
J. Korean Math. Soc. 35 (1998), No. 3, pp. 675-690

A ROLE OF SINGLETONS IN
QUANTUM CENTRAL LIMIT THEOREMS

LUIGI ACCARDI, YUKIHIRO HASHIMOTO AND NOBUAKI OBATA

ABSTRACT. A role of singletons in quantum central limit theorems
is studied. A common feature of quantum central limit distribu·
tions, the singleton condition which guarantees the symmetry of the
limit distributions, is revisited in the category of discrete groups and
monoids. Introducing a general notion of quantum independence,
the singleton independence which include the singleton condition as
an extremal case, we clarify the role of singletons and investigate the
mechanism of arising non-symmetric limit distributions.

Introduction

In recent years the notion of statistical independence has been exten­
sively studied in the context of algebraic probability theory with wide
applications and we have caught a g~pse of a rich world spreading be­
yond the classical probability theory. For example, the free independence
due to Voiculescu (see e.g., [20]) gives rise to the Wigner semi-circle law
as a central limit distribution and is applied to a study of random matri­
ces, of quantum electrodynamics and so forth. There have appeared so
far several different approaches to the notion of independence in order to
unify the diversity, see e.g., [5], [7], [9], [10], [15], [18]. Having observed
the common feature that the limit distributions obtained in these works
are always symmetric, we propose in [2] the idea of singleton condition
which guarantees the symmetry of the limit distributions. In this paper
we shall revisit this condition with some examples arising from discrete
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groups and monoids (semigroups with unit). It is proved that the limit
distributions obtained from these algebraic structures lie between the
Gaussian and the Wigner semi-circle laws in the sense that the moments
are bounded by those of them. This is an extension of the result in [13J.

On the other hand, there is an interesting example of a limit distri­
bution obtained by means of a certain rescaled limit of the Haagerup
states on the free group. The computation was done explicitly and the
Ullman family of distributions is obtained [12]. Thus, in a different limit
procedure non-symmetric distributions appear. Motivated by this new
phenomenon, we introduced the concept of singleton independence in the
previous paper [3]. In this paper we clarify the role of singletons and
investigate the mechanism of surviving odd moments, or equivalently,
of arising a non-symmetric limit distribution. It is noticeable that our
singleton independence bears an analytical feature, Le., is expressed in
terms of inequalities. As Bozejko pointed out recently, our results are re­
lated to the "p-independence of Bozejko and Speicher [7] (see also [6]) and
a careful study of the relation will create an application to orthogonal
polynomials [1]. Thus the notion of statistical independence in algebraic
probability is expected to bring a new interaction with harmonic analysis
on discrete graphs or on discrete algebraic structures such as monoids,
hypergroups, etc. Partial results are found in [141, [171 and a study in
this direction is now in progress.

1. Singleton condition

Let (A, 'P) be an algebraic probability space, that is, A is a *-algebra
with unit 1 and 'P is a state, Le., a positive linear function on A. Here
by positivity we mean that

for any choice of n 2:: 1 and aI, ... ,an E A. For analytic argument we
need the following

DEFINITION 1.1. A family of sequences {b(j) = (bW))~l; j E J},
where b~) E A, is said to satisfy the condition of boundedness of the
mixed momenta if for each k ~ 1 there exists a positive constant 1/k ~ 0
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such that

(1.1)

for any choice of jll'" ,jk E J and nl,'" ,nk EN.

Now we come to

DEFINITION 1.2. A family of sequences {b(j) = (b~»)~l; j E J},
where b~) E A with mean zero, is said to satisfy the singleton condi­
tion (with respect to r.p) if

(1.2)

for any choice of k ~ 1, jb'" ,jk E J, and nb'" ,nk E N with a
certain ns being different from all other ones.

Given a sequence b = (bn)~l c A we put

N

SN(b) = :E bn ·

n=l

By a combinatorial argument modeled after von Waldenfels (see e.g.,
(10)), we come to the following .

LEMMA 1.3. [2] Assume that {b(j) = (b~»)~l ; j E J}, where b~) E

A with mean r.p(b~») = 0, satisnes the condition of boundedness of the
mixed momenta. Then, for any a > 0 it holds that

(1.3) =»~N-
ak L L L r.p (b~~(l)'" b~kl1r(k»)

ak<p<k ":{l,.·· ,k}-{l,.·· .p} ..:{l.....p}-{l..·. •N}
- - surjecti"" order-preservlDg

in the sense that one limit exi.~ts ifand only if the other does and the lim­
its coincide. Moreover, assume that the singleton condition is satisned.
Then

(1.4)



678 Luigi Accardi, Yukihiro Hashimoto and Nobuaki Obata

takes place ifa> 1/2 or if a = 1/2 and k is odd. If a = 1/2 and k = 2n
is even, •

. (SN(b(l») SN(b(2») SN(b(2n»))
N~ <p N1/2' N1/2 .. , N1/2

(1.5) = »~N-
n L L cp (b~~(1) ... b?c~(2n») ,

'''{I,... ,2n}-{L'" ,n} ":{I,.·· ,n}-{I,.·· ,N}
2-1~ oro~-~g

and the Gaussian bound takes place:

(1.6) . I (SN(b(1») SN(b(2») SN(b(2n»)) I (2n)!
hm sup <p 1/2' Nl/2 . . . Nl/2 :::; -2n I 1I2n,

N-oo N n.

where lIk appears in (1.1).

The existence of the limit such as (1.5) can be discussed in terms of
the entangled ergodic theorem [3J; however, little is known about the
convergence, in this connection see [16J.

2. Minimal generators of a discrete group

A sytilmefric random walk on a discrete group provides a geometric
interpretation of the singleton condition. Let G be a discrete group and
(rr,1i = £2(G)) the left regular representation:

1r(g)~(h) = ~(g-1h), g, hE G, ~ E 1i.

Let 8g = X{g} be the characteristic function of {g} and define a state cp
on B(1i) by

cp(a) = (a8e ,8e ),

where e is the unit of G. Let A be the *-algebra generated by {1r(g); 9 E
G} and consider the algebraic probability space (A, cp).

DEFINITION 2.1. Let G be a discrete group and ECG a subset which
generates G, i.e., G = (E) == {S~l ••• s;n; Si E E, Ei E {±1}, n ~ O}.
Then E is called minimal if no proper subset of E generates the whole
G.

THEOREM 2.2. Let G be i1, discrete group equipped with countably
infinite generators E = {g1, g2, ... } and consider the sequence of alge­
braic random variables an = 1r(gn). If E is minimal, {(an)~=1' (a~)~1}

satisfies the singleton condition with respect to cp.
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Proof Consider a product

(2.1)

and assume that an index is appears only once. It is sufficient to prove
that ep(u) = O. For each k take gik E 1:: such that Gik = 7r(gik)' Since 7r is
a unitary representation, we need only to show that g£: .. ·ll:: =1= e, where
'rJk = +1 or = -1 according as Ck = +1 or = *. If g£: ... gi;: = e happens,
gi. can be expressed as a product of others and hence G = (1::\{giJ).
This is contradiction by the minimality of 1::. 0

Notations and assumptions being the same as in Theorem 2.2, we
consider real quantum random variables:

Then 4>(bn) = 0 and 4>(b~) = 2 + 28e(g~). For simplicity assume that
g~ =1= e for any gn E 1::. Then, in connection with central limit theorems
we are interested in the asymptotic behavior of

. b1 + b2 + ... + bN
hm tn7<T •

N->oo v2N

Here we mention the following result on bounds of the momenta.

PROPOSITION 2.3. Let G be a discrete group with minimal genera­
tors 1:: = {gI, g2,'" }. Assume that g~ =1= e for any gn E 1::. Then for the
sequence ofreal quantum random variables bn = 7r(gn) + 7r(gn)* we have

limsu ((b1+ b2+ ... + bN)2n) < (2n)!
pep J2N - 2n ,N->oo n.

and

(2.2) liminf ep ((b1 + b2+ ... + bN)2n) > (2n)! .
N->oo J2N - (n + l)!n!

The Gaussian bound (2.1). follows from (1.6) in Lemma 1.3 and is
achieved, for example, by the free abelian group with countably infinite
generators. For the proof of the Wigner bound (2.2) we rely on the
universal property of free groups. By using the canonical homomorphism
p : (Foo,{!i}) ---t (G,1::) with P(Ji) = gi, where Foo is the free group
generated by {!i}, we may estimate the number of the return paths,
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and hence the momenta, see [13] for details. The right-hand side of (2.2)
coincides with the moments of the Wigner semi-circle law:

1 12
2n r;---;<i42 d (2n)!- t v,* - t~ t = ,

211" -2 n!(n + I)!
which is obtained from the symmetric random walk on a free group, see
e.g., [19].

3. Minimal generators of a discrete monoid

The discussion in the previous section can be extended to a discrete
monoid (semigroup with unit). Let G be a monoid with unit e, that is,
ge = eg = 9 for any 9 E G. Let 1/. = .e2(G) and for eE 1/. put

11"(g)e(h) = e(gh), g, h E G.

For boundedness of 7r(g) we need notation. For 9 E G and S c G we
put

R(g --7 S) = {x E G; gx E S}.
If S = {h} we write simply R(g --? h) for R(g --? {h}).

LEMMA 3.1. 7r(g) E B(1/.) if and only if sUPheG IR(g --? h)\ < 00,

where I. I denotes the cardinality. In that case

(3.1) 1I11"(g)1I2= sup IR(g --7 h)l.
heG

Proof. By definition we have

1I11"(g)eIl2
- L 17r(g)~(xW = L le(gx)12

xEG xEG

L I{x E G; gx = h}lIe(hW = L IR(g --7 h)lle(hW·
hEG heG

Hence 117r(g)1I2 ~ SUPhEG I-R(g --? h)l. Equality (3.1) is examined by
taking ~ = bx , x E G. 0

From now on we assume that a monoid G under consideration satisfies
the condition:

sup IR(g --? h)1 < 00
hEG

for any 9 E G.

Let A be a *-algebra generated by {11"(g); 9 E G} c B(1/.) and let <p be
the state defined by <p(a) = (abe,be), a E A
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LEMMA 3.2. For 8 c G it holds that

(3.2)

(3.3)

In particular,

(3.4)

7r(g)xS = XR(g--+S),

7r(g)*XS(x) = 18 n R(g --+ x)l·

gXE 8,

otherwise,

gh=x,

otherwise,

Proof. In view of

{

1,
7r(g)Xs(x) = Xs(gx) =

0,

we come to (3.2). Next, by definition we have

7r(g)*Xs(x) = (7r(g)*Xs, fJx) = (Xs,7r(g)fJx)

L 7r(g)fJAh) = L fJx(gh) = 18 n R(g --+ x)l,
heS hES

which proves (3.3). Setting 8 = {h} in (3.3), we obtain

{

1,
7r(g)*fJh(x) = I{h} n R(g --+ x)1 =

0,

from which (3.4) follows immediately. 0

For a subset 8 c G we denote by (8) the smallest submonoid of G
which contains 8 and e. For a monoid G we consider the condition:

(A) R(a --+ b) c (a, b) for any a, bEG.
This is equivalent to the following

(A') R(a --+ 8) c (a,8) for any a E G and 8 c G.

Under condition (A), for any a, bEG the solutions to the equation
ax = b belong to (a, b) whenever they exist. Note that, in general, an
element of a monoid may have more than one inverse.

LEMMA 3.3. LetG be amonoid satisfying (A). Then, [oranygl,··· ,gn E

G and El,··· ,En E {+1, *} we have

(3.5) SUPP7r(gl)fI ···7r(gn)En fJe C (gl,g2,··· ,gn).
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Proof We prove the assertion by induction on n. For n = 1 the
statement is rather obvious. In fact, by (3.2) we see that rr(gl)Oe =
XR(gI->e), and hence by condition (A) we have

supprr(gl)Oe = R(gl ---7 e) C (gl).

On the other hand, by (3.4) we have rr(gd*oe = 0YI and

supprr(gl)*Oe = {gl} c (91).

Thus (3.5) is valid for n = 1.
Suppose next that the statement is valid up to n - 1. Write

rr(91Y1 rr(92Y2 ... rr(9n)€nOe = rr(gd€1 (rr(g2)€2 ... rr(gn)€noe) == rr(9d€I'1'.

By the assumption of induction W =supp'1' C (g2' ... ,9n). If W = 0,
'1' = 0 and (3.5) is obvious. Suppose that W =1= 0. Then

'1' = LChOh.
hEW

Now consider rr(91)'1'. In view of (3.2) and condition (A) we see that

supp rr(gl) '1' C UR(91 ---7 h) C U(91, h) C (91, W) C (91, 92, ... ,9n)·
hEW hEW

As for rr(91)*'1', by (3.4) we obtain

rr(91)*'1' = L ChOy1h
hEW

and hence
supprr(9d*'1' C 91W C (91,92,··· ,9n).

Thus (3.5) is also valid for n.

During the above proof we have seen that

rr(91 )€I ... rr(9n)€nOe = 0 or L Cwow,
wEW

o

where 0 =1= W C (91, 92, ... ,9n) and Cw E N.

DEFINITION 3.4. Let G be a monoid. We say that a subset 'E C G is
a set of genemtors if ('E) = G. A set of generators 'E is called minimal
if B(A) n (A) = 0 for any pair of non-empty subsets A, B c 'E with
AnB=0.

A set of generators 'E is minimal if and only if for any s E 'E and
b E ('E\{s}), the equation sx = b has no solution in ('E\{s}).
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THEOREM 3.5. LetG be a monoid satisfying condition (A), and let
:E c G be a countable infinite set ofgenerators:E = {gb g2,'" }. Define
a sequence ofquantum random variables by aj = 1r(gj). If:E is minimal,
{(aj)~l' (a;)~l} satisfies the singleton condition.

Proof Consider the product

x = a~1 ... a~lala1!J. ... a,?m E C '11 E {+1 *}
11 11 S )1 )m' k, ... , '/k "

and assume that s =1= ill' .. ,il' jll ... ,jm. Since the argument is similar,
we may assume E = *. Then

(3.6) () ( * '11 'l/mJ: ll* l1*J: )
If) X = a a· . ··a· V e a· .. ·a· ve .
T s J1 Jm' 11 '1

From Lemma 3.3 it follows that both supp (a~ .. , a1:8e) and supp (a~:* ... a~~*8e)

are contained in (gill' ., ,gip gjll ... ,gjm) c (:E\{gs} ). Hence

supp (a~:* ... a~:*8e) c (:E\{gs}),

and
supp (a:a~ ... aJ::;8e) c gs (:E\{gs} ).

Then, by the minimality of:E we see that <p(x) = 0 for (3.6) is the inner
product of two functions with disjoint supports. 0

Notations and assumptions being the same as in Theorem 3.5, we
consider real quantum random variables:

bn = 1r(gn) + 1r(gn)* = an + a~.

Then, <p(bn) = 0 and <p(b~) = 1 + 28e(g~) + IR(gn -+ e)l. For simplicity
we assume that g; =1= e and R(gn -+ e) = 0 for all n ~ 1. We are then
interested in

. b1 + b2 + ... + bNhm ~--=---=:---~
N-+oo .IN

The following result is compared with Proposition 2.3.

PROPOSITION 3.6. Notations and assumptions being the same as above,
we have

(3.7) li ((
bl + b2+ ... + bN)2n) < (2n)!

m sup <p . r;:r - 2n ,
N-+oo V N n.

and

(3.8) liminf ((b1 + b2 + ... + bN )2n) > (2n)! .
N-+oo <p ..IN - (n + l)!n!
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Proof We need only to show the Wigner bound (3.8). To this end
it is sufficient to show that 'P(x) 2:: 1 for any x = a~: ... a~~: such that
(ill' .. , i 2n ) forms a non-crossing pair-partition with Ep = +1 and Eq = *
for each pair (ip , i q ) with p < q. In fact, one has

1r(g)1r(g)*bz = 1r(g)bgz = XR{g->gz} = bz + Lbw,
wER(g.....gz}\{z}

whence 'P(x) 2:: 1 by induction.

4. Singleton independence

o

We need some combinatorial notion. For a = (j, E) E N x {+1, *} .we
put

{

(j,*),

a* = (j, +1),

if E = +1,

if E = *.

if a = (j, +1)

DEFINITION 4.1. Consider a finite sequence al'" am, where ap E

N x {+1,*}. Then as is called a singleton if as", ak for any k '" s. A
singleton as is called outer if ap '" a; for any p < s < q, and is called
inner if a p = a; for some p < s < q.

For example, consider the product ala2aiaaa2. The second a2is an
inner singleton and the forth ag and the last a2 are outer singletons.
Notice that both a2's are singletons though appearing twice.

Given a sequence {gj }~l of elements of *-algebra A, for a E N x
{+1, *} we put

{

gj
go =

g; ifa=(j,*).

DEFINITION 4.2. Let A be a *-algebra and let {'P"! ; 0 :s; 'Y S "y} be a
family of states on A, 7> o. Let {gj}~l be a sequence of elements of A
such that 'P"! (go) = 'Y for all a E N x {+1, *}. Then the sequence {gj}
is called singleton independent with respect to 'P"! if for any k 2:: 1 there
exists Mk 2:: 0 such that
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for any choice of al, ••• , ak with some as being a singleton for al ••• ak.

Here 90. stands for the omission. (The case of '"Y = 0 is related to the
singleton condition, see Definition 1.2.)

By repeated application of (4.1) we come to

(4.2)

for any choice of 90 1' ••• ,90k with s singletons, where Mk = MkMk- 1 ••• M1
and 131 .• ·13k-s is obtained from al ••• ak by removing the s singletons.

In the following we assume that the boundedness condition (1.1) is
fulfilled for any cp.., uniformly in '"Y. Namely, for each k ~ 1 there exists
Ck ~ 0 such that

(4.3)

for any choice of 9a l' • •• , 9ak and 0 ~ '"Y ~ 'f.
When cp.., is fixed we write ga = 9a - '"Y so that cp.., (ga) = O. Put

N

SE ~-E
N = L-9j'

j=1

EE{+I,*}.

Throughout we fix k ~ 1 and El,'" , Ek E {+1, *} and consider the
product

(4.4) SEl SEk
N'" N =

where AN = AN(El, ••• , Ek) is the set of maps a : {I"" ,k} -+ {I"" ,
N} x {+1, *} such that the second component of al coincides with the
given El, 1 ~ l ~ k. Let 7r: {I"" ,N} x {+1,*} -+ {I"" ,N} be the
projection defined by 7r(j,E) = j and put a = 7r 0 a.

Each a E AN determines.a partition of {I"" ,k} by the inverse
image of a. Thereby the sum (4.4) over AN is divided according to
the cardinality of the inverse image of a. Let Pk,p be the collection of
partitions of {I"" , k} into a disjoint union of p non-empty subsets.
For (SI,'" , Sp) E Pk,p we denote by [SI,'" , Sp] the set of a E AN such
that a is constant on each Sj and takes different values on different S/s.
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(4.5)

k

N-k/2 L L L 'P>..j.,fNC9al· .. gak)
p=1 (SI," ,Sp)E'Pk,p aE[Sj,'" .Sp]

and the large N asymptotics is in question.
If a E [Sb'" ,Sp] and SI = {l}, then 0'1 = (jl, El) is a singleton in

the sequence 0'1 ••• O'k' For the index jl appears only once in jl, .•. ,jk.

LEMMA 4.3. For 0 ~ s ~ k let P:',p denote the set of partitions
(Sb'" ,Sp) E Pk.p with s singletons, Le., l{i; ISil = l}1 = s. Then it
holds that p ~ (k + s)/2. Moreover, ifp < (k + s)/2 then

(4 6) tim N -k/2 L L (- -) 0. 'PA/.,fN gal' .. gale = .
N--+oo

(SI ...· .Sp)E'Pk,p aE[SI ...·,Sp]

Proof. For (SI,'" ,Sp) E P:'.P we have
p

k= LISj/= L /Sj!+s2::2(p-s)+s=2p-s.
j=1 ISjl~2

Then, in view of (4.2) and (4.3), we see that

N-k
/
2 L L 1'p>"/.,fN(gal ... gak)/

(SI ...· ,Sp)E'PZ,p aE[SI ...· .Sp]

-k/2. NP - (~) s _ - s).s (k+s)/2< N IPk,pl p! MkCk- s ..jN - MkCk-slPk.p! p! W- .

The last quantity goes toO as N --t 00 if p < (k + s)/2, thereby (4.6)
follows. 0

It follows from Lemma 4.3 that the non-trivial contribution to the
limit of (4.5) comes from those partitions (SI,'" ,Sp) E Pt.,p satisfying
p = (k + s)/2, that is, k = 2p - s. In that case, 1 ~ jSjl ~ 2 for all j.
In fact, if ISd 2:: 3, we have

k2::3+ L ISjl+s2::3+2(p-s-l)+s=2p-s+l,
j~2.ISjl~2
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which is incompatible with k = 2p - s. Taking this into account, let
A~ denote the set of 0: E AN which determines a pair-partition with
singletons, i.e., the corresponding partition (SI,'" , Ss, TI,'" ,1t) of
{I, 2, . " , k} satisfies:

(4.7) ISil = 1, 17j1 = 2, s + 2t = k, s?:: 0, t?:: O.

Then

(4.8) lim 'P>'/YN ( S~ ... S~) = Hm N-k
/
2 L 'PA/YN('9a l ••• 9ak)'

N-oo yN yN N-oo
aEAN

Let 0: E A~ and (SI,'" , Ss, TI,' .. ,1t) the corresponding partition
as in (4.7). Then 0: E [SI,'" ,Ss,Tl ,'" ,1tJ. Going back to (4.2), we
have

(4.9) \'P>./YN(9a l ••• 9ak)I:::; Mk (J&)s \'P>./YN(Ylh ... Ytht) I'
where (131, ... , fht) is obtained from (0:1,'" , O:k) by removing the sin­
gletons. Then

N- k
/
2 L \'P>.jYN(Yal ... Yak)!

irE [SI," ,Ss,TJ,···Tt ]

< N-k /
2Ns

N
t
M ( ,\ ')S I (- -)1-;!tf k IN 'P>'/YN 9[31 •• , 9tht

s~:! Mk 1'P>./YN(Y{31 ... Y/ht)\.

In general, a pair-partition (Tl ,··· ,1t) of {I, 2,'" ,2t} is called negli­
gible if there exists C ?:: 0 such that

(4.11) 1'P-Y(Yf31 ... 9thJI :::; C,

holds for any 13 : {I, 2, ... ,2t} --+ N x {+1, *} such that 13 E [Tl , .•• ,1tJ.
We say that 0: E A~ is negligible if the pair-partition 13 determined by
0: as above is negligible. In that case (4.10) becomes

N-k j2 ~ I. (- -)1 ,\s MC ,\
~ (h/YN 9a l " • 9a k :::; sIt! k ..IN'

aE[SI," 'ss,TJ,.··Tt}

which goes to 0 as N --+ 00.

In conclusion, we state the following
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THEOREM 4.4. Let A be a *-algebra with a family ofstates {<fJ-y ; 0 S
, s ;;n, 'Y > O. Let {gj}j:l be a sequence ofelements ofA satisfying the
singleton independence (4.1) and the uniform boundedness (4.3). Then
for any k ~ 1 and El, ••. , Ek E {+1, *} we have

(4.12)

(
S€I S€k)

1i N N 1i N-k / 2 ""' (- -)N~ 'P>.;..[N .ryv ... .ryv = N~ L- 'P>.;..[N gal' .. gak ,
y lV Y lV aEA~

where A~ denotes the set of a E AN determining a non-negligible pair­
partition with singletons.

5. Haagerup states on the free group

Let Foo be the free group generated by {gbg2,"'}' Each x E Foo ,
x i- e, admits a unique expression of the form:

x = gal' .. gan , ai i- a;+l' 1 S i S n - 1,

where ga = gj for a = (j,E) EN x {±1}. In that case n is called the
length of x and we write Ixl = n. By definition lel = O. For a general
theory of length functions see e.g., [4J, [8J. Let A be the group *-algebra
associated with Foo , where g; = got. For each 0 S , S 1 there exists a
state <fJ-y on A uniquely determined by

<fJ-y(x) = ,lxi, x E Foo .

This 'P-y is called the Haagerup state, see [11J.
The two sequences {(gi)~l' (gjl)~l} satisfy the singleton condition

(cr. Section 1) with respect to the Haagerup state 'P-y only when, = 0;
while the singleton independence and the uniform boundedness (cf. Sec­
tion 4) hold. In fact, the idea of the singleton independence was moti­
vated by the Haagerup states. In this concrete case (4.12) is computed
explicitly, where a pair-partition with singletons is negligible if there
appears a crossing pair.

DEFINITION 5.1. Assume that a product gal'" gak contains s ~ 0
inner singletons and no outer singletons. Let ail' ... , ai, be the suffices
which correspond the singletons and denote the rest by f3b'" , f3k-s
in order. We say that the product satisfies the condition (NeI) if
g/3I···g/3k-. = e. For any k ~ 1 and Er,'" ,Ek E {+1,*} let
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NCh(S; lOb ••• , Ek) be the set of equivalence classes of products 9a1 .. ·9ak

which consist of (k - 8)/2 non-crossing pairs and of 8 inner singletons.

THEOREM 5.2. Let k:2: 1 and lOb··· ,Ek E {+1, *}. For the Haagerup
states {t.p"(} on the free group F00 it holds that

For further study concerning the above result see [3]. Another exam­
ples of the singleton independence are known from the unitary represen­
tations of free groups.
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