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The stochastic limit of a flee particle coupled to the quantum electromagnetic field without 
dipole approximation leads to many new features such as: interacting Fock space, Hilbert module 
commutation relations, disappearance of the crossing diagrams, etc. In the present paper we 
begin to study how the situation is modified if a free particle is replaced by a particle in a 
potential which is the Fourier transform of a bounded measure. 

We prove that the stochastic limit procedure converges and that the overall picture is similar 
to the free case with the important difference that the structure of the limit Hilbert module is 
strongly dependent on the wave operator of the particle. 

Keywords: stochastic limit, quantum electrodynamics, scattering operator, Hilbert module, in- 
teracting Fock space. 

MSC: 60H40 

1. I n t r o d u c t i o n  

The stochast ic  l imit o f  quan tum e lec t rodynamics  has been  studied systemat ical ly  
in a series o f  papers deal ing with a mult ipl ici ty o f  physica l  models .  The  main  result  
in those papers can be stated as fol lows:  if  we  drop the dipole approximat ion  on 
the quan tum E M  field, in order  to unders tand asymptot ica l ly  its evolution,  one  needs 
a quan tum stochastic process,  which  is the solution o f  a white noise Hamil tonian  
equat ion (equivalent  to a quan tum stochastic differential equat ion)  driven by  a quan tum 
white noise l iving on some Hilbert  module .  Moreover ,  the quan tum noise is 

i) bosonic ,  i f  we  int roduce the (quasi)  dipole approximation; 
ii) an entangled extension o f  the free white noise, i f  we  drop the dipole 

approximat ion.  
In previous  investigations [1-3]  we  have cons idered  a free particle, i.e. a particle 

driven by  the kinetic energy  min imal ly  coupled  to the E M  field. N o w  we are going  

[4Ol] 
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to investigate the same problem in the case of a particle driven by kinetic and 
potential energy. 

Let be given a physical system (e.g. an atom), described by a Hilbert space 
L2(]R d) with d > 3 and a Hamiltonian operator 

Hs := p2 + V(q), (1.1) 

where p is the momentum operator, q the position operator and V is a potential 
function in the Schwartz class. The particle is assumed not to be spatially confined 
and therefore its kinetic energy spectrum is continuous. Suppose that this system is 
coupled to the quantum EM field (whose Hamiltonian will be denoted by HR) via 
the interaction Hamiltonian 

I-It := Xp e ~k qak - h.c. (1.2) 
k 

This coupling arises from the minimal coupling by neglecting polarization and the 
secund-order term in 3. (cf. [3]). In (1.2) p denotes a fixed component of momentum 
on the orthogonal space to k. 

In the interaction picture, the evolution of this system is determined by the 
operator 

U.: L) := eit(Hs®l+l®HR) e -it(HS®I+I®HR+xH1), (1.3) 

where the coefficient 3. is called a coupling constant. {Ut(Z)}t_>0 defined in (1.3) 
satisfies the ordinary differential equation 

dfr(z) = -i3.Hi (t)Ut (~) (1.4) dt .'t 
where Hz(t) is the evolved interaction Hamiltohian defined by 

Hl(t) : =  eit(Hs®I+I®HR) HIe -it(Hs®I+I®HR). 

By a standard procedure [3] (introducing a cut-off and changing the sum to 
integration) we can rewrite the evolved interaction Hamiltonian as 

H i ( t ) = i ( f ~ a  e i t n s ( - - i p ) e i k ' q e - i t H s @ ( S t g ) ( k ) a k  -- h . c . ) ,  (1.5) 

where g is a Schwartz function, depending on the cut-off; {St}te~ is a unitary 
group (1-particle free evolution) on the Hilbert space L2(]R d) coming from the field 
Hamiltonian and satisfying the fundamental condition: for any f,  g ~ S(]R d) (the 
Schwartz space of rapidly decreasing functions) 

f l(f, Stg)l < (1.6) dt +cx~. 
d 

The dipole approximation consists in replacing of the factor e ik'q by 1 (or by 
the first few terms of its Taylor expansion). The starting point of our investigation 
is to keep this factor and seek for a new, not so drastic, approximation. 
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The main result in this article is that, as )~ -+ O, the operator Tr(x) is approximated '-'t/L2 
by a quantum stochastic process U(t). Moreover 

i) the convergence is a quantum analogue of the convergence in law; 
ii) the limit process U(t) satisfies a quantum stochastic differential equation; 

iii) the quantum stochastic differential equation is driven by a new type of 
quantum noise on a Hilbert module; 

iv) the Hilbert module is related to the Mq~ller wave operator. 
The presence of the Mq~ller wave operator represents the main new feature, 

with respect to the case of a free particle, studied in [3]. For this reason in the 
following section we describe the main idea of the emergence of this new feature. 
In Section 3 we describe the limit Fock module and in Section 4 we prove an 
explicit formula for the mixed moments of the module creation and annihilation 
process. Finally, in Section 5 we deduce the explicit form of the module stochastic 
equation for the limit operator. The proofs of the last three sections have not been 
included because, although lengthy, they do not introduce substantial new ideas with 
respect to [3]. 

2.  S o m e  p r e l i m i n a r y  r e m a r k s  

We begin our investigation from the formal solution of Eq. (1.3), 

U~Z) ~ ft/Z2 fotl ftn-~ t/X2 = (--i)Q n dtl dt2"'" dtnH1(tl)Hl(t2)"" Hl(tn). (2.1) 
n=O dO dO 

In the following, for notational convenience, we shall exchange the order of the 
system part and the field part, i.e. we rewrite the evolved interaction Hamiltonian 
Hi(t) as i(f . (Stg)(k)ak®eitns(--ip)eik'qe-itns--h.c.). 

Thus, for each n > 0, one has that 

fR e(1) e(n)t, c (-i)" Hl(tl)Hl(tz) . . . Hi(t,) = k otl g)e(1) (k l  ) . . . ( gtng)e(n) (kn)  ..% "'"% 
eE{0,1} n 

t~ e itlHs { ( - - i p ) e  ikl'q }e(1) e_ i t l i - l s . .  " eitnI-ls { ( _ i p ) e i k n ,  q }e(n) e_i tnHs,  (2.2) 

where for any operator b we use the notation 

b, if e = 0, 
b ~ := (2.3) 

b*, if e = 1, 

and for any function F, 

I F ,  i f e = l  F ~ : =  _ ' (2 .4 )  
F, if e = 0 .  
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For example, if n = 1, (2.2) becomes 

f ak(Stg)(k) ® e i t H s ( - - i p ) e i k ' q e  - i t H s  - -  h.c. (2.5) --in(t) 
dR d 

The collective two-point function is 

)2 fo t/L2 fs/L2 I (Stl f ) (kl)a~ (St2g)(k2)[O) dtlJo dt21olf~2ddkldk2ak, × 

eitlHs(--ip)eiklqe -itlHs • eit2Hse-ikE'q(ip)e -it2HS (2.6) 

I 't/X2 fo sly'2 

=:Jo "" 
eiqHs(--ip)eik'qe -iqHs • eit2Hse-i~'q(ip)e -itEHs, (2.7) 

where f, g ~ S(]Rd). From the CCR, one knows that (2.6) is equal to (2.7). 
In the product of operators in (2.7), it is convenient to move the operator e ik'q 

until it is erased by meeting the operator e -ik'q. This requires the following lemma. 

LEMMA 2.1. For any t >_ O, 

eik'q e itHS = eit(Hs+p'k) eik'q eitlkl2/2. (2.8) 

Proof: One has 

e i k ' q e i t n s e  - ik 'q  = exp{it([eikqpe-ikq] 2/2 + V(q)}  = exp it{(p + k) 2/2 + V(q)} (2.9) 

and the right-hand side of (2.9) is equal to the right-hand side of (2.8). [] 

Using Lemma 2.1 the quantity (2.7) becomes 

f,,:[s,:f, )2 dtl dt2 (Sq f)(k)(St2g)(k)dk 
dO dO d 

eiqHs(--ip)ei(t2-tl)(Hs+p'k)(ip)e-it2Hsei(t2-tl)lkl2 (2.10) 

and, by the change of variables: 

~.2th = Sh, h = 1, 2; ~1 = S1, 

(2.10) becomes 

fot /~ (S--rl)/3"2 
dZl I dz2 J~f d -f(k)(Sr2g)(k)dk J - r I IZ 2 

(s2 - sl)/~, z = r2, (2.11) 

eirlHs/Z 2 (_ip)eir2(Hs+p.k) (ip)e-iq Hs/Z2e--ir2Hseir21kl 2 

The following lemma describes the commutation relations of e inHs. 

(2.12) 
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LEMMA 2.2. For any bounded function or polynomial F, 

[e itHs, F(p)]  = - i  dseisns[F(p), g(q)]e i(t-slgs. 

Proof: Define 

X(t)  := [e itl-ls, F(p)] ,  

then 

and 

f0 t Y(t) := - i  dseisHs[F(p), V(q)]e i(t-s)Hs, 

x ( o )  = T ( o )  = o 

405 

(2.13) 

(2.14) 

d 
--~X(t) = iX(t )Hs - ie i tHs[F(p) ,  V(q)]. (2.15) 

On the other hand, 

Y(t) = --ieitHs[F(p), V(q)] - i 2 dseiS~S[F(p), V(q)]ei(t-s)HSHs 

= iY(t)Hs - ieit~s[F(p), V(q)]. (2.16) 

and this implies the thesis. [] 

An application of Lemma 2.2 to the case F(p)  = p, which gives [p, V] = - i V ' ,  
shows that (2.10) is equal to 

, f(,-~l)/Zz f~a_f(k)(S~zg)(k) x fo d~l dr2 J_rt/)2 

x p - i dse isnsV'(q)e -isns eiqHs/;~2eir2(Hs+P'k)× 
dO 

( r ) × e -i(rl/~'z+r2)Hs p + i dseisHsvt(q)e -isHs e irzlkl2. (2.17) 
dO 

It is known (cf. [7]) that the limit 

lim ; r/~'2 Z~O Jo dseiSnsV'(q)e -i~Hs =: FHs(V'(q)) (2.18) 

exists for any r > 0 and V' 6 L I ( ~  d) A L2(Rd). Thus (2.17) is equal to 

t f(s-rl)/;~ 2 
o(1) + f0 dr1 drzfRd-f(k)(Sr2g)(k)× 

d - - z l / , k 2  

t . 2 . • 2 × (p - iFHs(V (q)))e '*lns/z e'r2(Hs+p'k)e-Z(rl/;~ +r2)HS(p _ iFns(Vt(q)))*eir21kl 2, 
(2.19) 
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where and hereinafter, by o(1) we denote a quantity which tends to zero as )~ --+ 0. 
From usual scattering theory, for V e L I ( ~  d) AL2(]~ d) and any r > 0, the limits 

f2(-t-Hs, qzp2) := s -  lim e+irHs/LZeTirp2/~2, (2.20) 
k---~ 0 

~'~ ("l-p 2, qzHs) :=  s - lim e±irpZ/~'ZeqzirHs/~'2 (2.21) 
)~--+0 

exist and are called the M4~ller wave operator. Moreover, all of them are complete. 
With these notation, one can rewrite (2.19) as 

t f ( S - r l ) / ~  2 _ 
o(1) q-f0 dZl dr2fRdf(k)(S~2g)(k) 

d --31 # 2  

(p - i F Hs ( V' (q ) ) )g2 ( + Hs ,  -- pZ)eir l  pz /z 2eir2(Hs+ p'k ) e - i r l  p2 /~ 2 

~2*(+Hs, -p2)e-irzt4s(p - iFHs(V'(q)))* e ir21kl2. (2.22) 

Now we have to investigate the operator 

eirlp2#2eir2(Hs+pk) e-irlp2/L2 = exp ir2(p 2 + e irlp2/L2 V ( q ) e  -irlp2/)~2 --}- p • k). (2.23) 

Since e inp2 V (q)e -inp2 = V (q + np), (2.24) 

we know that the right-hand side of (2.23) is equal to 

eir2(pZ + p.k + V (q + r 1 p/Z2)), (2.25) 

and since V(x) ~ 0 as Ixl -+ c~, it is intuitively clear that the quantity (2.25) 
converges to exp(irz(p2 + p - k ) )  as )~--+ 0. The following lemma shows that this 
intuition is correct. 

LEMMA 2.3. Define the new operator 

Yn( t )  := eit(pZ+pk+V(q+nP)) e -it(p2+p'k). (2.26) 

I f  the potential function V is in the Schwartz class, one has 

s - lim Yn(t) = 1. (2.27) 
n----> oo 

Proof: It is easy to verify that 

f0 fo y0 Yn(t) = 1 + dq V(q + (n + tl)p + tlk) + dq dr2 

g(q + (n + q)p  + qk)V(q  + (n + t2)p + t2k) + . . .  

+ dtl d t2 . . ,  dtN 
dO 

V(q q- (n + q)p  + tlk)V(q q- (n 4- tz)p + tzk) . . .  V(q q- (n + tN)p q- tNk) + . . . .  
(2.28) 
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Since V is bounded, in order to prove (2.27), it is enough to show that for any 
N > I ,  

s -  lim V ( q + ( n + t l ) p + k l ) V ( q + ( n + t 2 ) p + k 2 ) . . .  V ( q + ( n + t N ) p + k s )  = 0. (2.29) 
n----> oo 

By Fourier transform, one obtains that, writing for convenience kh := thk, 

V(q + (n + h)P -t- kl)V(q + (n + t2)p + k2) • • • V(q + (n + ts )p  + ks)  

^ ~, in  Y~d<h<N I x h l 2 + ~ l < c t < ~ 6 < N X c c X ~ ]  = fNNd I~(X1)... V(x~,)e [ - - - 

e i Y~l<h<N(kh'Xh+thlXh 12) +i Y~d<_a<~<_N x~'x~t,~eiP'Y~l<h<U xh(n+th)eiq'~l<h<N Xh (2.30) 

The Riemann-Lebesgue lemma gives our claim. [] 

By using these results we are able to rewrite (2.22) as 

t [ ( S - - r l ) / X  2 __ 

o(1) + f0 d/:l d r 2 £ d f ( k ) ( S r z g ) ( k ) ( p - i I ' H s ( V ' ( q ) ) )  
d-rl/Z 2 

f2 (+Hs ,  --p2)eira(p2+p'k)~*(+Hs, --p2)e-ir2Hs(p -- i I 'Hs(V'(q)))* e ir21kl2 (2.31) 

which tends, as Z ~ 0, to 

(X[0,,), X[0,s))f~ dtl £d -f (k)(St, g)(k)(p - iFt-ls(V' (q))) 

g2(+Hs, -p2)eiq(p2+p'g)~*(+ns, --p2)e-iqHs(p -- iI'Hs(V'(q)))* e it21kl2. (2.32) 

The intertwining property of the scattering operator implies that 

f2*(+Hs, --p2)e-itlHs = e- i t lp2~*(+Hs,  _p2) ,  

so (2.32) becomes 

fi,.. f. 
(p - i F Hs ( V' ( q ) ) ) f2 ( + Hs, -- p2 )eitl p.k ~* ( + Hs, _ p 2 )  (p _ i F Hs ( V' ( q ) ) ) * e it21kl2. 

(2.33) 

Finally, Lemma 2.2 shows that 

pf2 (+Hs, _p2)  = g2 (+Hs, _p2)p  + i I'Hs (V'(q)))g2 (+Hs, _p2) ,  

therefore the two-point function (2.6) has the following limit 

(X[o,t), X[o,,)) f _ ~  dtl fRd -f (k)( S, l g)(k)~2 ( + Hs, -p2)  peitlp k Pg2* ( + Hs, -p2)ei'l'kl2. 

(2.34) 
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In order to understand which type of quantum noise can appear in our limit, let 
us examine the four-point functions. Vanishing of the crossing diagrams is proved 
with the same technique as in [1] (Section (12.19)) or [3]• Therefore, we have 
to consider only those four-point functions which correspond to products of the 
creation and annihilation operators of the following types (noncrossing diagrams) 

aa+ aa +, aaa+ a +, 

respectively• That is, we must consider the limit of 

f o T 1 / ~ ' 2 f T 2 / L 2 f T 3 / L 2 f  T4/X2 
A(~., 0101) := X 4 dr1 dt2 dt3 dt4 

dO JO dO 

(0l .[~4d dkl  dk2dk3dk4alq (Stl f l )  (kl)a~ (St2 f2) (k2)ak3 (St3 f3) (k3)a~4 (St 4 f4) (k4) 10) 

e itl Hs (-- ip) e ikl "q e -itl Hs • e it2Hs e -ik2 "q (ip)e -it2as. 

• e it3Hs (--ip)eik3qe -it3Hs • eit4Hse -ik4"q (ip)e -it4Hs (2.35) 

and 

f o T 1 / ) ~ 2 f T 2 / L 2 f T 3 / L 2 f  T4/'~2 
A0~, 0011) := X 4 dr1 dt2 dr3 dt4 

JO dO JO 

fl)(kl /2)(k2)a  f3)(k3)a  f+)(k+)lO) (01 4d dkEdk3dk4akl ( S t l ) a k 2  (St2 ~ (St3 (St4 
eitl HS (_ip)eikl 'q e-it! HS . eit2ns (_ip)eik2"q e-it2ns. 

• eit3nse-ik3q(ip)e -it3Hs • eit4Hse-ik4q(ip)e -it4Hs . (2.36) 

The Gaussian form implies that 

A(X, 0101) : =  ~4 dtl dt2 dt3 dt4 
dO dO dO 

fl~z 4 dkldk3 ( Sq f l ) (kl)(  St2 f2)(k l ) (  St3 f3)(k3)( S t4f  4)(k3) 

eitl Hs (_ip)eikl  "q e-iq HS . eit2Hse-ikl'q (ip)e-it2HS. 

• e it3ns (--ip)eik3"qe -it3Hs • eit4Hse -ik3"q (ip)e -it4Hs, (2.37) 

which practically is a product of two objects both similar to the quantity (2.6). 
Therefore the same argument used to prove (2.6) gives the following result. 

LEMMA 2.4. I f  the potential function V is in the Schwartz class, the limit, as 
9~ --+ O, o f  the term A(~, 0101) is equal to 

(Xtom),Xto, r2,)(Xto,r3),Xto, 4)) f dt f_ ds dkldk2A(ka)(S, f2)(kl)T3(k2) 
(Ssf4)(k2)f2(-l-Hs, --p2)p2eitp'kleiSp'k2p2~*(-I-Hs, --p2)eitlkll2eiSlk212. (2•38) 
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Proof: In the investigation of the two-point function, the operator p behaves 
like a bounded operator if one takes on the system space the partial expectation of 
(2.37) by a linear function of the form (~, 0} with ~, ~ in the Schwartz class. 
Because of this, one can repeat in this case the proof for the two-point function 
(2.6) and this leads to the desired conclusion. [] 

Now we are going to investigate the limit of the term AO., 0101) and in the 
following discussion we shall always assume, without any further explicit mention 
of this fact, that the potential function is in the Schwartz class. 

LEMMA 2.5. I f  the potential function V is in the Schwartz class, the limit, as 
)~---> O, of the term A(~., 0011), i.e. (2.36), is equal to 

(St f4) (kl)~22 (k2) (Ss f3) (k2) ~ (-q-Hs, - p 2 ) p  (p ..}_ kl )e itp'k' 

eisp'k2(p + kl)p~2*(+Hs, --p2)eitlkll2eiS(Ik21Z+kl"k2). (2.39) 

Proof: Because of the Gaussian form, (2.36) is equal to 

A(~., 0011) := ~4 dh dt2 dt3 dt4 
JO dO JO 

2 d dkl dk2 f l  ) (kl) f2) (k2) f3) (k2) (St 4 f4) (kl) (S,l (St2 (S,3 
eitl HS (_ip)eikl.q e-iq HS . eit2ns (_i  p)eikz.q e-it2ns. 

• eit3Hse-ik2q(ip)e -it3Hs • eit4Hse-iklq(ip)e -it4Hs. (2.40) 

Now it follows from Lemma 2.1 that the product of the operators in (2.40) 
becomes 

eitlHs (_ip)e-itl(Hs+p'kl) . eit2(Hs+p'kl)(_i(p ..1- kl))e-it2(Hs+p'(kl+k2)) eit3(Hs+p'(kl+k2)) 

(i(p q- kl))e-it3(Hs+p'kl)eit4(Hs+p'kl)(ip)e-itaHsei(t4-q)[k]12ei(t3-t2)(Ik212+kl"k2). (2.41) 

And again the result follows from the same arguments used to find the limit of the 
two-point function. [] 

3. The limit Fock module 

In Section 2, we have investigated the limit behaviour of the two- and four-point 
functions. That discussion suggested that the limit of the evolution must be related 
to the M~bller wave operator and that it should live on some Hilbert module. 

In this section we shall investigate the structure of this limit Hilbert module 
and prove that it differs from the one found in the case with V = 0 (cf. [3]). In 
particular, it is a Hilbert module over the Abelian ,-algebra (not a C*-algebra) 
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which is the image, by the automorphism implemented by the wave operator, of 
the algebra of all the polynomials in the momentum operator p and its bounded 
measurable functions. More precisely, denote by g3, the set of all polynomials (of 
one variable) of degree n and define 

T~a := {f2(ns,-p2)en(p)eitp~f2*(ns, _p2)  In ~ N, k ~ IR d, en ~ q3n}. (3.1) 

It is clear that P a  is a .-algebra admitting a dense subset of L2(N a) as invariant 
domain. For each f E S(IR') define 

}Pn(t) : =  JRf d d k ~ ( n s ,  --p2)pn(p)eitp'k~2*(ns, - p 2 ) ( S t f ) ( k )  (3.2) 

and 
:"  := {j~ [ f c S(IRn), a is a polynomial in p}. (3.3) 

It is easy to show that the elements of .7" are operators on 7-/s, defined on the 
same domain as Ps~ and that ~ is a two-sided 7)~-module. On the Pa-module b r 
introduce the P~-valued inner product ('1"): 

( } a [ g b )  " =  f dt f2(Hs,-p2)a*(p)b(p)eitpkf2*(Hs,-p2)f(k)(Stg)(k), (3.4) 

and so (~/('1"), ('1")) is a (pre)Hilbert module and in the following we shall denote 
the associated Hilbert module by ~ .  

Starting from this Hilbert module, let us consider the algebraic tensor product 
L2(IR+) (D ~ on which we introduce the inner product 

(o~ ® fal/~ ® ~b) :=  (o~, /~)L2(~+) " (falgb). (3.5) 

Thus we get a new Hilbert module. This new Hilbert module is the basic object 
by means of which we can define our limit quantum stochastic process. For each 
given n ~ N, on the algebraic tensor product (L2(It{+)(D :-)on we introduce the 
inner product 

0 / 1 0 / n  /61 g l ,b  1 C) " " " C) ~n (~ gn,bn) 
\ 

® ® . . .  ® ® ® 

" i, /, ( ) :---- 1--I (Oth' ]~h}L2(~+) " dUl'"dun dkl...dkn exp i ~_~ urkrkh+l 
h=l  n nd l<r<h<n-1 

h-1 h-1 
~(Hs,--P2)fl[a~(P"l-~_~kj)bh(p-[-~_~kj)e-iUhkh'P fh(kh)(Suhgh)(kh)]~*(Hs,--P2) *, 

h=l  j = l  j = l  

(3.6) 

where the equivalence classes are defined in a similar way as in the case n = 1 and, 
by definition, the summation is extended to the set of indices 1 < r < h < n - 1, 
with n = 1 put equal to zero. 
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Thus for each n • N, with the 79a-right sesquilinear, 79a-valued, form given 
by (3.6), (L2(]~)Q)Jr') ®n becomes a right 7~a-pre-Hilbert module and the symbol 

(L2(•) Q).T') @n will be used to denote it. 

Since for each n • N, (LZ(N)® .T') ®n is a T'a-pre-Hilbert module, the direct 

sum C@~),,~_1 (L2(R) ® .7:) ®" makes sense and will be denoted by P (L2(~+) ® U) 
and called the 79~-free Fock module over L2(N+)® U. In this pre-Hilbert module, 
the vector 0,1 := 1 @ 0 @ 0 - . .  is called the vacuum vector. 

LEMMA 3.1. The number vector subset 

r := {(oqQfl)®-.  "®(t~nQJ~)~ I n • N, ctj • L2(I~+), f j  • .T', j = 1 . . . .  , n} (3.7) 

is a 79~-total subset of F (L2(~+) (3 5c). 

Proof: It is clear just by using the definition of Hilbert module. [] 

DEFINITION 3.1. For each element of L2(~+)Q)f', the creator with respect to 
this element, denoted by A+(.), is defined on the 7~-right linear span of r by 
79~-right linearity and 

A+(ot@f)[(OtlQfl)® .. -@(~n®j~)qJ] := (oe®/)®(oq®jq)®. . .N(oe ,®j~)qs ,  (3.8) 

where n e N ,  c~, otj •LZ(N+) ,  f ,  9~ • 9  c, j = l  . . . . .  n. 
The annihilation operator A(.) is defined as the adjoint of the creation operator 

on the domain of number vectors. 

REMARK. In general, A+(Otl®jq)A+(~2®~) is not equal to A+(ot2®f2)A+(al® 
fl). 

The above discussion suggests us to define the collective module creator 

A+(S, T, f ,  a) := ~ Js/z2 dt a dke-i'mei~Pa(p)ei'm @ (Stf)(k)a+' (3.9) 

where 0 < S < T < +~x~, f • S ( ~  ~) and a(p) is a polynomial in p. 

THEOrtEM 3.1. For any N, N' • N, the limit of 

N N t 
rh, fh,  ah)* , l - - I  + ' ' ' ' ) A z (Sh, T£, f[,, ah)dP (3.10) 

h=l  h= l  

exists and is equal to 

N N p 
( I-I  a+(x[Sh,Th] O Sh,ah)ltl, I-I  a+(x[Sth,T~l Q) $h,dh)~II). ( 3 . 1 1 )  

h= l  h= l  

Proof: The theorem is proved by the same arguments as used in the proof of 
Lemma 2.5. [] 
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By the same techniques as used in [3], one can prove that the quantum noise 
is of  free type i n  the sense that only the noncrossing diagrams contribute to its 
correlation functions. Therefore our Hilbert module is a nonlinear deformation of  
the usual free (or Boltzmannian) Fock module. The stochastic calculus over the free 
Fock module has been first studied (cf. [10]). 

. T h e  l i m i t  s t o c h a s t i c  p r o c e s s  

Now we compute the vacuum statistics of  the creation and annihilation fields 

Z e(h) = n. (4.3) 
h=l 

Proof: This is a standard fact on free Fock modules. [] 

Let be given a subset {mh}~=l C {1 . . . .  , 2 n }  with 1 < m l  < . . .  < mn = 2n. 
m n i n We say that { h}h=l admits a noncrossing pair partition if denoting by {mh}h= 1 

an ordered version of  the set {1 . . . . .  2n} \ {mh}h=l,n the family {mh,t mh}h=ln is a 
noncrossing pair partition of  {1 . . . . .  2n}. By [3], if this is the case, then the choice 
of  the {m~} is unique. 

For a given e ~ {0, 1} 2n denote 
n {mh}h=l : =  {r ~ {1 . . . . .  2n} I e(r) = 1}, 1 < ml < . . .  < mn = 2n. (4.4) 

m n We say that e 6 {0, 1} 2n admits a noncrossing pair partition of  {1 . . . . .  2n} if { h}h= 1 
does. 

LEMMA 4.2. The inner product (4.1) is equal to zero if  e does not admit a 
noncrossing pair partition o f  {1 . . . . .  2n}. 

Now we are led to consider the expression (4.1) when e admits a (unique) 
noncrossing pair partition of  {1 . . . . .  2n}. Moreover we shah consider an expression 
more general than (4.1), 

(tI/, Ae(1)(Otl Q) f l )  • " " R(p)e  ix'p' '" ae(2n)(ot2n Q) f2n) t I / ) ,  (4.5) 

where R(p) is a polynomial. 

on the limit Hilbert module, i.e. the expectation values 

(q/, Ae(1)(t~l Q) f l ) " "  Ae(2n)(°t2n C) f2n)qJ ) ,  (4.1) 

where n E N ,  ctj E L E ( ~ + ) , f j  E.T" ( j = l  . . . . .  2n), e ~ { 0 , 1 }  2n and 

A ° :=  A, A 1 := A +, 

and where for simplicity we shall not distinguish between f and f (e.g. we restrict 
ourselves to real-valued test functions). Moreover, it is necessary to know (4.1) only 
in the case of  

e(1) = 0, e(2n) = 1. (4.2) 

LEMMA 4.1. The inner product (4.1) is not equal to zero only i f  

2n 
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Since on the limit Hilbert module the left action is not defined, the most natural 
way to give a meaning to the quantity (4.6) is to define it as the limit of 

(~, A~(1) (S~, T1, f l ,  a l ) . . .  A~(r)(&, Tr, fr, ar)R(P)d xp 

A~(r+l)(Sr+l, Tr+l, fr+l, ar+l)""" A~(2~)(S2n, T2~, f2~, a2~)q~). (4.6) 

THEOREM 4.1. The limit of (4.6) exists and is equal to zero if e does not admit 
a noncrossing pair partition of {1 . . . . .  2n}; while it is equal to 

n 

h = l  

f_f dul""f_f d""f .d 
n 

n 

dkl . . . den 1-I (Suh fmh)(kh)-f m~h (kh) 
h = l  

/z n 

q- y ~  k!X(m~,mD(2h))a2h+l(p q- ZklX(m~,mt)(2h q- 1))] 
/ = 1  / = 1  

n 

R(p q- Z kIX[m~,mt] (r))eix'pO) 
l = l  

n-1 
ix'Y]~7=lklX[mtm'](r) (i ~ ~ Uhkh krX(mtr,mr)(mh)) (4.7) e t, t exp • 

h = l  r = h + l  

! m n . if  e admits a (unique) noncrossing pair partition {m h, h}h=l 
Proof: The proof can be performed by putting together the argument from 

Section 2 and the technique used in [2]. [] 

5. The stochastic differential equation 

By the same technique, we are able to prove our main result, i.e. the convergence 
of the matrix elements, in the collective number vectors, of the wave operator at 

Tr(Z) to a unitary operator U(t) on the Fock module described in Sections 3 time t, ,~t/z2, 
and 4, satisfying the stochastic differential equation 

U(t) = 1 + (dA+(~ip) - dA,@ip) - (~ipl~ip)_ds) U(s) (5.1) 

driven by the new quantum noise described in the previous section and where the 
quantum stochastic integrals are defined on the full ~a-Fock module described in 
Section 3 following the theory developed in [8-10]. As usual, in (5.1), the half-inner 
product ('1")- is defined replacing the dt-integral over N, in (3.4), by an integral 
extended over the half line ( - ~ ,  01, and for any polynomial gp : g(p) in 79•, gip 
denotes the polynomial obtained from it by replacing p by ip. 
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In fact the argument in [3] guarantees that in order to consider the limit 

N N I 

A+(Sh, Zh, fh, ah)*, tT(Z) I-I Az (S'h' Ti' f l ,  ah)* ( 5 . 2 )  vt/z2 
= h=l 

one can replace the operator U ~x) by its series expansion and take the limit (as t/L 2 
--~ 0) term by term, since any term has the form (4.6). Thus the techniques of 

[3] give the main result. 
An interesting open problem is to determine the vacuum distribution of the 

classical random variable A(~ ® fa) + A+(~ ® fa) in the limit module. 

Note" added on 14-01-2004 
The present paper was completed in April 1995 and endured various vicissitudes 

among which that of being lost. Now there is a revival of interest for the role of 
scattering and wave operators in the weak coupling limit of  QED for applications 
to quantum optics and quantum information. 

Therefore publication of these results, even after such a long delay, seems to be 
justified. 
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