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1.) Statement of the problems.

The sixth, among the twenty-three problems stated by Hilbert
at the Paris international congress of Mathematicians in 1900 was
£251 "...to treat axiomatically those physical disciplines in
which already todays mathematics plays a predominant role...these
ones are in the first place the calculus of probability and
mechanics..."

Twentyfive years after Hilbert's Paris address, the new
quantum mechanics was discovered and it was soon clear that this
theory was as much a new mechanics as a new probability calculus.
Hilbert himself was immediately aware of these features of the
new theory as well as of the changes of perspective that this
discovery caused on his sixth Paris problem. In fact he devoted
a seminar (in 1926) to the description of the mathematical struc-
ture of quantum theory, in which the non-classical features of
the new probabilistic calculus were clearly described. The notes
of this seminar, collected by von Neumann and Nordheim, were
later published in a joint paper [24]. Thus the Kolmogorov axi-
omatization of the classical probabilistic model came to 1light in
a time (1933) when already the most advanced physical theories
were making extensive use of a completely different mathematical
formalism. The challenge posed to all probabilists by this new
probabiliéy calculus was pointed out in Feynman's communication
in)the 2n Berkely Symposium on Probability and Statistics (19-
54) [191.

In fact, from a theoretical point of view, it would be very
unsatisfactory for contemporary probability theory to be unabie
to answer questions as the following: imagine you want to handle
a set of statistical data (say- transition probabilities, or cor-
relation functions,...). Which type of probabilistic models will
you try to fit your data? The one based on the usual Kolmogorovi-
an calculus or the one based on the new calculus used by the
quantum physicists?

0f course from an empirical point of view there is no prob-
lem: if your data come from some experiments on - say - popula-
tions biology, then you use the classical model; if they come
from CERN, then you use the quantum one. (Some people are per-
fectly happy with this level of understanding).

Another natural question is: is the new probabilistic model
really necessary? or maybe is it the result of an historical mis-
understanding, and the new physics can be compietely described
within the context of the classical probabilistic model? There is
a large and subtle literature on the problem. The theories which
try to fit the statistical data of quantum mechanics within a
classical probabilistic model, are called "hidden variables"
theories. We will not discuss them here.

But assume that the new probabilistic model is not super-
fluous and has an intrinsic necessity. Then, since the qualita-
tive mathematical features of the classical probabilistic calcu-
lus are entirely determined by its ax joms, it follows that the
new calculus must be the expression of different axioms, and in
particular that some axiom of the classical probability calculus
must be false in the new one. In other words the Kolmogorovian
probabilistic model should have its "parallel axiom", like the
euclidean geometric model. Once the analogy between euclidean and

non euclidean geometries and Kolmogorovian and non-Kolmogorovian
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models is accepted one can go further, and look for ™ isti
1nvar1ants": By analogy with “"geometrical invariants"szz:;:t;gﬁid
provide a rigorous mathematical distinction between the different
modelﬁ, rather than an empirical one, based on the fact that "it
works". Moreover, one has to single out the axioms which lead to
Fhe new prsbab11istic model or, to say it again with Hil-
g$£§e?yw2;g§:th...t:hformu1ate the physical requirements so com-
¢ ma : - ;
mined by them..."[24]?mat1ca] formalism becomes uniquely deter-
In my talk I will report on some results obtai i
last years which have lead to a complete c]arificat?gg ;2 :2:
funqamental relations between the classical and quantum probabil-
1stic models and which have opened the way to the construction of

s@rgcture has revealed some unsuspected connection betw -
bility and geometry (c.f.the author's paper in [13]).tF?§21$;0ba
tpe inner deve]opment of the quantum probabilistic models has’
given rise to a whole crop of new results concerning quantum Mar-
kov chains [131,023,031,C12], quantum central 1imit theorems [15]
E?B],[36], the subtle technical and conceptual problems connecteé
with the notion of quantum conditional expectation [81, the quan-
tum Feynman-Kac formula [71, quantum infinitely divisible pro-
cesses [351, and the newly developed quantum stochastic calculus
[32],@11],[27],[28],[9],[10]. The whole body of these results
constitutes a new and rapidly developing branch of probability
theory: QUANTUM PROBABILITY. Unfortunately I will not be able
here even to mention some of the results listed above. The inter-
ested reaqer is referred to the two volumes £133,0141 which pre-
sent a fairly gowp]ete description of the state of the art of
quantum probability. In the present talk I will limit myself to
d1§cu551ng_the_necessitx of enlarging the horizons of our disci-
p11ng keeping into account the stimuli which arose from quantum
ghy§1cs, but whose perspectives go far beyond it. In this respect
it is a pleasure for me to thank the organizers, and in particu-
lar M. Keane, for'g1v1ng me the opportunity to expose these ideas
at the 45-th session of the ISI. I want also to thank G. Watson
for several discussions which lead to formal and substantial im-
provements of the present paper.

2. The axioms of probability theory. of
For the discussion which follows it will be) the utmost im-

portance"to distinguish the probabilistic (or physical) notions
fuch as "events", "probabilities", "conditional probabilities" ’

observap]es”, "states", from their representative in the ’
mathematical model. In fact, following the example of geometry
our stra;egy to distinguish mathematically between different ’
probab111sg1c models will be first to show that the possibility
of describing a certain family of empirically given and modetl in-
dendent datq (e.g. angles in geometry; transition probabilities
or cgrrelat1ons in probability) within a given probabilistic mo-
del imposes some constraints on these data. And then to produce
examp1es_of such experimentally given statistical data which do
not fulfill the constraints of the classical probabilistic model
We assume as primitive the notion of "event" ’
and denote them by capital letters A,B,C,.... The probability of
an event A giyen that an event C is known to happen is denoted
P(AIC). Even if not necessary for the analysis which follows, it
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will be convenient to keep in mind the physical interpretation

and to think of the probability P(AIC) as the approximate rela-

tive frequency of the event A in an ensemble of systems prepared
so that the event C is certainly verified for each of them. The

physical counterpart of the probabilistic notion of "condition-

ing" is that of "preparation "

The axioms underlying any known probabilistic model can be
bdivided into five groups:
Normalization axioms.
. Structure axioms.
). The finite additivity axiom.
. Continuity axioms.
Conditioning axioms.

In the debate on the foundations of classical probability,
the continuity axioms have been questioned, while in the debate
on the foundations of quantum theory each of the first three
groups of axioms have been questioned by different authors. The
fifth group of axioms doesn't seem to have been explicitly men-
tioned in the literature. It will constitute the main topic of
our analysis.

The normalization axioms are common to all known probabilis-
tic models:
1.1) For any pair of events A, C, one has:

0 < P(AjC) <1

su
I).
1)
111
Iv)
V).

1.2) p(cjC) =1

The structure axioms describe the structure of the family of
events in whose probabilities we are interested. Here the differ-
ence between the classical and the non-classical (quantum) con-
text begins to appear. In fact structure axiom common to all
classical probabilistic models is:

11.C) The family of events, whose probabilities are considered,
is closed under the action of the logical connectives (conjunc-
tion, disjunction,.negation).

Here, when referring the logical connectives to events, we
are implicitly identifying an event A with the proposition "the
event A happens". By Stone's representation theorem, Postulate
(I1.C) uniquely determines the mathematical model of the family
of events as a boolean algebra of sub-sets of a given set. Kolmo-
gorov used a stronger version of (II.C), namely:

I1.C1.) (I1.C) holds and the family of events is closed under
countable disjunctions. .

However the Heisenberg principle forced us to admit that in
many physically meaningful situations, the family of events sat-
isfies the following "negative postulate":

11.Q) There exist pairs of events whose conjunction {(or disjunc-
tion) does not represent events whose physical realizability can
be checked experimentally.

In other terms: there are in nature pairs of events A,B sqch
that the probabilities P(AnB), P(AyB) cannot be given an experi-
mental meaning. Such pairs of events will be called incomgat1b1§,
otherwise we say they are compatible. The existence of incqmpat1-
ble events does not imply, per se, the impossibility of using the
classical probabilistic model. In fact, following a commonly used
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procedure, one might introduce, in the mathematical formalism,
some expressions (such as P(APB) for incompatible A,B) which have
no experimental meaning but which are used only in intermediate
steps - the final result being expressed only in terms of experi-
mentally measurable quantities. There have been a large number of
attempts to turn the "negative postulate" (11.Q) into a positive
statement which either fixes uniquely the mcdel of the family of
events (as axiom (I1.C) does for the classical model), or at least
isolates a class of reasonable models for this family. From this
line of research the interesting mathematical theory of Quantum
Logics arose, which is a structure theory for a wide class of non-
distributive Tattices (e.g.L[171), and which, through Gleason's
theorem [311, is connected to quantum probability, roughly as
classical measure theory is connected to integration theory.

The postulate of finite additivity is also common to all
known probabilistic models. We formulate it as follows:

IIT). If two events A,B are mutually exclusive then
P(AUB) = P(A) + P(B)

Two events A,B are called mutually exclusive if they are
compatible and if the fact that A is verified implies that B is
not and conversely. The prototype of continuity axiom is the axi-
om of countable additivity. We will not insist on this group of
axioms here, since our goal is to show that the occurrence of non-
Komogorovian models can be proved even in the most elementary
probabilistic setting: when only a finite number of events is in-
volved.

By a "conditioning axiom" we mean a rule which provides an
answer to questions of the following type: assume taht, knowing
that a certain event C is realized, we evaluate the probability of
the event A by the number P(A|C). How shall the probability of A
be evaluated if our information is changed by the knowledge of the
fact that also the event B has happened? The answer, given by
classical probability to this question, is provided by the "Bayes
formula" which we formulate as an axiom:

V.1) If A,B,C are three events such that A is compatible with B
and B with C, and if P(B{C) # 0, then

P(AIBNC) = P(ANBIC
P(BIC

In the probabilistic model this formula is usually taken as
the definition of conditional probability, meaning by this that
the right hand side defines the left hand side. There are however
cases in which the right and the left hand side of Bayes formula
can be measured independently, i.e. by different physical experi-
ments. For example we can imagine an apparatus which produces a
statistical ensemble of particles for which the event C is surely
verified and which then measures the relative frequencies of the
events B and AAB in this ensemble. But we can also imagine an-
other apparatus which prepares a statistical ensemble of particles
for which both the events C and B are surely verified, and which
then measures the relative frequencies of the event A. The former
apparatus corresponds to the right hand side of Bayes formula, the
latter to the left hand side. Since the two experimental situa-
tions are different, the equality of the two sides in Bayes formu-
la in this case is certainly not a question of definitions, but
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of experiments.

3.) Experiments to test the validity of Bayes' formula.

In order to relate the two probabilities P(AIC) and
P(AIBNC), it is important to take into account how the information
on B has been acquired; in particular to distinguish the case when
the acquisition of new information does not alter the previous in-
formation, from the case when it does. When speaking of the proba-
bility P(AIBANC) in a classical context, it is always implicitly
assumed that the new information is acquired without destroying
the old. But quantum physicists have taught us that there are
cases in which this cannot in principle be achieved. An idealized
example of-this situation might be the following. A biologist
wants to study the correlation between the field of view of a
given population of animals with the chemical and the electrical
activity of the cells of their eyes. Assume he has succeeded in
preparing a sample population in such a way that the chemical ac-
tivity of the eyes is known (event C). It might well be that, in
order to acquire some information on the electrical activities of
the cells (event B), he will alter in an apriori uncontrollable
way their chemical activity. Then the information obtained by per-
forming in series the two experiments, is not BAC but only B. We
express this statement with the equality:

P(AIBNC) = P(AB)

The fact that in some cases the process of acquisition of informa-
tion is not cumulative has an interesting consequence. Consider
two mutually exclusive events B and B’ which "exhaust all possibil-
ities", i.e. such that in any measurement done to ascertain which
of the two events B and B' happens, one finds that at least one
(and only one) of them is realized. In such a situation, according
to classicral probability, the event BuB' is a trivial one, j.e.
it happens with probability 1 and therefore the knowledge that it
happened does not alter our information.

However, keeping in mind that the acquisition of information
on B and B' might have altered some previous information we had on
the system, we are induced to distinguish the case (denoted BuB')
in which no experiment has been done to discriminate between the
two alternatives, from the case (denoted BVB') in which an experi-
ment to discriminate between the two alternatives has been done,
but we do not know the result of it. Clearly, in the case when no
experiment has been done one has:

(P(AI(BUB')AC) = P(A|C) (3.1)

because in this case we are merely stating a tautological fact,
and neither the physical situation nor our information has
changed.

In the Tatter case however, even if we do not know the re-
sult of the experiment, at least we know that it was done, namely
that at a certain moment the particles of our experimentally pre-
pared ensemble interacted with an apparatus (possibly being dis-
turbed by this interaction). We can thus say that the act of mea-
suring B and B' has split the original ensemble into two: one for
which BAC is verified, the other one for which B'AC is verified.
Since there are no other possibilities, it follows that, in any
experiment done to verify the occurencies of A, after the experi-
ment on the alternatives B,B', one must have:
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N(AI(BVB')AC) = N(AIBAC) + N(AIB'AC) = (3.2)

N(AIBNC « N(BIC) + N(AIB'AC) - N(BIC)

N(BIC N(B'IC
where N(AI(BYB')AC) is the number of occurencies of A in the
original ensemble, N(AIBNC) is the number of occurencies of A a-
mong the particles for which BNAC was known to happen, and N(BIC),

N{(B'IC), N(AIBNC) are defined in a similar way. Thus, identify-
ing probabilities and relative frequencies:

P(AI(BV§ AC) = P(AIBAC)-P(BIC) + P(AIB'AC)-P(B'IC) (3.3)

Equation (3.3) is not a postulate. It follows only from the
identification of probabilities with relative frequencies and
from the assumption that all the particles of the initial ensem-
ble can be split into two mutually exclusive classes: one for
which the event B is verified, another in which the event B' is
verified.

The crucial fact about the identity (3.3) is that it involves
only experimentally measurable quatities. This gives us the pos-
sibility to device a simple experiment to test the range of ap-
plicability of the classical probabilistic model.

In fact, assume that the conditional probabilities P(AIBaC),
P(AIB'AC) can be described according to the prescription of Bayes
formula i.e.

P(AIBAC) = P(AnBIC); P(AIB'AaC) = P{AnB'iC) (3.4)
( ) (PiB|C5 P{B'iC

In this case, inserting (3.4) into (3.3), we should find:

P(AI(BVE )aC) = P ANBIC) - P(BIC)+P(AnB'IC) « P(B'IC) =
(AT(BVE InC) é BIC ( ) P{BTIC)

= P(AIC) (3.5)

{Note that, for the validity of (3.5), it is not required that the
probabilities P(AABIC) and P(AnB'IC) be experimentally measuraable
quantities: it is sufficient that two such numbers exist, that
they belong to the interval [0,1], and that the axiom of finite
additivity is satisfied). .

It follows that, if we can produce experimentally realizable
examples of events A,B,B',C for which:

P(AI{BvB')AC) # P(AIC) (3.6)

then the conditional probabilities P(AIBAC) and P(BIC) cannot be
related by the Bayes formula (3.4) for whatever choice of the
probabilities P{AABIC), P{AAB'IC). This would therefore imply
that the set of statistical data P(AIC), P(AIBnC), P(AlB'nQ): _
P(BIC),P(B'IC) cannot be described by any classical probabilistic
(or Kolmogorovian) model. . ]

In the next section we describe an experiment which has been
effectively done and which has confirmed the inequality (3.6).

4.) The two-slit experiment. ) ]

This is the experiment discussed by Feynman in his talk to the
11-d Berkeley Symposium on probability and statistics [19? and
which, according to Feynman [211 "...is formulated so to !nc1ude
all the mysteries of quantum mechanics...". A source S emits i-
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deqt1ca11y prepared particles (nowadays this experiment is done
using neutrons) towards a screen 21 with two slits on it, denoted

1 and 2. The particles which pass the screen 21 are collected on
another screen 22, parallel to 21 and one measures the relative

frequency of the particles which hit a small region X of the
screen Ip. This measurement is done in three different physical
situations: (i) with both slits 1 and 2 open; (ii) only slit 1
open; (iii) only s1it 2 open. Denoting C - the event correspond-
ing to the common preparation of the electrons emitted by the
source S (say - a fixed value of the energy); A - the event that
an electron falls in the region X of the screen 22; B - the event

that the electron passes through slit 1; and B' - the event that
the electron passes through slit 2, the following probabilities
can be experimentally measured (by approximating them with rela-
tive frequencies): P(AIC), P(AIBnC), P(AIB'AC), P(AI(BVB')nC),
?(BIC), P(B'IC) (where BvB' is defined in section(3. )). Applying
;mp1icit1y Bayes' formula, Feynman concludes that one should

ave:

P(AIC) = P(BIC)-P(AIBNAC)+P(B'IC)-P(AIB'NC) (4.1)

ut the experiments give that, for any choice of P(BIC) and
(B'IC), one has:

P(AIC) # P(BIC)-P(AIBAC)+P(B'IC)-P(AIE nC) (4.2)

Moreover, in agreement with the theoretical analysis of section
(3.), the experiments give:

P(AT(BwE )AC) = P(BIC)+P(AIBAC)+P(B'IC)+P(AIB'AC) (4.3)

That is: if an experiment is done to discriminate through which
of the two slits the particles pass, then the theorem of compo-
site probability holds. According to the analysis of section
(3.), the inequality (4.2) only means that the statistical data
P(AIC), P(AIBNC), P(AIB'AC) cannot be described by a Kolmogorovi-
an model. This however is not Feynman's conclusion. Feynman
claims that the identity (4.1) must be true as soon as we accept
that, even when nobody is looking at them, the particles which
reach the screen 22 either have passed through slit 1 or through

slit 2, but not both. Explicitly he says ([193, pg. 538) "...we
concluded on logical bases that, since (4.2) is not true [Feyn-
man's numbering of the formulas, as well as his notations, are
different from oursl, it is not true that the electron passes
either through hole 1 or through hole 2...". Our analysis in
section (3.) shows that this conclusion is not justified on prob-
abjlistic grounds. Let us now show that this conclusion is not
justified on mathematical grounds. Feynman's implicit assumption
in claiming that if B and B' are disjoint events then (4.1) must
hold, is the validity of Bayes' formula; i.e. the existence of
four positive numbers (not necessarily experimentally measura-
ble): P(BIC), P(B'IC), P(AnBIC), P(AnB'IC) such that:

B
p
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P(BIC) + P(B'IC) =1 (4.4)
P(ANBIC) + P(AnB'IC) = P(AIC)
P(AnBIC) = P(AIBAC)

P(BIC
P(AnB'IC) = P(AIBNC)

P(B"IC

Thus Feynman's implicit assumption is equivalent to postulating
that the above system of four equations in four unknowns always
admits a solution or equivalently, with a simple computation,
that:

0 < P(AIC) - P(AIB'AC) <1 (4.5)
P{ATBAC) - P{AIB'AC)
But why should it be evident "...on a logical grounds..." that if

the events B and B' are mutually exclusive then the probabilities
P(AIC), P(AIBAC), P(AIB'AC), which have been measured in three
completely different physical situations, should satisfy the ine-
qualities (4.5)7?

Therefore the first answer provided by quantum probability to
Feynman's analysis is: the inequality (4.2) means that the three
probabilities P(AIC), P(AIBAC), P(AIB'AC) do not admit a Kolmogo-
rovian model and no mysterious properties of the particles in-
volved are needed to justify it (cf. the discussion in section
(10) below).

The next "mystery" of quantum mechanics is the correct sub-
stitute for the therem of composite probabilities (4.1). The
rules, found by the physicists, say that you have to deal with

complex numbers $(AIC), ¥(BIC),... (called conditional probabili-
ty amplitudes) and related to the probabilities by:
P(XI¥) = | w(XIY) 125 X,Y - events (4.6)

and that these amplitudes satisfy the analogue of the relation
(4.1), i.e.

B(AIC) = Y(BIC)-y(AIBAC) + Y(B'IC)-y(AIB'NC) (4.7)

This relation is called the “theorem of composite amplitudes”
and it is an empirical fact that, in the two slits experiment, it
Jeads to results in agreement with the experiment.

Can the strange probabilistic calculus based on the above
prescriptions be in some sense explained starting from some more
fundamental prescription with an immediate probabilistic or phys-
jcal meaning? Or shall we accept it as a “truth of nature", some-
thing not reducible to more fundamental requirements, and which
can only be used, but not explained? Sections (8.) and (9.) be-
Tow are devoted to answering this question.

5.) A more recent example: Bell's inequality. )

The two slits experiment, discussed in the previous section
shows how, since the early days of quantum theory, one came a-
cross some simple sets of statistical data which could not be
described by any Kolmogorovian model. More recently J.S.J. Bell
has discussed another example of this situation different from
those considered in the early days of quantum theory in which the
ctatistical data were some transition probabilities. In-Be]1's
example the statistical data which do not admit a degcr1pt1on
within the Kolmogorovian model are a set of correlation func-

tions. The following theorem gives a proof of the celebrated
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"Bell's inequality” and of some equivalent formulations of it, which have been
discussed in the literature (§. [22]).

Theorem (5.1) Let A,B,C,D denote four random variables on a probability
space (@, ,P) with values in {+1,-1}. Then the following, equivalent,
inequalities are satisfied:

|E(A » B) - E(B +C)| € 1 - E(A-C) (5.1)

[E(A « B) - E(B » C)| ¢« 1+ E(A «C) (5.2)

[E(A + B) - E(B +C)] + [E(A »D) - E(D « C)| <2 (5.3)
Notation For any function X: @ —> B , we use notation

éx @ = E(X) (5.4)
Proof. Clearly, since BZ = |A » B| = 1 , one has:

|E(A « B) - E(B » C)| < E(|AB - BC|) = E(|1 - AC|) =1 - E{A « C)
and this proves (5.1). Substituting -B for B and -C for C , the
inequalities (5.1) and (5.2) are interchanged, hence they are equivalent.
Substituting A for D in (5.3) gives (5.1). Finally, if (5.1) (hence also
(5.2)) hold, then substituting in (5.2) D for B and -C for C one
obtains:

|E(A « D) + E(D » C)] <1+ E(A » C)
and adding this inequality to (5.1) gives back (5.3).
Corollary (5.2) There exist triples a,b,c of unit vectors in B3 for
which it is not possible to find six random variables Sx(x = a,b,c ; § = 1,2)
on some probability space (Q,%,P) with values in {-1,+1} such that their
correlations are given by:

E(S}( o sg) = =X*y ;3 X,y = a,b,c (5.5)

(where, for x,y B3 , x*y denotes the euclidean scalar product.)
Proof. A corsequence of (5.5) is that:

E(st +82) = cx e x = -mx1? = -1 5 x = a,b,c

and, since ]Sisil = 1 this is possible if and only if Si = -Si (x = a,b,e).
Thus, using the inegquality (5.1), we obtain:

|e(sis?) - E(s8si)| <1 - E(slsl) =1 + E(sls?) .
Or equivalently, using (5.5):

[asb - bec] <1 - asc (5.6)
Thus if we choose the three vectors a,b,c to be coplanar and such that a
is perpendiculer to b and ¢ 1lies between a and b , forming an angle 0
with a , then the inequality (5.6) becomes:

sin @+ cos 8 <1 ; 0 < 0 < n/2 (5.7)
But the maximum of the function OH+F>sin @ + cos © in [0,n/2] is V2
{obtained for © = n/L), So, for © near to /4 , the left hand side of
(5.7) will be near to V2 > 1 . Therefore, for such a choice of © , the
triple of unit vectors a,b,c will not satisfy the inequality (5.6) hence, by
Theorem (5.1) it cannot admit any Kolmogorovian model.
Corollary (5.3) There exist triples a,b,c of unit vectors in E3 for
which it is not possible to find three random variables Sa,Sb,SC on a
probability space (9, %P) with values in {+1,-1} such that their correlations
are given by:

E(S,+S,) = xey ; X,y = a,b,c (5.8)
Proof. As in Cgrollary (5.2)

The conclusion is exactly the same as in the two-slits experiment: you

start with a set of statistical data and you show that they do not admit a
Kolmogorovian model. The interest of the corollaries above lies in the fact

that statistical correlations of this kind can be obtained from a small set of
related experiments. .
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Let us now describe two simple non-Kolmogorovian models which can account
for the correlations described in Corollaries (5.2) and (5.3).
A Non-Kolmogorovian model for the correlations of Corollary (5.3)e Let M be
the algebra of all 2 x 2 matrices; denote
1: (a44)3 5 —> 1/2(aj) + 8yp) -the normalized trace; consider the vector
space asls of M given by the identity matrix and:

0 =iy ., - (1 O
o= Q8 s o= Q75 03=(.3) (5.9)
For each unit vector a = (al,ag,aB) B> , define
Sy = 8%0 = 8107 + a,0; + 8303 (5.10)

then Sy is hermitian with eigenvalues %1 and if a,b are two unit vectors
then

T(8,8y) = a*db (5.11)
Thus, if we represent the random variables as the 2 x 2 matrices (5.10),
their values by the eigenvalues of the corresponding matrices, and the
correlation function of two observables by the trace of the product of the
corresponding matrices, we obtain a (non Kolmogorovian) model by which we can
describe the correlations (5.8) not only for three given unit vectors, but for
any triple of unit vectors.
A Non-Kolmogorovian model for the correlations of Corollary (5.3)

Denote H ~the Hilbert space E2 with the usual scalar product defined
with respect to the basis:

y, = (0,1) ;3 ¢_ = (1,0) (5.12)
For a unit vector a in B3 , let S, be defined by (5.9), (5.10) and define
SL=s,81;5 =185, (5.13)

i.e. the (4 x L) matrices sé;si act on HE H (1 -is the identity 2 x 2
matrix, in (5.13)). Let now o denote the vector in H 8 H defined by:

o=1/Y2(y, B y_ - v_B y,) (5.1k)
One then easily verifies that
< o,(sl®S2)o> = a (5.15)

Therefore, if we represent the observables Sé, 2 (a,b -unit vectors) as in
(5.13), and their correlations by the left hand side of (5.15), again we
obtain a (non-Kolmogoroyian) model of the correlations (5.5) for any triple of
unit vectors a,b,c B’ .

Remark 1.) The term "correlations" referred to expressions such as (5.11) or
(5.155, is justified by the fact that it can be shown (13]) that the values
assumed by each observable Sx must be equiprobable (if they admit at all a
Kolmogorovian model with the Quantum mechanical transition probabilities). So
they have mean zero, and therefore by expressing the left hand sides of
(5.11), (5.15) in terms of transition probabilties (using the formalism
described in section (10) below), one finds an expression which is formally
identical to the expression for the correlations in the classical
Kolmogorovian models. This is a general fact for pair correlations. Already
for triple correlations {e.g. E(S,S,S,)) this will be true only under special
statistical assumptions on the observables.,

Remark 2.) One could hardly believe that such trivial remarks as Theorem (5.1)
and its Corollary (5.2) gave rise to a really huge literature. In section
(11) I have tried to explain in a clear and condensed way why so many
discussions about "non-locality" and other mysterious and never clearly
explained notions (such as "collapse of the wave packet", "physical
superpositions of states”, "non-separability",---) could attract the attention
of distinguished scientists.
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Let T be a set and, for each x €& T , let A(x) ©be an observable
quantity whose values will be denoted &,(x),---,a.(x) (n < += , for all X)e
We assume that the transition probabilities

P(A(y) = ay(y)|A(x) = a;(x)) = Pi5(x,y) (6.1)

are given for each x,y e T ; i, = 1,-—-,n (they are considered to be the
experimentally given statistical data). The matrix (PiJ(x,y)) will be denoted
P(x,y) «
Definition (6.1) The family of transition probability matrices
{P(x,y) : x,y € T} 1is said to admit a Kolmogorovian model if there exist:

- A probability space (Q,F,P)

- For each x GET‘ a measurable partition Al(x),...,A (x) of § such
that for each X, ygT and each 1,j=1,...,n : n

P((Ai)nA~ 69))
= — )
Definition (6.2) The family of transition probability matrices
{P{x,y) : x,y € T} is said to admit a complex n-dimensional Hilbert space
model if there exist:

- a complex n-dimensional Hilbert space H .

- for each x € T , an orthonormal basis ¢1(x),...,¢ (x) of H such that,
il n
for each x,ye T and each 1i,j =

| P

Piy(x,y) = [< 5(x) , ay(y) >|2 (6.3)
where < ¢ ;¢ > denotes the scalar product in H . In a similar way one
defines the notion of real or quaternion Hilbert space model.

The notion of "statistical invariant" is illustrated by the following

theorem (concerning the particular case in which n=2 and T
containing three elements).

Theorem (6.3) Let p,q,r (0,1)

is a set

be three given numbers, and let
= 1~ . - 1- . - r 1l-r
P = (1Ep pp) 3 Q= (]_Eq qq) ; R= (l_r r ) (6'1‘)
be three bi-stochastic matrices. Then:
i) A Kolmogorovian model for P,Q,R exists if and only if
lp+g-1] <r<1-|p- q (6.5)
A complex Hilbert space model for P,Q,R exists if and only if:
-1 cRratr-1 .4 (6.6)
2Ypqr
iii) A real Hilvert space for P,Q,R , exists if and only if:
+ +r-1_ 4 6
IL-EBSE;__—_. (6.7)
iv) A quaternion Hilbert space model for
complex Hilbert space model exists.
Theorem (6.3) above (§. [4] for a proof) suggests the following general
definition: a set of statistical invariants for the family of transition

probabilities {P(x,y) : x,yeT} with respect to a given probabilistic model is
defined by:

ii)

P,Q,R exists if and only if a

- a family (Fi)ieI of real valued functions depending on the elements
Pi¥(x,y) of the matrices P(x,y) .
- a

amily (Bi)iél of subsets of R such that the conditions

Fy( {Pij(x’y)}i,j,x,y)e By ',Vke I (6.8)
are necessary and sufficient for the existence of the given model.

Similarly to what happens for the geometrical, or topological invariants,
there is no general algorithm to calculate the statistical invariants of a set
of transition probability matrices with respect to a given probabilistic
model. Several particular cases have been worked out [13].
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Even with these limitations, Theorem (6.3) provides a general answer to
another of the "mysteries” of guantum theory, to which a 1arge_leterature hai
peen devoted since the early sixities (cf. 4] for references) i.e. : why iﬁs
the complex numbers? It is clear from (6.5), (6.§), géﬁT) that not only le
non-Kolmogorovianity of the model, but also the discrimination between rea
and complex numbers is built into the statistical data.

Let us conclude with an historical remark: an old theorem, due to
von Neumann, states that within the Hilbert space model n‘ self—adjoivt
operators admit a joint distribution in any quantum §tate if a?d only if they
commute. There have been many beautiful generalizations of this theorem to
structures more general than operators in Hilbert space - Tbe theory of
statistical invariants provides for the first time a model 1n§ependent
Solution of the problem: the existence or not of a Kolmogorovian qu?l can be
now decided (at least in principle) uniquely in terms of the statistical data.

7.) The danger of mixing the two models: the so-called guantum Zeno para?ox.
‘ Tet A Dbe an observable and let A‘i denote the observable A ét'tlme
t. Under certain assumptions which we will assume to be fulfilled without
making them explicit, quantum theory predicts that for a:y <n €<E 2 zgr any
set Eb,&l,———,an+2 of values of A and for any to<tl t2 -—-<t <s .

one has:

P(Ay = Bpipl (Ag = 2pu1)N) (Ag = 8 -—=N Ay = ao)) (7.1)

P(Ay = apyplhg = apyq)

i.e., the family (A ),,o bDehaves like a Merkov process. We say "like",
because from the analysis in section 13.) it is clear that we should .
distinguish the case when acquisition of informatiog on .At a%ters previous
information acquired on As(s < t) ,.from the case in which this doei not .
happen. Now, suppoée that we uncritically apply the rules of Fh? Kolmogo?ov an
model to the identity (7.1). Then we necessarily find the familiar identity

for Markov chains, i.e. letting a; = a5 = ——— = &, and aessuming that the
transition probabilities are stationary: (7.2)
P(lag = alN [ay =8N =0 lag = alllag = al) 7
= P(a, = alhy, = a) ¢ P(Ay =alhy = a) e P(Ay = aIAtO = a)

n n-1
_ - . = A. = 8) s—==s P(A = alA, = a)
P(At-tn = a?AO a) P(Atn-t 1 al g= 8 t1-tg | 0

Thus, if ty,y - ty = t/n (3=0,-~=-,n ; tp,q = t), then:
P(lag = al NV [ap = &l ——-Nlag = alllag = al) (7.3)
= [Play), = alag = &)17
Now, it happens that the von Neumann theory of the gquantum measurement

process, as generalized first by Zumino and Ltiders and then by Wigner, leads
exactly to the identity (7.3), where

P(ag = alag = a) = | < ¥, » lista >|2 (7.4)

(wa -a unit vector in & Hilbert space; H -a self-adjoint operator on that

space which can be assumed to contain ¢, in its domain). Using (7.4) to
evaluate the right hand side of (7.3), one obtains:
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P({a, = a]N [Atn_= alN —--1\[Atl = n]|Ato = a) (7.5)

[< Yy > L n Vg >[2n = j1 + 3& < ¥ ‘

arfta >‘t2<~f RN
AR KA A O

~ exp( - tQA (H)/n) — 1
o

as n-—> @,

Thus: the more we measure the observable A , the more the probability of
finding the value a as a result of each measurement, approaches 1: i.e.
observation prevents change states.

Hence the name quantum Zeno paradox". Rather than "paradox", we should
say "contradiction with the experiments", in fact the relation (7.5) can be
shown to be experimentally false.

The error here consists in the application of Bayes' formula (7.4)(in the
deduction of (7.2) from (7.1)) to a set of statistical data (i.e. the transition
probabilities (7.1)) which do not admit a Kolmogorovian model (§.[6] for a more
detailed discussion). Let us mention, incidentally, that the theory of quantum
Markov chains provides a formula for Jjoint probabilities on the left hand side

f (7.2), which is free from these incoherences [2].

8.) How to set up the new structure axioms.
In this section we look for a constructive formulation of the structure
ax ioms which keeps into account the "negative postulate" (II.2) of section
(2.)e As we have shown, the notion of conditioning is crucial in order to
understand the rise of non-Kolmogorovian models. In particular, the
distinction between conditioning with or without alteration of previous
information. Since possible alterations can occur because we act upon a
system by a measurement, it is natural to set up our mathematical model as an
idealization of the various operations which are present in the measurement
procedures. The usual boolean-Kolmogorovian structure will be recovered as the
limiting case in which the information acquired in a measurement process does
not g ffect the information acquired by previous measurements. The language we
adopt is an extension of one introduced by J. Schwinger [34] and called "the
algebra of measurements". Let A be an observable with values a,(j=1l,---,n)
and let t be an instant of time. To the triple (A,a.,t) we assotiate an
idealized measurement apparatus, denoted A,(t) , which from an ensemble of
independent similar systems selects those for which the value of the
observable A at time t is a. . Such an apparatus will be called an

elementary filter. J

The symbol A;(t) . B (t) (s < t) will be associated with the apparatus
corresponding to tge consecutlve appllcatlon, to the same ensemble, first of
the filter A.(t) and then of By(t) . This operation is associative, with

an identity cOnsisting of the apparatus which does not filter away anything.
Elementary filters are idealizations of the so-called first-kind measurements,
meaning by this that, if € is "very small" then each particle which passed
the filter Aj(t) will also pass the filter A.(t + e¢) (i.e. -if the
observable A" has the value a. at time t - 6 , it will also have this
value at t + 0). Thus elementary filters act both as measurement apparatus
and as preparing apparatus. Not all measurements in nature are of first kind,
but our mathematical analysis will be limited to this class. Since the
measurements which do not disturb the system at all are of first kind, it
follows that all the events considered in the classical theory are included in
the present discussion.
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Elementary filters are mutually exclusive, in the sense that if an
observable A has the value a at time t , it cannot have any other value
in a short time after t . In symbols:

"lim"Ay(t) sAy(tre) = 85,A5(t) 5 (8.1)
€40

meaning by this that, if € is small enough and Jj#k , then practically no
partcles will emerge from the apparatus A (t) A (t+e) o In (8.1), 8, =0
if Jj#k and =1 if jJ=k , and O means the apparatus which does not allow any

particle to pass. Two observables A,B are called compatible if
"llm"A (£) By (t+e) = "1im"B, (t)«A,(t+e) (B.2)
€+0 k €+0 K J

for any pair of values aJ of A and by of B . This will be written
Ay(£) By () = By(t) ea4(t) (8.3)

The commutativity of the observables A,B means that acquisition of
information on the observeble A does not alter previous information acquired
on B and conversely.

Another natural operation on filters is the time reversal, which will be
denoted * and which corresponds to the applications of the filters Aj(s)
and B, (t) (s < t) in reversed time order:

[Aj(s)'Bk(t)] = By(s) A, (4) (8.4)
Ay (s)* A, (s) (8.5)

If p is a number in {0,1] a and A.(t) , an elementary filter, the symbol
p-AJ(t) will be associated to the apparatus with the following properties:
1) (peay(£)) A (t) = A;(t) «(peA,(t)) = peA, (t) (8.6)

ii) from an ensemble'of partlcles, 1dent1cally prepared,

at time t-e , so that A=aJ , the apparatus p-AJ(t)

chooses at random a fraction p of particles.
(formula (9.5) shows how to realize experimentally such apparatus).
Compatible filters A;(t) , B,(t) can be applied in parallel, and the
resulting apparatus, %enoted A;{t)+B,(t) , is charecterized by the fact that
it will allow those particles for which either A=a or B=bk « Finally,
elementary filters corresponding to different values of the same observable A
are always compatible and, moreover:

A(t) + =+ AL(%) =1 (8.7)

By standard mathematical procedures (quotienting a free algebra by certain
relations) this structure of "partial algebra" -i.e. in which addition,
multiplication, and scalar multiplication are not everywhere defined - can be
embedded in a real associative *-algebra with identity.

These algebras generalize the usual boolean structure of the Kolmogorovian
medel. In the following section we show that this generalization is not too
wide, in the sense that in some significant cases it allows a complete
classification of the new models which can arise.

9.) Schr&dinger's equation as a compatibility condition for a non-
Kolmogorovian model.

In this section we prove that from the physically meaningful assumptions
described in section (8.) all the main mathematical features of the gquantum
formalism (the Schr&dinger equation included) can be rigorously deduced.

The problem (originally posed by D. Hilbert - cf. section (1) of the present
paper) of deducing the quantum formalism from physically meaningful
requirements, has been studied in the last sixty years by many authors,
including von Neumann, Mackey, Segal, «ese. o+ The approach considered here
makes use of some standard terminology developed in the studies on the
foundations of quantum theory, however, it is based on a strategy of proof
which is new with respect to the existing literature.

L1 273-15



We start from a set T {(index set) and we assume that, for each x& T
it is given an observable quantity A{x) with values =& (x),...,an(x)
(n < + =, = the same for all x). For the moment we limit ourselves to the
structure axioms, so we do not introduce probabilities, The family of events
in whose probabilities we will be eventually interested is

{{A(x) = a;(x)] : x €T, 3 =1,.e.,n}

where [A(x) = a,(x)] denotes'the event that A(x) takes the value aj(x)-
The mathematical®model for this family is defined by:
- an associative real *-glgebra with identity'¢1.
- the assignment of a correspondence which, to the event [A(x) = aj(x)]

associates an element A,(x) of A satisfying

AyOa* = ag(x) 5 As(x) +"AL(x) = 85,A4(x) 9.1

T a(x) =
st =1 9.2

- it is also required that the algebra /{ is algebraically spanned by the
set of projections {Aj(x) : XE€T, J =1,0ee,n}s
An algebra A as” above will be called a Schwinger algebra of
measurements associated to the set of observables {A(x) : x € T}, Two
elements of are called compatible if they commute. Two typical
examples are:
Example 1.) The requirement that all the observables A(x) (x € T) are
mutually compatible (i.e. any pair of projectors A,(x) (j=l,ee,n ; x € T)
commute) allows to associate in a canonical way a b%olean algebra to the
Schwinger algebra ¢{. Conversely every boolean algebra defines a commutative
Schwinger algebra.
Example 2.) Let H = C® with the usual hermitean product; let, for each
xe T, ¢1zx),...,¢n(x) be an orthonormal basis of H. To the event
Al(x) = a,] we associate the rank one projector
As(x)7: velH » <4i(x), 9 » o5(x) = Ay(x) oy
(<e,s>“~ the scalar product).
Clearly (9.1) and (9.2) are verified. Here the Schwinger algebra is
the algebra of all n x n matrices.

The two examples considered above are extreme, in the sense that while in the
former for each x €T , the observable A{(x) is compa-tible with any other
observable A(y), in the latter we have that if an element of A (=A(n,1))
commutes with each one of the Al(x),...,An(x), then it must be a linear
combination of them (with complex coefficients), so that the observable A(x)
presents the maximal degree of compatibility. Motivated by this remark we
introduce the following:

Definition (9.1). 1In the above notations the observable Alx) {(x e T) is
called maximal if an element of V4 commutes with each of the Al(x),...,An(x)
when and only when it is a linear combination of them with coefficients in the
cenﬁzr)of {i.e. the family of elements of commuting with each element
of .
In the following the center of the Schwinger algebra VAl will be denoted «
and we will assume the validity of the following two technical conditions
(they are much stronger than we need, but assuming their validity greatly
simplifies the exposition):

xeﬂ; YEK; Y*X=0 ifandonly if y=0 or X=0 9.3

vy « Adx) >0 ; with y& k; if and only if y > 0 9.h
(in a *-algebra an element is called positive if it can be written as a sum
of elements of the form b*b).
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In the classical case the same boolean structure is a model for the family of
events both for & deterministic and a statistical theory. Therefore the
boolean algebra model cannot be intrinsically related to a single set of.
probabilities. Converseley, it is intuitively clear that if we are dealing
with two different maximal observables, then the acquirement of an exact
information on the values of one of them implies that the information cn the
values of the other one cannot be but statistical. Therefore, in this case we
expect a set of "privileged” probabilities intrinsically associated to the
observables. It is a remarkable feature of the Schwinger algebra of
measurements that they provide a precise mathematical support for this
intuition:

Theorem (9.2) 1In the above notations, let A(x) and A(y) (x,y& T) be two
maximal observables. Then there exists a bi-stochastic matrix

POx,y) = (py30x) Mgy (xoy) > 05 2 psy(x,y) = £ioqpy(x,y) = 1) such
that:

A3(x) Ay (y) +A1(x) = pyy(x,y) eA4(x) 9.5
Pag(x,¥) = pgylyyx) 9.6

Thus: not only do two maximal observables in a Schwinger algebra canonically
define a transition probability matrix, but this matrix has necessarily the
symmetry property (9.6) which is found in the usual [-Hilbert space model
(cf. the identity (6.3)).

Now, just as Stone's theorem provides a standard mathmatical model for
the boolean algebras of classical probability, we would like to have a
standard representation theorem for Schwinger algebras in order to obtain a
classification of all the possible models which can be obtained in that way.
In the classical casg (2ll observables are compatible) we recover all the
classical models. So let us consider the opposite extreme, i.e. the case in
which each observable A(x) (x € T) is maximal. An important corollary of
Theorem (9.2) is that the Schwinger algebra generated by a finite
number of maximal observables is necessarily finite-dimensional
over its centre «. Moreover, if we add to our assumptions (9.1), (9.2) the
assumption that:

plj(xyy) >0 5 X,Y € T H i)j = 1,.-,1’1 9'7

((9.7) will be implicitly assumed, in the following), then for any x,y € T
the n° . {Ai(x) . J(y) : 1,3 = 1,..,n} are linearly
independent over the centre of . Thus a Schwinger algebra with each A(x)

maximal has at least dimension n2 over its center if card(T) 2.
Definition (9.3) An Heisenberg algebra associatedvzfth the family of
observables {A(x) : x € T} is a Schwinger algebra associated with
{a(x) : x € T} such that:
- each observable A(x) is maximal,
- /Q has minimum dimensions over its centre.

The following problem arises now quite naturally: given a set
{P(x,y) : x,y&€ T} of n xn bi-stochastic matrices, when does there exist
a Schwinger algebra A associated with a family {A(x) : x&€ T} of n-valued
observables, such that (i) each A(x) is maximal in (ii) for each
X,y € T the bi-stochastic matrix canonically associated to the pair A(x),
A(y) according to Theorem (9.2) is P(x,y)?
This theorem is the quantum probabilistic analogue of the well known classical
problem: given a family of transition probability matrices
{P(s,t) : s <t, s, t € B, }, when does there exist a markovian process

elements of
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(A(t)) such that for each s < t, the transition matrix canonically
associated with the pair of random variables A(s), A(t) is P(s,t)?

It is well known that the classical probabilisitic problem has a positive
solution if and only if the family of transition probability matrices
(P(s,t)) satisfies the Chapman-Kolmogorov equation:

P(r,s) « P(s,t) = P(r,t) ; r<s<t 9.8

A rather surprising fact is that the quantum-probabilistic problem has a
positive solution if and only if to each transition matrix P(x,y) one can
associate an "amplitude matrix" U(x,y) so that the family {U(x,y):x,y € T}
satisfies & generalization of the Schr&dinger equation (in integrél fo;m).
More precisely:

Theorem (9.4) (ef. [13]) The following assertions are equivalent:

i Therg §xists an Heisenberg algebra ¢4, with center « satisfying the
conditions of the problem stated above.

ii) For each x,y€ T there exists a xk-valued matrix U(x,y) such that for
each x,y,z€ T, i,j,k = l,000,n0

n (Pij(x’y))

R P L Oaoy) = oy 7+9
n (Pig(x,y)
zj:l(ﬁ;i?:?;T) < Uys(x,y) = 85y 9.10
Ulx,x) = 1 9.11
Ulx,y) « Uly,z) = U(x,z) 9.12

Moreover, in this case, the Heisenberg algebra v/l can be identified with
the algebra of all n x n matrices with coefficients in «k.

Remark 1.; The Hilbert space model of quantum theory is recovered when
K = an

Pij(xay) = ’Uij(X,Y)lg 9.13
one imme?iately recognizes in (9.9), (9.10) the conditions of unitarity of
the matr?x V(x,y) + Moreover, considering the case T = B and assuming a
translation invariant situation, (9.11) and (9.12) become equivalent to:

Uls) « U(t) = U(s+t) ; U(0) = 1 9.1k

where gU(s)) is a 1l-parameter unitary group of n x n matrices. Denoting
by H its generator, (9.14) becomes equivalent to:

d — 1 . -
E?w(t) = iHy(t) 5 9(0) = g, e ® 9.15

which is the usual finite-dimensional form of the Schr&dinger equation.

Remark 2.) It can be shown that equation (9.12) includes also the notion of
groupdre$£§s§ntatlon and that a natural modification of it (making it "path-
ependen eads to the notion of connection i Hildb

associated gauge theories. 7 & Fibert bundie and of the

S .Mgny problems remain open in the clarification of the structure of
chr¥dinger algebras of measurements and their connections to probabilistic

m?deis. Theorem (3.%) above shows however that essentially all the features

of the quantum mechanical model follow from a natural and physically
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meaningful idealization of the measurement procedures. It remains to
determine the nature of the centre of « But this is done with the
technique of statistical invariants described in section ({6.).

The transition to observables with infinitely many (possibly continuous)
values can be achieved starting from Theorem (9.4}, <through the application
of known mathematical techniques. The idea of the procedure is the following:
The problem of classifying {in the # -dimensional (N < + w) Hilbert space
model) the pairsof observables which realize the maximal mutual indeterminacy
(i.e. the transition probabilities between their values are always 1/#),
leads naturally to the introduction of the finite form of the Heisenberg
commutation relations (cf. the author's paper in [13', section (2.)). It
is well known that, taking the limit of these for n + =, one obtains the
Weyl form of the Heisenberg commutation relations hence, via the Stone-von

Neumann uniqueness theorem, the usual LQ(E,dx)-model of quantum theory.

A final remark: the definition (6.2) of "Hilbert space model" is limited
to maximal observables (i.e. each of the observables considered represents a
complete set of compatible observables in the physicist's terminology). 1In
the mathematical model, this assumption is reflected through the fact that to
each value of the given observable corresponds a vector in the Hilbert space
or, more precisely, a rank one projection. If the observable is not maximal,
then to each of its values will correspond a projection which is not of rank
1. However the probabilistic analysis of non-maximal observables is reduced
to that of maximal ones through the theorem of composite probabilities, whose
application is now justified by the considerations made in section (3.). The
following section provides a further clarification of this point.

10.) The theorem of composite probabilities and the measurement process.

Let A, B, C be three different n-valued observables. We denote by
X(t) the observable X at time +t(X = A,B,C) and A_(t) - the event
corresponding to A(t) = ala - a value of A). Similar notations will be used
for B and C. The set of values of the observables will be assumed time
independent. Following (6.1) we denote:

Poy(t,s) = P(a,(t)[By(s)) 10.1

(and similarly for BC, CA). We assume A, B, C to be maximal, in the
sense that for r < s < t and values a, b, c:

P(Ag(t) [Bp(s) € (r)) = P(A (t)|B(s)) 10.2

The identity (10.2) corresponds to the identity (3.0) in section (3.)
and the probability on the left hand side of (10.2) is measured as
approximate relative frequency of the event A,(t) 1in an ensemble of
particles obtained by selection of the particles for which B(s) = b from an
ensemble prepared so that C(r) = c. While the probability on the right hand
side of (10.2) 1is evaluated as the approximate relative frequency of the
event A_{t) in an ensemble of particles prepared so that B(s) = b. Thus
the identity (10.2) should be considered as an experimental fact, and there
are many physical systems in which it is satisfied. Formally (10.2) is a
weak form of Markov property, but it rust be kept in mind that in a classical
context (10.2) means that the information on C,(r) is not necssary while
in the present context - that this information has lost any value. The
mathematical difference is big, in fact in the classical markovian case
equality.

Poalr,t) = 5P y(r,s) <Py (s,t)
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holds, while in the present case it doesn't. A selective measurement such as
the one described to define the left hand side of (10.2) is often called, in

the quantum mechanical literature, a complete measurement. A
non selective measurement is called incomplete « According to

the notation introduced in section (3.), Wwe denote
ViBp(s) (b runs over all values of B) 10.3

the event corresponding to having done an incomplete measurement of B(s).
According to the general formula (3.3), deduced in section (3.), (extended
in an obvious way to n disjoint events) and keeping into account (10.2),
the probability of the event Aa(t) given the preparation C_(r) and the
incomplete measurement VyB,(s), is given by: ¢

PAg(t) [IviBy(s)IN ¢ (r)) = 10.4
TP(A,(t) [By(s)) « P(By(s)|c (r)) =

ZbPCb(r,s) * Pyals,t)

[}

(which is usually different from Peplr,t)).

Assume now that the transition probabilities (10.1) are described by the
usual quantum mechanical model. This means (according to Definition (6.2),
that there exist: an Hilbert space “# = ¢ , and for each observable

A(t), B(t), c(t), an orthonormal basis (¢§(t)), (¢%(t)), (¢C(t)) of g{ ,

such that:
Ppa(sst) = [<of(t),08(s)>]2 = Tr(PA(1) +pB(s)) 10.5

(similarly for B, C, r, s) where Tr( - ) denotes the (non normalized)
trace on the space of all the bounded operators on ‘H and P2(t) is the rank
one projector: &

PA()Y = <gh(e),p ¢h(t) 10.6

Inserting (10.6) into (10.2) and (10.4) respectively, one finds:
P(aa(t) [Bls) M C(x)) = P(ay(2) [B(s)) = Tr(PA(1)ePB(s))  10.7
Plag()] [viB(s) ] o (r)) = 10.8
= 5,Tr (PA(t) «PB(s) ) « Py (r,s) =

Tr(Pg(t) « Wr,s))

where the operator W = W(r,s) = Weg(r,s) is defined by:
- B
Wir,s) = LyPoyp(r,s) o Py(s) 10.9

and has the following properties:

W 1is a positive hermitean operator 10.10

Tr{W) = 1 10.11

In the quantum mechanical literature an operator W with these properties is

called a density matrix (or a mixture, o
. N » Or a state). The rank one projecti
are particular density matrices called pure states, Pres rone

27.3-2 Li

Summing up: when no measurement is done at time s (or, more generally, when
the particles of the ensemble can be considered as isolated in the time
interval (0,t)) the probability of the event Aa(t) shall be evaluated by:

P(ag(t)|ce(r) = Tr(PA(v) » PC(r)) 10.12

When a selective measurement of B(s) is performed, corresponding to the
value b, we shall use formula (10.7). (It is not necessary that the
particles for which B(s) # b are materially discarded. The only relevant
thing is that the relative frequency of the event A (t) is evaluated only
over the ensemble of those particles for which B(s) = b).

Finally, in a non selective measurement of B(s), one shall use formula
(10.8)s The fact that in general the right hand sides of (10.8) and of
{10.12) are different corresponds mathematically to the non validity of
Bayes' axiom in the gquantum probabilistic model, and physically to the fact
that the physical situations in which the two probabilities of Ag(t) are
evaluated are different.

So, for example, if & friend of mine makes a selective measurement of
B(s) but doesn't tell me which value of B(s) he selected, then I will use
formula (10.8) to evaluate the probability of A (t), while he will use
(10.7). His results will be experimentally more precise than mine, which is
not surprising since he has got more information.

In general I must use formula (10.8) when there is some information on
the system which in principle I could obtain but which I have not. Formula
(10.7) 1instead, is used when I dispose of the maximal amount of exact
information obtainable (in agreement with the indeterminacy principle) at a
given moment. There is nothing surprising in the fact that the mere
possibility of obtaining in principle some information on the system alters my
way of evaluating probabilities of events concerning it. This mere
possibility is in fact not of a psychological nature, but corresponds to
different physical ani experimental conditions to which the system has been
subjected. These differences in the experimental conditions of the system can
arise as "disturbances" occurring between the original preparation and the
measurement of the event in guestion - as it is the case when we use the
formula (10.4) (incomplete measurements) - as when we constrain the system
tc be related to another system by a conservation law (in the mathematical
model of quantum theory this situation is described by a wave vector of the
form (5.14)). The "physical state" of the system changes in time, in the
sense that the values of all the observables of the system are functions of
t. However, by the Heisenberg principle, we cannot obtain exact information
on all the observables of a system, but only on a maximal observable (a
complete set of compatible observables - in the physicists’' terminology).
Thus the knowledge of the "physical state” of the system, in the sense of the
mechanicistic theories, is ruled out a priori by Heisenberg principle. 1In the
mathematical model the maximal amount of information, attainable on a given
system at a given moment s, is representated by a vector ¢i(s) ina
Hilbert space (more precisely - by the corresponding rank one projection
PE(s)). This gives two types of information on the system:

i? that the exact value of B(s) is b
ii) +that the probabilities of the values of &any observable A(t) (t > s)

should be evaluated according to the formula (10.7).

For reasons made explicit in section (11. ) some physicists have claimed
that, if the mathematical model of the state of a quantum system at time s

is ¢§(s), then all the observables incompatible with B do not assume any
value but are in a physically undefined (and in principle unobservable) "state
of physical superposition". These "states" have the peculiar property of
existing only if nobody tries to ascertain whether they exist or not: as soon
as one tries they disappear (this is the "collapse of the wave packet" - cf.
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section (11))and one faces the familiar situation in which an observable takes
one and only one of its values., But why, one might ask, physicists have
introduced such a peculiar notion? It is not easy to find an answer to this
question in the physical literature, because few contemporary physicists had
the scientific courage of writing down explicitly the precise definition of a
"state of physical superposition" and, most of all, the rational reasons which
determined the introduction of such a bizarre notion. The papers of R.P.
Teynman constitute a notable exception, and that is the reason why the answer
to the questions arisen in those papers have been the starting point of many
investigations on the relaticnship between probability and guantum theory. In
section (11) we will give a brief outline of the reasons which lead to the
notion of "physical superposition of states" (which is to be distinguished by
the corresponding mathematical notion which is perfectly well defined and
corresponds to the familiar operation of taking linear combinations of vectors
in a complex Hilbert space).

11) An historical digression on the so-called paradoxes of quantum mechanics
As stated section (1), since the late twenties the physicists were
aware that quantum theory was a new probabilistic calculus. The point of view
advocated in the present paper is that this new caluculus reflects the non

universal applicability of some of the elementary rules of classical
probability (in particular, Bayes' definition of conditional probability).

This possibility has not been taken into account in the physical
literature where, on the contrary, starting from the (implicit) assumption of
the universal applicability of the rules of the classical probabilistic model,
one was lead to the necessity of introducing some strange physical properties
to justify the discrepancies between the experimental date and the theoretical
predictions {deduced using these rules).

In the following we briefly outline the considerations which lead to the
introduction of such strange physical notions as: non-locality, non~
separability, physical superpositions, collapse of the wave packet, seces »

I+ should be underlined that the correct application of the rules of this new
probability calculus do not lead to contradictions (at least not more than any
other mathematical theory). It is only when the rules of the new
probabilisitic calculus are uncritically mixed up with hose of the o0ld one
that contradictions arise. In section ( 4) we have illustrated this
situation with a particular example, Now we will illustrate, in its

generality, the mechanism which lead to the so called "paradoxes of quantum
theory”". The identity (3.5), i.e.:

P(alc) = P(A]BaC) « P(B|C) + P(a]|B'nC) « P(B']|C) 11.1

was considered by the physicists a tautology on relative frequencies, as long
as the events 3B,B' are disjoint and exhaust all the possibilities.
Therefore, in order to explain the fact that some experiments ( as the one
described in section (L4.)) contradict (11.1) they were led to the
conclusion that in such cases they had to do with events B, B' which were
not mutually exclusive. However this conclusion also contradicted the
experiments, which unequivocally showed that the events B and B'
mutually exclusive. However strange may be the way out chosen by the
physicist from this empasse was the following: "since the identity (11.1)
is falsified by the experiments in a situation in which no attempt is made to
verify which of the alternatives B, B' was fulfilled; and since, whenever we
do an experiment tn ‘erify such a thing, we find that one and only one of the
events B, B' can happen at each time, then we conclude that the events B

and B' are mutually exclusive when we look at them but they are not mutually
exclusive when we do not look at them".
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defined value. This abrupt change from "potentia" to "actum" is called, in
the physical literature, "the collapse of the wave packet". For example an
electron in a definite energy state, when nobody looks at it, is virtually
everywhere in the space (i.e. its position observable is in a "superposition
state"). However as soon as somebody looks at it suddenly materializes in a
region of a few microns. To describe this point of view Schr&dinger, who
opposed it, used the term "witchery”. The most famous objection to this
statement is known under the name of "Einstein-Podolsky-Rosen paradox" [18]
and (one of the many equivalent versions of it, which is due to Heisenberg
[23]) can be described as follows: an electron is in a region of space
delimited by two communicating boxes., The communication between the two boxes
is closed and they are separated by an arbitrarily large distance. According
to the orthodox interpretation, it is wrong to say that the electron is in one
and only one of the two boxes with a certain probability. The correct
statement is that the electron is "virtually" spread in both boxes, but
"actually" in neither of them. Now, if an experimenter opens one of the two
boxes, the electron "collapses" - according to the orthodox view - into one
and only one of them (not necessarily the open one), with a certain
probability which is correctly predicted by quantum theory. But, Einstein,
Podolsky and Rosen asked, how does the "part of the "electron virtually
contained in box 2" know that box 1 has been opened? It must "know" it in
a time shorter than that needed to the experimenter of box 1 to take
conscience of the presence or absence of the electron in box 1; however, the
two boxes can be so far apart that the time needed to any physical signal
(according to the theory of special relativity) to propagate itself from box

1 to box 2 would be much greater than the "relaxation time" needed by the
experimenter to ascertain whether the electron is in box 1 or not.

Thus, if the orthodox interpretation of quantum theory is correct, the
principle of special relativity, according to which no physical signal can
propagate itself faster than the light in the vacuum, must be wrong. One
might take comfort from the fact that this "superluminal propagation" has no
observable consequences. But the theoretical contradiction remains. This is
the root of the notorious debate on "non-locality” in quantum theory. "Non-
separability" is roughly the same thing: if instead of our electron I
consider two electrons (or balls) then until I do not open the box I can't say
that they have a separate physical identity: they are in a state of physical
superposition" and I .create their individuality by the act of opening the box:
in this sense some people have spoken of "non-separability".

Many other "paradoxes" have been deviced by exploiting the notion of
"collapse of the wave packet", Some of them have been taken so seriously by
some physicists to lead them to abandon the dream of Boltzmann, Einstein,
of the unification of physics under a few general principles and to try to
construct two separate physical theories: one for the description of the
"microscopic world" and one for the description of the "macroscopic world"
(cf. [33]). A description of these "paradoxes” can be found in [29], the
proof that they are all based on the inappropriate use of a single formula of
classical probability theory (Bayes' formula) to deal with sets of statistical
data not admitting a Kolmogorovian model is in [6]. The conclusion is that,
given for granted that quantum theory represents the deepest level of our
present understanding of nature, nevertheless some parts of its currently
accepted interpretation should be changed. In particular the statement that
the introduction of notions such as "collapse of the wave packet", "physical
superposition of stetes", .... is necessary to avoid contradictions between
theory and experiments, is mathematically wrong: the only contradiction is
between experimental (statistical) data and the pretense to fit them within a
single Kolmogorovian model.

One might still ask "which are the physical reasons that prevent the use
of the Kolmogorovian model?”. T hope that the analysis of section (3.) has
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convinced the reader that the symmetric question "which are.the physical
reasons that suggest the use of the Kolmogorovian model?" is at least as

1egitimate -
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In section (1.) one analyses the problems posed to classical
probability by the existence of a probability calculus used by the
physicists and quite different from the usual one: when to use on model
instead of another one? 1Is the new model really necessary? And, if so, in
what sense? Can we explain the mathematical features of the new model - which
are far from having an intuitive meaning - starting from simple probabilistic
assumptions? In section (3.) the notion of "conditioning" is analyzed in
situations in which acquisition of new information on a system might destroy
some previously acquired ome., The result of the analysis is the description
of possible experiments to check the universal applicability of the
Kolmogorovian model.

In section (4.) one describes an effectively performed experiment
leading to the conclusion that some very simple sets of statistical data of
physical significance cannot be described within the classical Kolmogorovian
model. Another class of such examples is described in section (5.).

In section {6.) the notion of "statistical invariant" is introduced,
which allows a mathematical distinction between the classical and the quantum
probabilistic model. The conclusion is that this distinction can be read into
the experimentally measurable probability.

In section (T7.) the conclusions of the previous analysis are used to
show that a "paradox" well known in the physical literature has his roots in
the inappropriate application of some rules of the Kolmogorovian model {in the
case in question - Bayes' formula for the conditional probability) to a set of
statistical data not admitting a Kolmogorovian model.

In section (8.) one discusses how to formulate the axioms concerning
the structure of the family of events in a context where incompatible events
are present (for which the usual boolean opertions are meaningless).

In section (9.) it is shown that from the new structure axioms it is
possible to deduce all the essential "kinematical" features of the quantum
formalism, just as from the boolean axioms of classical probability the usual
probabilistic model is recovered via Stone's theorem.

In section (9.) the problems of the quantum measurement process are
explained making use of the probabilistic analysis developed in section (3.).
Finally, in section (11) a (very) short description is given of the
line of thought which, starting from the (implicit) assumption that the rules
of classical probability had a universal application, has lead the physicists

to a number of paradoxes.
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