) and the sesquilin-

ear form (1.10) is positive semi–definite on any vector subspace of E∗
C . How-

ever E∗
C , although closed under multiplication by a scalar, in general it is not

a vector space hence we cannot use the sesquilinear form (1.10) to define a
pre–Hilbert space structure on it.

In the following sections we will construct an uncountable set of vectors
in E∗

C which are mutually orthogonal with respect to the pre–inner product
(1.10). This gives a natural non separable Hilbert space contained in E∗

C .
Subsequently we use these vectors to construct a large class of separable
Hilbert space contained in E∗

C which are invariant under the action of the
Lévy heat semigroup.

2 The Cesàro Hilbert Space

2.1 The Cesàro scalar product on (a subset of) N ∗

Let e = (ej)j be a fixed basis of the complex Hilbert space K = H + iH. In
the notation (1.4), for every n ∈ N, define

Pn] :=
n∑

j=1

|ej〉〈ej| ∈ L(K, K) (2.1)

Then, for f, g ∈ K, we have

〈g, f〉 = Tr |f〉〈g| = lim
n→∞

Tr
(|f〉〈g|Pn]

)
= lim

n→∞
Tr

(
Pn] |f〉〈g|Pn]

)

where, for T ∈ L(K, K),

Tr(T ) :=
∞∑

j=1

〈ej, T ej〉 (2.2)

and Tr is the usual trace on L(K,K).
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For a ∈ N and ϕ ∈ N∗ we extend the notation (1.4) by defining

〈a, ϕ〉 := 〈ϕ, a〉
and, for the linear operator |ϕ〉〈a| ∈ L (N∗, N∗),

〈a, ϕ〉 =: Tr (|ϕ〉〈a|) .

From the definition (2.2) and in the notation (1.4), one can prove that

〈ϕ, a〉 = Tr (|a〉〈ϕ|) .

In these notations, the operator Pn], defined by (2.1), can also be considered
as an element of L (N∗, N).

Notice that, for f, g ∈ N∗, one has, in the notations |f〉〈g| ∈ L (N,N∗)

Pn]|f〉〈g|Pn] = |Pn]f〉〈Pn]g| ∈ L (N∗, N)

hence, in the notations introduced above,

Tr(Pn]|f〉〈g|Pn]) = 〈Pn]g, Pn]f〉 (2.3)

in the sense that the left hand side of (2.3) is well defined for any n ∈ N and
any f, g ∈ N∗ and the scalar product in the right hand side is meant in K.

Remark 5 In the above notations, the Cesàro scalar product 〈g, f〉C can be
written in the form:

〈g, f〉C := lim
n→∞

1

n
Tr

(
Pn] |f〉〈g|Pn]

)
, f, g ∈ N∗ (2.4)

in the sense that the left hand side of (2.4) exists when and only when the
limit on the right hand side exists and in this case they are equal.

Let Ne be the linear space algebraically generated by e = {en}. In our
case Ne is a dense subspace of N . For a sequence of real or complex numbers
(an), the series

∑∞
n=1 anen (its partial sums are considered to be elements of

E∗) converges in the topology σ(N∗, Ne) to an element f ∈ N∗ if and only
if for any n ∈ N, an = 〈en, f〉. Then, it follows by density that the topology
σ(N∗, Ne) is Hausdorff. Hence, if 〈en, f〉 = 0 for all n ∈ N, then f = 0.

Lemma 6 Let n ∈ N. Then Pn] : N∗ −→ N (⊆ K) is continuous with
respect to the topology σ(N∗, Ne) and for any f ∈ N∗

〈ej, Pn]f〉 = 〈Pn]ej, f〉 = 〈ej, f〉 , 1 ≤ j ≤ n
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Proof. Let (gk)k be a sequence of N∗ which converges to g ∈ N∗ with respect
to the topology σ(N∗, Ne). Our aim is to prove that Pn]gk converges to Pn]g
with respect to any | · |p , p ∈ R. Since

Pn](gk − g) =
n∑

j=1

〈ej, gk − g〉ej

for any p ∈ R, one has

∣∣Pn](gk − g)
∣∣
p
≤

n∑
j=1

|〈ej, gk − g〉| |ej|p −→ 0

as k →∞, where we used the fact, for any j, |〈ej, gk − g〉| −→ 0 as k →∞.
On the other hand, for f ∈ N∗,

〈ej, Pn]f〉 =
n∑

k=1

〈ej, ek〉〈ek, f〉 = 〈ej, f〉 = 〈Pn]ej, f〉

as desired. ¤

2.2 The Hilbert spaces HC(S, ν)

From now on we fix: S = R and ν(dλ) a bounded positive measure on S, (it
will be clear from the following that this restriction can be relaxed).

We know that, for λ ∈ S, we have

sλ :=
∞∑

n=1

einλen ∈ N∗ (2.5)

where the limit in the series (2.5) is in the sense σ(N∗, Ne).

Lemma 7 For any λ, λ′ ∈ S and n ∈ N we have

sλ ∈ N−p ⊆ N∗ (2.6)

〈sλ, s
′
λ〉C = δλ,λ′ (2.7)

where δλ,λ′ is the Kronecker delta function. Moreover, for λ ∈ S, define the
complex vector space

Hλ := C · sλ ⊆ N∗ (2.8)

Then we have
λ 6= λ′ ⇒ Hλ ∩Hλ′ = {0} . (2.9)
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Proof. For any λ ∈ S, one has

| sλ |2−p:=
∞∑

k=1

| 〈sλ, en〉 |2
λ2p

k

=
∞∑

k=1

1

λ2p
k

< ∞ , ∀ p > 1/2 (2.10)

This shows that sλ ∈ N−p for any p > 1/2. In particular sλ ∈ N∗.
Let λ, λ′ ∈ S. Then

〈sλ, sλ′〉C = lim
n→∞

1

n

n∑

k=1

〈sλ, ek〉〈ek, sλ′〉 = lim
n→∞

1

n

n∑

k=1

eik(λ−λ′)

Thus, if λ = λ′, (2.7) holds. If λ 6= λ′, then,

〈sλ, sλ′〉C = lim
n→∞

1

n

(
ei(n+1)(λ−λ′) − 1

ei(λ−λ′) − 1
− 1

)
= 0

and also in this case (2.7) holds. Finally (2.7) implies that, if v ∈ Hλ \ {0},
then 〈v, v〉C exists and is 6= 0. But, again because of (2.7), if v ∈ Hλ ∩Hλ′

with λ 6= λ′, then 〈v, v〉C = 0 hence v = 0 and (2.9) holds. ¤

Lemma 8 For any ϕ ∈ L2(S, ν(dλ)) the Bochner integral

sϕ :=

∫

S

ϕ(λ)sλν(dλ) (2.11)

exists in N−p for any p > 1/2 and one has, in the sense of the norm of N−p

∫

S

ϕ(λ)sλν(dλ) = lim
n→∞

∫

S

ϕ(λ)Pn](sλ)ν(dλ)

Proof. For ϕ ∈ L2(S, ν(dλ)) and n ∈ N define

s(n)
ϕ :=

∫

S

ϕ(λ)Pn](sλ)ν(dλ) (2.12)

Then clearly s
(n)
ϕ ∈ N ⊆ N∗. Therefore, by definition of Bochner integral, it

will be sufficient to prove that for any p > 1/2 one has:

lim
n→∞

∫

S

∣∣ϕ(λ)sλ − ϕ(λ)Pn](sλ)
∣∣
−p

ν(dλ) = 0 (2.13)

But, for any λ ∈ S,
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∣∣ϕ(λ)sλ − ϕ(λ)Pn](sλ)
∣∣
−p

= |ϕ(λ)|·
∣∣sλ − Pn](sλ)

∣∣
−p

= |ϕ(λ)|·
∣∣∣

∞∑

k=n+1

eikλek

∣∣∣
−p

= |ϕ(λ)| ·
( ∞∑

k=n+1

1

λ2p
k

)1/2

Therefore
∫

S

∣∣ϕ(λ)sλ − ϕ(λ)Pn](sλ)
∣∣
−p

ν(dλ) =

( ∞∑

k=n+1

1

λ2p

)1/2 ∫

S

|ϕ(λ)|ν(dλ)

≤
( ∞∑

k=n+1

1

λ2p

)1/2

π1/2‖ϕ‖L2(S,ν(dλ))

which tends to zero because the series
∑∞

n=1 λ−2p
n is convergent for any p >

1/2. ¤

Proposition 9 In the notations of Lemma 8, for every ϕ ∈ L2(S, ν(dλ)) the
following estimate holds :

| sϕ |2−p≤ βp ‖ ϕ ‖2
L2(S,ν(dλ)) (2.14)

where

βp = π
( ∞∑

k=1

1

(λk)2p

)
(2.15)

In particular, for any ϕ ∈ L2(S, ν(dλ)), sϕ ∈ N∗.

Proof. For ϕ ∈ L2(S, ν(dλ)) and

sϕ :=

∫

S

ϕ(λ)sλν(dλ) =

∫

S

ϕ(λ)
( ∞∑

n=1

einλen

)
ν(dλ) ∈ HC

we have

| sϕ |2−p≤
( ∫

S

| ϕ(λ) | | sλ |−p ν(dλ)
)2

From the estimate (2.10) we obtain

| sϕ |2−p≤ π
( ∞∑

k=1

1

λ2p
k

)
‖ ϕ ‖2

L2(S,ν(dλ))= π
( ∞∑

k=1

1

λ2p
k

)
‖ sϕ ‖2

C

¤
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Theorem 10 In the notation (2.11) the linear map

s : ϕ ∈ L2(S, ν(dλ)) 7→ sϕ ∈ N∗ (2.16)

satisfies the identity:

〈sϕ, sψ〉C = 〈ϕ, ψ〉L2(S,ν(dλ)) , ∀ ϕ, ψ ∈ L2(S, ν(dλ)) (2.17)

in the sense that the left hand side exists and the identity holds. In particular
the range of s, denoted HC(S, ν), is a Hilbert space for the Cesàro scalar
product (1.10) and s is a unitary isomorphism of L2(S, ν(dλ)) with HC(S, ν).
Thus HC(S, ν) is separable.

Proof. Let ϕ ∈ L2(S, ν(dλ)). For n ≥ 1,

1

n
Tr

(
Pn]

∣∣∣sϕ〉〈sψ

∣∣∣Pn]

)
=

1

n

∫

S

〈
Pn]ϕ (λ) sλ, Pn]ψ (λ) sλ

〉
H

ν(dλ)

=
1

n

∫

S

ϕ (λ) ψ (λ)
〈 n∑

j=1

eiλjej,

n∑

k=1

eiλkek

〉
H

ν(dλ)

=

∫

S

ϕ (λ) ψ (λ) ν(dλ) = 〈ϕ, ψ〉L2(S,ν(dλ)). (2.18)

From this the thesis easily follows. ¤

Definition 11 A Hilbert space HC ≡ HC(S, ν), introduced in Theorem 10,
shall be called a Cesàro Hilbert space.

Proposition 12 For each p > 1/2, we have the continuous embedding

HC ⊆ N−p (2.19)

More precisely, for every ϕ ∈ L2(R) and for βp given by (2.15), the following
estimate holds :

| sϕ |2−p≤ βp ‖ ϕ ‖2
HC

(2.20)

Proof. Keeping into account the identity (2.17), the thesis follows from the
estimate (2.14). ¤
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3 Lévy Heat Equation

In the paper [6], using Fourier transform techniques, a class of solutions of
the standard (i.e. with constant diffusion coefficient), parabolic Lévy heat
equation was constructed in analogy with the finite dimensional case.

In this section, exploiting the essentially infinite dimentional nature of
the Lévy laplacian, we build a class of solutions of the same equation which
has no classical analogue. The reason why this new class of solutions appears
only in the essentially infinite dimensional case, can be intuitively illustrated
as follows. Consider the function

u : (t, x) ∈ R× Rd 7→ u(t, x) ∈ R
defined by

u(t, x) := etTr(A)e−
1
2
〈x,Ax〉 (3.1)

where A is a linear operator acting on Rd. Then

∂t(t, x) = Tr(A)u(t, x)

∂2
xu(t, x) = (A + 〈·, Ax〉〈Ax, ·〉) u(t, x)

Thus taking the usual trace of ∂2
xu we see that u(t, x) does not satisfy a

standard heat equation. However the Cesàro trace will kill the 1–dimensional
operator 〈·, Ax〉〈Ax, ·〉, hence a function such as (3.1) can be (for appropriate
choice of A), a solution of the Lévy heat equation. Theorem 15 below shows
that this is indeed the case.

For any β > 0, let Sβ
C denote the sphere of radius β of the Hilbert space

HC ; namely
Sβ

C := {x ∈ HC ; ‖x‖C = β} ⊆ N∗ (3.2)

We know, from Uglanov’s theory [25], that for each real number β > 0, there
exist a probability measure µβ on (N∗,B) such that

µβ(Sβ
C) = 1, (3.3)

where B is the Borel σ-algebra on N∗. Moreover, the family (µβ) can be
chosen so that, for any bounded Borel function f on (N∗,B), the map β 7→
µβ(f) is Borel measurable.

In the following, we will study the heat equation associated with the Lévy
Laplacian

∂F

∂t
=

α

2
∆LF , F (0, ξ) = F0 (ξ) (3.4)

where α ∈ (0, +∞) and the initial condition F0 is a suitable function on N .
Equation (3.4) is called Lévy heat equation with parameter α.

13



Proposition 13 For each β > 0, the map

fβ (t, ξ) :=

∫

N∗
e
−tα‖x‖2C

2 ei〈x,ξ〉µβ(dx) (3.5)

is a solution of the Lévy heat equation (3.4) with F0 = µ̂β, the Fourier trans-
form of the measure µβ.

Proof. For x ∈ N∗, define

qx : ξ ∈ N 7→ qx (ξ) := ei〈x,ξ〉

then, by direct computation qx ∈ DL (N) and

∆Lqx = −〈x, x〉Cqx = −β2qx , µβ − a.e. x ∈ N∗

Hence, using the dominated convergence Theorem, we see that µ̂β is an
eigenfunction of the Lévy Laplacian ∆L associated with the eigenvalue −β2

∆L (µ̂β) (ξ) = −β2µ̂β (ξ) , ∀ ξ ∈ N.

Again by dominated convergence one has

∂fβ

∂t
(t, ξ) =

α

2
fβ(t, ξ).

¤

Corollary 14 Let ν be a (positive) measure on R+ such that

∫

R+

β2ν(dβ) < ∞ (3.6)

Then the function

Fν(t, ξ) :=

∫

R+

fβ(t, ξ)ν(dβ)

is a solution of the heat equation (3.4) with initial condition

Fν(0, ξ) :=

∫

R+

µ̂β(ξ)ν(dβ)

14



Proof. By the condition (3.6) and the assumption (3.3) on the family (µβ),
one has :

∣∣∣∣
∫

R+

β2ν(dβ)

∫

N∗
e
−tα‖x‖2C

2 ei〈x,ξ〉µβ(dx)

∣∣∣∣ ≤
∫

R+

β2ν(dβ) < ∞

It follows

∂t Fν(t, ξ) = ∂t

∫

R+

fβ(t, ξ)ν(dβ) =

∫

R+

α

2
4Lfβ(t, ξ)ν(dβ)

=
α

2

∫

R+

−β2fβ(t, ξ)ν(dβ) =
α

2
4L

∫

R+

fβ(t, ξ)ν(dβ)

=
α

2
4L Fν(t, ξ)

¤

Theorem 15 Let α > 0, β > 0, S = R, ν a σ-finite measure on S and let
s ∈ S 7→ As ∈ L (H) be a function such that TrC(As) exists and finite for
each s ∈ S. Suppose the following properties are satisfied:

1. the integrals

g (t, ξ) :=

∫

S

etαTrC(As)e〈Asξ,ξ〉ν (ds)

∫

S

TrC(As)e
tαTrC(As)e〈Asξ,ξ〉ν (ds)

exist for any ξ ∈ N

2.

∂t

∫

S

etαTrC(As)e〈Asξ,ξ〉ν (ds) =

∫

S

∂t etαTrC(As)e〈Asξ,ξ〉ν (ds) , on S

3.

∂2
η

∫

S

etαTrC(As)e〈Asξ,ξ〉ν (ds) =

∫

S

∂2
η etαTrC(As)e〈Asξ,ξ〉ν (ds) , ∀ η ∈ N

Then the function g is a solution of the Lévy heat equation (3.4).
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Proof. For any η ∈ N , we have

∂2
η g (t, ξ) =

∫

S

etαTrC(As)∂2
η e〈Asξ,ξ〉ν (ds)

=

∫

S

etαTrC(As)
[
(〈Asξ, η〉+ 〈η,A∗

sξ〉)2 + 2〈Asη, η〉] e〈Asξ,ξ〉ν (ds)

Therefore,

1

n

n∑
j=1

g′′(t, ξ)(ej, ej)

=

∫

S

etαTrC(As)e〈Asξ,ξ〉
[ 1

n

n∑
j=1

(〈Asξ, ej〉+ 〈ej, A
∗
sξ〉)2+

2

n

n∑
j=1

〈Asej, ej〉
]
ν (ds)

In the limit n −→∞, this is equals to

lim
n→∞

∫

S

etαTrC(As)e〈Asξ,ξ〉 2
n

n∑
j=1

〈Asej, ej〉ν (ds) =

=

∫

S

etαTrC(As)e〈Asξ,ξ〉2 lim
n→∞

1

n

n∑
j=1

〈Asej, ej〉ν (ds)

=

∫

S

2TrC(As)e
tαTrC(As)e〈Asξ,ξ〉ν (ds)

On the other hand,

∂tg(t, ξ) =
α

2

∫

S

2TrC(As)e
tαTrC(As)e〈Asξ,ξ〉ν (ds)

and from this the statement follows. ¤

Example. An important example illustrating the situation of Theorem 15
is given by the choice

H = L2(0, 2π) ; As = Mχ
(0,s)

i.e., As is the multiplication by the indicator function of the interval (0, s).
In this case, if (ej) is an uniformly bounded and equally dense orthonormal
basis of L2(0, 2π) (it is well known that such basis exist, cf. e. g. [7]), one
has

lim
n→∞

1

n

∑
〈ej, Asej〉 = lim

n→∞
1

n

n∑
j=1

∫ s

0

e2
j (u) du = s , for any s ≥ 0

16



and all the conditions of Theorem 15 are satisfied if the measure ν has support
in a bounded interval of R. It follows that the function

g(t, ξ) =

∫

R
eαste〈χ(0,s)ξ,ξ〉ν(ds)

is a solution of the heat equation (3.4). The paper [21] established a relation
between this function and the square of white noise.
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Lévy Laplacian in White Noise Analysis, Infinite Dimen. Anal. Quantum
Prob. 2 (1999), 131–153.
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