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Abstract—The stochastic limit of quantum theory suggests a new, constructive, approach to nonequilibrium
phenomena. We illustrate this approach when considering the interaction of 3-level system with a quantum field
in a nonequilibrium state. We describe a class of states of the quantum field for which a stationary state drives
the system to an inversely populated state. We find that the quotient of the population of the energy levels in the
simplest case is described by the double Einstein formula which involves products of two Einstein emis-
sion/absorption factors. Emission and absorption of radiation by 3-level atom in nonequilibrium stationary state
is described. © 2003 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

Recent developments of technology greatly
improved our ability to control individual quantum sys-
tems. This brings quantum technology beyond aca-
demic research to the level of concretes industrial pro-
grams. For the requirements of such quantum technol-
ogies the requirement of stability is essential: it is not
only required that at time T the system is in a given
quantum state, but also that it remains in this state suf-
ficiently long time to allow the manipulations required
by quantum computation. One possible way to achieve
this goal is to exploit a general principle of the stochas-
tic limit [1, 2], namely: the interaction of a quantum
field with a discrete system (e.g., an N-level atom)
drives the system to a stationary state which is uniquely
determined by the state of the field. Already now many
manipulations on microscopic objects are achieved
through their interaction with appropriate fields. Thus
the scenario we are proposing simply integrates this
approach with the additional requirement of stability.
The advantage of the stochastic limit approach is that it
gives a quite explicit description of the parameters
which control the final state of the system. Therefore, if
we are able to act on these parameters with suitably
chosen initial state of the field and the interaction we
could drive the system in a stable way to a large class of
preassigned states.

In the present paper we consider a 3-level system
(for example an atom) interacting with radiation. Sev-
eral nontrivial phenomena arising in this model situa-
tion have been already described in different contexts,
especially in quantum optics [3–6].

We show that for such a system application of the
stochastic limit allows to obtain an interesting effect of
inversion of population: for a special choice of the state
of the reservoir the system relaxes to a stationary state
where the population of the level of the system with

1 This article was submitted by the authors in English.
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higher energy will be larger than the population of the
level with lower energy.

We obtain an equation for the number of photons
emitted and absorbed by the system.

We investigate examples of 2- and 3-level systems.
We show that for a 2-level atom emission in the station-
ary regime equals absorption. For a 3-level system
emission and absorption of radiation are controlled by
the state of the field. We find that for a 3-level system in
a stationary nonequilibrium state two regimes—emis-
sion and absorption—are possible. In the emission
regime the total number of quanta in the system
increases, and in the absorption regime it decreases.
These regimes are controlled by a function β(ω) (cf. (4)
below). For example the 3-level system with energy
levels ε1 < ε2 < ε3 is in emission regime when

and it is in absorption regime when the opposite ine-
quality holds.

In the emission regime the 3-level system converts
radiation of frequency ω2 into radiation of frequencies
ω1 and ω3 and vice versa in the absorption regime. The
analogies with parametric downconversion and second
harmonic generation are suggestive and will be dis-
cussed elsewhere.

In particular the stationary state of the 3-level sys-
tem gives an example of dissipative structure in the Pri-
gogine sense [7].

Equilibrium states of the field are characterized by
the property that the function β(ω) is linear (= βω + µ).
In these states the system is in equilibrium with radia-
tion.

The interaction of a quantum system with a quantum
field is described by a Hamiltonian

(1)

β ε2 ε1–( ) β ε3 ε2–( ) β ε3 ε1–( ),>+

H HS HR λ HI.+ +=
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The system degrees of freedom are described by the
system Hamiltonian

(2)

The radiation degrees of freedom are described by
the Hamiltonian

(3)

where a(k) is a bosonic field with a Gaussian state char-
acterized by

(4)

and β(ω(k)) is a (none necessarily linear) function.
The interaction Hamiltonian HI is of dipole type

(5)

where D and D* are operators on the system space.
We investigate the dynamics of this system in the

stochastic limit, i.e., in the regime of weak coupling
(λ  0) and large times. This regime is given by time
rescaling t ° t/λ2. This rescaling and the interaction (5)
lead naturally to introduction the rescaled quantum
fields

(6)

where ω are the Bohr frequencies (differences of eigen-
values of the system Hamiltonian HS).

By the stochastic golden rule [1] the rescaled field
(6) in the stochastic limit becomes a quantum white
noise or master field bω(t, k) satisfying the commutation
relations

(7)

and with the mean zero and gauge invariant Gaussian
state with correlations

(8)

(9)

In particular white noises, corresponding to different
frequencies ω, are independent (stochastic resonance
principle).

The Schrödinger equation becomes a white noise
Hamiltonian equation, cf. [1, 2] which being put in nor-

HS ε j ε j| 〉 ε j〈 | .
j

∑=

HR ω k( )a* k( )a k( ) k,d∫=

a k( )〈 〉 a k( )a k'( )〈 〉 0,= =

a* k( )a k'( )〈 〉  = N k( )δ k k'–( ) = 
1

e
β ω k( )( )

1–
-------------------------δ k k'–( ),

HI g k( )a k( )D* kd∫ h.c.,+=

1
λ
---e

it

λ2
----- ω k( ) ω–( )–

a k( ),

bω t k,( ) bω'* t ' k',( ),[ ]

=  δω ω', 2πδ t t '–( )δ ω k( ) ω–( )δ k k'–( ),

bω* t k,( )bω' t ' k',( )〈 〉
=  δω ω', 2πδ t t '–( )δ ω k( ) ω–( )δ k k'–( )N k( ),

bω t k,( )bω'* t ' k',( )〈 〉
=  δω ω', 2πδ t t '–( )δ ω k( ) ω–( )δ k k'–( ) N k( ) 1+( ).
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mal order is equivalent to the stochastic Schrödinger
equation

(10)

with initial condition U0 = 1, and where
(i) dH(t), called the martingale term, is the stochas-

tic differential

(11)

driven by the quantum Brownian motions

(12)

(ii) The operator G, called the drift, is given by

(13)

where the explicit form of the constants , called
the generalized susceptivities, is

(14)

(15)

where P.P. means the Gouchy principal-part integral.
The real part of the generalized susceptivities con-

trols the line-broadening (frequency dependent refrac-
tion index, inverse life-times, rates of decoherence) and
the imaginary part controls the energy or these shifts.
From the stochastic Schrödinger equation, both the
Langevin and the master equation are derived by means
of a standard procedure.

In the present paper we consider generic quantum
system, i.e., such system that for each Bohr frequency
ω there exists a unique pair of eigenstates |1ω〉  and |2ω〉
corresponding to the two energy levels, , , so that

ω =  – .

dUt –idH t( ) Gdt–( )Ut, t 0>=

dH t( ) h s( ) sd

t

t td+

∫=

=  Eω* D( ) Bω t( )d Eω D( ) Bω* t( )d+( )
ω
∑

dBω t( ) = kg k( )bω τ k,( ) τdd∫
t

t td+

∫  = bω τ g,( ) τ .d

t

t td+

∫

G g g( )ω
–

Eω* D( )Eω D( ) g g( )ω
+

Eω D( )Eω* D( )+( ),
ω
∑=

g g( )ω
±

g g( )ω
–

k g k( ) 2 i N k( ) 1+( )–
ω k( ) ω– i0–
---------------------------------d∫=

=  π k g k( ) 2
N k( ) 1+( )δ ω k( ) ω–( )d∫

– iP.P. k g k( ) 2 N k( ) 1+( )
ω k( ) ω–

--------------------------,d∫
g g( )ω

+
k g k( ) 2 iN k( )–

ω k( ) ω– i0–
---------------------------------d∫=

=  π k g k( ) 2
N k( )δ ω k( ) ω–( )d∫

– iP.P. k g k( ) 2 N k( )
ω k( ) ω–
----------------------,d∫

ε1ω
ε2ω

ε2ω
ε1ω
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In this case

(16)

We consider a dispersion ω(k) which is ≥0 and,
moreover, we suppose that the Lebesgue measure of the
set {k : ω(k) = 0} equals to zero. This implies that the

real part of the generalized susceptivities Re  is
nonnegative and can be nonzero only for ω > 0.

We will also use the notation  for  if
ω = εi – εj .

In the present paper we investigate the nonequilibrium
stationary states for the master equation governing evolu-
tion of the diagonal part of the density matrix of a generic
quantum system. This equation was obtained in [2] as

(17)

where ρ(σ, t) = ρ(σ, σ, t) and |σ〉 are eigenvectors of the
system Hamiltonian HS.

If the system has a finite number of energy levels,
then a stationary state for the evolution, driven by the
above-mentioned master equation, exists and, if the
state of the reservoir is nonequilibrium, then the sta-
tionary state does not satisfy the detailed balance con-
dition for the master equation.

The diagonal and the off-diagonal terms of the
reduced density matrix evolve separately. The off-diag-
onal part of the density matrix evolves independently
and vanishes exponentially (cf. [2]). This corresponds
to the collapse of the initial quantum state to a classical
mixed state, described by the diagonal part of the den-
sity matrix. The diagonal part ρ(σ, σ, t) may be consid-
ered as a classical distribution function and equation
(17) may be considered as a kinetic equation for it.

The structure of the present paper is as follows.
In Section 2 we describe the stationary state for a 3-

level atom interacting with radiation found in [2].
In Section 3 we investigate the properties of this sta-

tionary state and find that the quotient of the popula-
tions of energy levels in the stationary state does not
obey the Einstein emission/absorption relations. If the
atom is in Λ-configuration the quotient of the popula-
tions will obey a new relation that we call the Double
Einstein relation.

Eω D( ) 1ω〈 |D 2ω| 〉 1ω| 〉 2ω〈 | ,=

Eω D( )Eω* D( ) 1ω〈 |D 2ω| 〉 2
1ω| 〉 1ω〈 | ,=

Eω* D( )Eω D( ) 1ω〈 |D 2ω| 〉 2
2ω| 〉 2ω〈 | .=

g g( )ω
±

g g( )ij
±

g g( )ω
±

d
dt
-----ρ σ t,( ) ρ σ' t,( )2Re g g( )σ'σ

–(
σ'  : εσ' εσ>
∑=

– ρ σ t,( )2Re g g( )σ'σ
+ ) σ Dσ',〈 〉 2

+ ρ σ' t,( )2Re g g( )σσ'
+(

σ'  : εσ εσ'>
∑

– ρ σ t,( )2Re g g( )σσ'
– ) σ' Dσ,〈 〉 2

,

In Section 4 we use the form of this state to describe
the inversion of population in our 3-level system.

In Section 5 we derive a master equation for the den-
sity of photons.

In Section 6 we use this equation to investigate
emission and absorption of radiation by the system in
the obtained nonequilibrium stationary state.

2. STATIONARY LEVEL FOR 3-LEVEL SYSTEM

For a 3-level system with energy states |1〉 , |2〉 , |3〉 ,
energies ε1 < ε2 < ε3, and Bohr frequencies

the master equation describes relaxation of the system
to a diagonal stationary state whose diagonal elements
have the form

(18)

(19)

(20)

where ρi = 〈i |ρ|i 〉 , and

(21)

3. THE DOUBLE EINSTEIN FORMULA

We consider the quotient

(22)

ω1 ε2 ε1, ω2– ε3 ε1, ω3– ε3 ε2,–= = =

ρ1 1〈 |D 2| 〉 2
1〈 |D 3| 〉 2 I ω1( )

1 e
β ω1( )–

–
-----------------------

I ω2( )

1 e
β ω2( )–

–
-----------------------=

+ 1〈 |D 2| 〉 2
2〈 |D 3| 〉 2 I ω1( )

1 e
β ω1( )–

–
-----------------------

I ω3( )

1 e
β ω3( )–

–
-----------------------

+ 1〈 |D 3| 〉 2
2〈 |D 3| 〉 2 I ω2( )

1 e
β ω2( )–

–
-----------------------

I ω3( )

e
β ω3( )

1–
---------------------,

ρ2 1〈 |D 2| 〉 2
1〈 |D 3| 〉 2 I ω1( )

e
β ω1( )

1–
---------------------

I ω2( )

1 e
β ω2( )–

–
-----------------------=

+ 1〈 |D 2| 〉 2
2〈 |D 3| 〉 2 I ω1( )

e
β ω1( )

1–
---------------------

I ω3( )

1 e
β ω3( )–

–
-----------------------

+ 1〈 |D 3| 〉 2
2〈 |D 3| 〉 2 I ω2( )

e
β ω2( )

1–
---------------------

I ω3( )

1 e
β ω3( )–

–
-----------------------,

ρ3 1〈 |D 2| 〉 2
1〈 |D 3| 〉 2 I ω1( )

1 e
β ω1( )–

–
-----------------------

I ω2( )

e
β ω2( )

1–
---------------------=

+ 1〈 |D 2| 〉 2
2〈 |D 3| 〉 2 I ω1( )

e
β ω1( )

1–
---------------------

I ω3( )

e
β ω3( )

1–
---------------------

+ 1〈 |D 3| 〉 2
2〈 |D 3| 〉 2 I ω2( )

e
β ω2( )

1–
---------------------

I ω3( )

e
β ω3( )

1–
---------------------,

I ω( ) g k( ) 2δ ω k( ) ω–( ) k.d∫=

Re g g( )ω
–

Re g g( )ω
+

-----------------------
N ω( ) 1+

N ω( )
-----------------------.=
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Recalling that N(ω) is the density of field quanta
(photon, phonons, …) at frequency ω, and comparing
formula (22) with the well known Einstein formula of
radiation theory

(23)

giving the quotient of the probability of emission and
absorption of a light quantum by an atom (cf. [8]), we
gain some physical intuition of the meaning of the gen-
eralized susceptivities. In fact the quotient (23) is just
that which is necessary to preserve the correct thermal
equilibrium of the radiation with the gas ([8], p. 180).

In the stochastic limit approach this statement can
be proved using the master equation (17): if the state of
the reservoir is equilibrium, then the dynamics gener-
ated by the master equation describes the relaxation to
equilibrium state of the system obeying the detailed
balance condition for (17), i.e.,

(24)

For equilibrium state the quotient of populations of the
two levels with energy difference ω is equal to the Ein-
stein emission–absorption quotient for quanta with
energy ω. This suggests that the quotients (22) may
play a similar role for some stationary nonequilibrium
states.

Let us give an example of such a state for which we
shall get a generalization of condition (24). Consider
the state (18)–(20). For simplicity we consider the case
when the matrix element 〈1|D |2〉  is negligible (direct
transitions between levels 1 and 2 are prohibited). In
this case

(25)

Comparing with (24) and the Einstein emission–
absorption relation we call this formula the Double Ein-
stein formula.

The relation (25) for the system under study is rea-
sonable, since direct transitions from level 2 to level 1
are prohibited (〈1|D |2〉  is negligible). In this case to
jump from level 2 to level 1 the system have to make
two sequential jumps: from level 2 to level 3 and then

Wemission

Wabsorption
---------------------

nω 1+
nω

---------------=

ρσ'

ρσ
------

Re g g( )ω
–

Re g g( )ω
+

-----------------------
N ω( ) 1+

N ω( )
-----------------------,= =

ω εσ εσ'– 0.>=

ρ1

ρ2
-----

Re g g( )ω2

+

Re g g( )ω2

–
------------------------

Re g g( )ω3

–

Re g g( )ω3

+
------------------------=

=  
N ω2( )

N ω2( ) 1+
-------------------------

N ω3( ) 1+
N ω3( )

------------------------- e
β ω2( )–

e
β ω3( )

.=
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from level 3 to level 1. Therefore it is reasonable to rep-
resent (25) in the following form:

Note that this formula is valid for a special choice of the
system (〈1|D|2〉 = 0). Moreover, for a Gibbs state, β is
linear and (25) coincides with the Einstein equation (23)
with  = N(ω1) at the right-hand side.

4. INVERSE POPULATION STATE

Let us consider the following question: for a Gibbs
distribution we have ρ1 > ρ2 > ρ3. That is the number of
particles at the level decreases with increasing of the
level energy. Can we find such a stationary state where
at least one pair of the levels has inversed order: the
number of particles increases when energy increases?
Such kind of states are important in quantum optics
(laser theory).

Let us apply the method of the previous section to
construct a stationary state where ρ2 > ρ1 (population of
level 2 is larger than population of level 1).

We will consider the same system considered in the
previous section. In particular, we take

〈1|D |2〉  = 0. 

Then from (25) we have ρ2 > ρ1 if and only if

This inequality is equivalent to

(26)

This means that the local temperature function is non-
monotonic and can decrease when energy increases.
Let us note that the quotient ρ2/ρ1 does not depend on
〈1|D |3〉 , 〈2|D |3〉  when equation 〈1|D |2〉  = 0 is valid
(metastable level 2). We found that for nonmonotonic
temperature functions we can have the inverse popula-
tion effect: population of level with higher energy is
larger than population of level with lower energy. In the
theory of lasers the inverse population effect is dis-
cussed sometimes as an effect of negative temperature
[9]. Indeed if we suppose that the state of the field is
equilibrium and therefore the local temperature func-
tion is linear β(ω) = βω then (26) takes the form

 

for ω1 > 0.
In present approach we found the inverse population

effect without introduction of negative temperature.
This effect follows from the fact that the reservoir is

ρ1

ρ2
----- Wabsorption

Wemission
---------------------

2 3–

Wemission

Wabsorption
---------------------

1 3–

=

=  
N ω2( ) 1+

N ω2( )
-------------------------

N ω3( )
N ω3( ) 1+
-------------------------.

nω

e
β ω2( )–

e
β ω3( )

1.>

β ω3( ) β ω1 ω3+( ).>

βω1 0<
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highly nonequilibrium and the temperature function
can decrease with energy.

5. MASTER EQUATION FOR THE NUMBER 
OPERATOR

We consider the number operator n(k) = a*(k)a(k).
This operator has constant free evolution

and therefore in the stochastic limit it is not changed.
The relation with the master field is as following

This means that the number operator extends the quan-
tum noise algebra.

Let us find the master equation for the number oper-
ator. Since the number operator does not commute with
the noises we cannot apply the master equation [2]
directly. Applying the quantum stochastic differential
equation for the evolution operator we get

Denoting

e
itH0n k( )e

itH0–
n k( ),=

bω t k,( ) n k'( ),[ ] 1
λ
---e

it

λ2
----- ω k( ) ω–( )–

a k( ) n k'( ),[ ]
λ 0→
lim=

=  
1
λ
---e

it

λ2
----- ω k( ) ω–( )–

a k( )δ k k'–( )
λ 0→
lim bω t k,( )δ k k'–( ).=

d Ut*n k( )Ut〈 〉

=  〈 Ut* Eω* D( ) Bω t( )n k( )Eω D( ) Bω* t( )dd(
ω
∑

+ Eω D( )dBω* t( )n k( )Eω* D( )dBω t( )

– dtn k( )2Re G )Ut〉

=  〈 Ut* Eω* D( )Eω D( ) Bω t( )d n k( ),[ ] Bω* t( )d(
ω
∑

+ Eω D( )Eω* D( ) dBω* t( ) n k( ),[ ] dBω t( ) )Ut〉

=  dt 〈 Ut* Eω* D( )Eω D( ) g k( ) 2(
ω
∑

× 2πδ ω k( ) ω–( ) N k( ) 1+( )

– Eω D( )Eω* D( ) g k( ) 2
2πδ ω k( ) ω–( )N k( ) )Ut〉 .

X〈 〉 t Ut*XUt〈 〉 ,=
we arrive to master equation

(27)

This is a completely general master equation for
the number operator n(k). Therefore to find 〈n(k)〉 t

it   is sufficient to determine 〈 (D)Eω(D)〉 t and

〈Eω(D) (D)〉 t.

Since we consider a generic system according (16)
equation (27) takes the form

(28)

6. INTERACTION OF ATOM WITH RADIATION 
IN THE STATIONARY STATE

For a 2-level atom there is only one term in the ω-
summation in (28) and the stationary state is given by
(up to normalization)

Therefore if N(k) = N(ω(k)) the quotient obeys the Ein-
stein relation

(29)

Equation (28) takes the form

(30)

It means that when the atom is in its stationary state the
mean number of photons is constant in each mode. Van-
ishing of (30) is equivalent to the Einstein relation. Let
us emphasize that this conclusion does not require the
state of the field to be equilibrium.

For a 3-level system the master equation for the
number of photons (27) takes the form

(31)

d
dt
----- n k( )〈 〉 t 2π δ ω k( ) ω–( )

ω
∑=

× g k( ) 2
N k( ) 1+( ) Eω* D( )Eω D( )〈 〉 t(

– g k( ) 2
N k( ) Eω D( )Eω* D( )〈 〉 t ).

Eω*

Eω*

d
dt
----- n k( )〈 〉 t 2π g k( ) 2 δ ω k( ) ω–( )

ω
∑=

× 1ω〈 |D 2ω| 〉 2
N k( ) 1+( )ρ2ω

N k( )ρ1ω
–( ).

ρ1 Re g g( )ω
–
, ρ2 Re g g( )ω

+
.= =

ρ1

ρ2
----- N ω( ) 1+

N ω( )
----------------------- e

β ω( )
.= =

d
dt
----- n k( )〈 〉 t 2πδ ω k( ) ω–( ) g k( ) 2

1ω〈 |D 2ω| 〉 2
=

× N ω( ) N ω( ) 1+( ) N ω( ) 1+( )N ω( )–( ) 0.=

d
dt
----- n k( )〈 〉 t 2π g k( ) 2 δ ω k( ) ω1–( ) 1〈 |D 2| 〉 2(=

× N ω1( ) 1+( )ρ2 N ω1( )ρ1–( )

+ δ ω k( ) ω2–( ) 1〈 |D 3| 〉 2
N ω2( ) 1+( )ρ3 N ω2( )ρ1–( )

+ δ ω k( ) ω3–( ) 2〈 |D 3| 〉 2
N ω3( ) 1+( )ρ3 N ω3( )ρ2–( ) ).
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This equation describes the balance of radiation with
the 3-level atom. We consider now the stationary state
of the atom. When the stationary state is equilibrium
then in the right-hand side of (31) each term vanishes
separately. This implies that in an equilibrium state the
system is in detailed equilibrium with the radiation:
emission equals absorption for each frequency. This is
not true when the stationary state is nonequilibrium.
This implies that the atom can absorb radiation at cer-
tain frequency and emit it at another ones (parametric
downconversion) and can perform simultaneous
absorptions at different frequencies into a single jump.
For example (18)–(21) imply

(32)

(33)

(34)

(note that (32)–(34) contain the combination β(ω3) +
β(ω1) – β(ω2) that vanishes for an equilibrium state of
the reservoir) and equation (31) takes the form

(35)

Equation (35) shows that being in nonequilibrium sta-
tionary state the 3-level system converts radiation with
energy ω2 = ω1 + ω3 into radiation with energies ω1 and
ω3 if

and vice versa in the case of the opposite inequality.

1〈 |D 2| 〉 2
N ω1( ) 1+( )ρ2 N ω1( )ρ1–( )

=  1〈 |D 2| 〉 2
1〈 |D 3| 〉 2

2〈 |D 3| 〉 2
I ω2( )I ω3( )

× e
β ω1( ) β ω2( )– β ω3( )+

1–

e
β ω1( )

1–( ) 1 e
β ω2( )–

–( ) e
β ω3( )

1–( )
---------------------------------------------------------------------------------,

1〈 |D 3| 〉 2
N ω2( ) 1+( )ρ3 N ω2( )ρ1–( )

=  1〈 |D 3| 〉 2
1〈 |D 2| 〉 2

2〈 |D 3| 〉 2
I ω1( )I ω3( )

× 1 e
β– ω2( ) β ω1( ) β ω3( )+ +

–

1 e
β ω2( )–

–( ) e
β ω1( )

1–( ) e
β ω3( )

1–( )
---------------------------------------------------------------------------------,

2〈 |D 3| 〉 2
N ω3( ) 1+( )ρ3 N ω3( )ρ2–( )

=  2〈 |D 3| 〉 2
1〈 |D 2| 〉 2

1〈 |D 3| 〉 2
I ω1( )I ω2( )

× e
β ω3( ) β ω1( ) – β ω2( )+

1–

e
β ω3( )

1–( ) e
β ω1( )

1–( ) 1 e
β ω2( )–

–( )
---------------------------------------------------------------------------------,

d
dt
----- n k( )〈 〉 t 2π g k( ) 2

1〈 |D 2| 〉 2
1〈 |D 3| 〉 2

2〈 |D 3| 〉 2
=

× e
β ω1( ) β ω2( )– β ω3( )+

1–

e
β ω1( )

1–( ) 1 e
β ω2( )–

–( ) e
β ω3( )

1–( )
---------------------------------------------------------------------------------

× I ω2( )I ω3( )δ ω k( ) ω1–( ) –(


– I ω1( )I ω3( )δ ω k( ) ω2–( )

+ I ω1( )I ω2( ) δ ω k( ) ω3–( )
 .

β ω1( ) β ω3( ) β ω1 ω3+( )>+
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Integrating (35) over k we get for arbitrary function
E(ω(k))

(36)

When E(ω) is the dispersion of the field, i.e.,

E(ω) = ω,

then

and (36) implies the conservation of energy

For the time derivative of the number operator we get

Using that ω2 = ω1 + ω3 we obtain that if

(37)

the derivative is negative and the system absorbs the
radiation (total number of absorbed photons is larger
than the total number of emitted photons). In this case
(35) implies that the system absorbs photons with fre-
quencies ω1 and ω3 and emits photons with frequency ω2.

On the other hand, if

(38)

then the derivative is positive and the system emits the
radiation (the total number of absorbed photons is
smaller than the total number of emitted photons). In
this case (35) implies that the system emits photons
with frequencies ω1 and ω3 and absorbs photons with
frequency ω2. For instance in the case of inverse popu-
lation (26) the condition of emission regime (38) is sat-
isfied.

These regimes of emission and absorption are con-
trolled only by the difference β(ω1) + β(ω3) – β(ω1 + ω3).
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2〈 |D 3| 〉 2
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e
β ω1( )

1–( ) 1 e
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1–( )
---------------------------------------------------------------------------------.
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d
dt
----- ω k( ) n k( )〈 〉 t kd∫ 0.=

d
dt
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=
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β ω1( ) β ω2( )– β ω3( )+
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β ω1( )
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–( ) e
β ω3( )

1–( )
---------------------------------------------------------------------------------.
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