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Abstract. Some properties of the global behaviour of a model of neural
network are considered.

The geometric concept of “quadrant–degeneration” is studied and it is
shown to be independent of the algebraic concept of rank–degeneration. The
results obtained are employed to solve some global problems of synthesis (i.e.,
independent of the initial state of the network) without the use of the theory
of linear inequalities.

1 Introduction

The mathematical model of a neural network with which we will be concerned
has been introduced by Caianiello (1961). In this model the evolution of a
network is described by means of “Neuronic Equations” (N.E.) which describe
the instantaneous activity of the net, and “Mnemonic Equations” (M.E.)
describing the learning processes. The Adiabatic Learning Hypothesis which
asserts that learning processes take place more slowly than the processes
described by the neuronic equations, allows to study independently the N.E.
and the M.E. within a time interval, whose width is discussed by Caianiello
(1961).

We will here be concerned exclusively with the study of neuronic equations
in the special form obtained under “self–duality” conditions which charac-
terize the so–called “normal systems” (Caianiello, 1966).

In Section 1, after a brief recall of the formalism, we consider the “in-
dividual” problem of synthesis and we show the equivalent, for this case,
of a well–known theorem enables us to give some helpful criterion to solve
concrete problems.

In Section 2 the “global” problem of synthesis is stated and a result is
proved which generalizes a theorem given in Accardi (1971). Moreover, there
are some practical considerations of the synthesis of reverberations whose
lengths must not cross preassigned upper or lower bounds.

Finally, in Section 3 the solution of some concrete problems of synthesis
are presented. An example which shows the independence between “rank–
degeneration” and “quadrant–degeneration” is also given.
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2 The individual problem of synthesis

We consider the formal neurons as binary elements which can assume the
values 1 or −1. The states of the network are vectors, whose i–th components
represent the state of the i–th neuron. Time is quantized in the mode. In
the case of “normal systems” the state σt+1 of an N–neuron network at the
time t+ 1 can be expressed by the (vector) equation:

σt+1 = sgn (Aσt) (1)

where A is an N × N matrix, and sgn [·] is the “signum” function, defined
componentwise on R− {0} by:

sgn x =
{

+1 if x > 0
−1 if x < 0

(2)

The problem of synthesis of neural networks may be expressed in the following
manner.

Given a sequence σ, . . . , σR+1 of states, determine a matrix A such that

σi+1 = sgn (Aσi) , 1 ≤ i ≤ R (3)

We will refer to this as the “individual” problem of synthesis, that is,
the network is required to realize a single preassigned sequence of states. If
σR+1 = σ1 the sequence will be called a “reverberation”; if σl 6= σm for l < m
we will say that the sequence belongs to a transient.

It may be useful to state the equivalent for this model of a well known
result about threshold functions and some of its consequences (Elgot, 1960).

Denoting with 〈·, ·〉 the scalar product which maps the vectors x = (xi);

y = (yi) into the number 〈x, y〉 =
N∑
i=1

xiyi and denoting with ai the i–th row

of the matrix A, then Eq. (3), written componentwise, becomes (σij being
the j–th component of the vector σi):

σi+1,j = sgn 〈%j, σi〉; 1 ≤ i ≤ R ; 1 ≤ j ≤ N (4)

one can thus define the sets

I+j = {σi|i ≤ R; σi+1,j = +1}
I−j = {σi|i ≤ R; σi+1,j = −1}
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(5)

we then have I+j ∩ I−j = ∅ and from I+j t I−j = {σ1, . . . , σR} for every j ≤ N ,
Eqs. (3) can be written:

〈σi, aj〉 > 0 if σi ∈ I+j
〈σi, aj〉 < 0 if σi ∈ I−j ; i ≤ j ≤ N

(6)

Defining the sets, for 1 ≤ j ≤ N

−I−j = {σ| − σ ∈ I−j } ; I ′j = I+j t (−I−j ) (7)

Eqs. (6) can be written in compact form:

〈σi, aj〉 > 0 ; σi ∈ I ′j ; 1 ≤ j ≤ N (8)

As a consequence, a matrix A satisfying our problem exists if and only if the
N systems of linear inequalities

〈σi, x〉 > 0 ; σi ∈ I ′j ; 1 ≤ j ≤ N (9)

are consistent. A well known theorem of convex analysis (Rockafellar, 1969)
asserts that this is the case if and only if the null vector does not belong
to the convex hull of the set I ′j for 1 ≤ j ≤ N , that is, if there exist no R
non–negative numbers tσ whose sum equals 1, such that, for some j,∑

σ∈I′j

tσ · σ = 0 (10)

This is equivalent to ∑
σ∈I′j

tσ · uσ =
1

2
1 (11)

where uσ = 1
2

(σ + 1), i.e., uσ is the “boolean state” associated to σ. Intro-
ducing the matrix uj = [u1, . . . , uR], σi = 2ui−1 ∈ I ′j, Eq. (11) is equivalent
to:

ujt =
1

2
1 (12)

Eqs. (11), (12) provide, through classical theorems of linear algebra, some
simple sufficient criteria of realizability. For example, if (ui)1≤i≤K is a gen-
erating system for the set 2I ′j − 1, i.e., a maximum number of independent
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vectors, a sufficient condition for realizability is that the vector 1 does not
belong to the space generated by the ui. Suppose now that the sequence
(σ)1≤i≤R+1 is realizable, i.e., there exists a network which contains this se-
quence in its evolution. If σ is an arbitrary vector of QN , then, from Eq.
(10) it follows that the sequence (σi)1≤i≤R+2; σR+2 = σ, will be realizable if
and only if no vectors λ, with negative components exist, such that for some
j = 1, 2, . . . , N , the equation

Sjλ = τ (13)

where the R columns of the matrix Sj are the vectors of I ′j in the preceding
notations, and τ = ±σR+1 according to the sign of the j–th component of
σR+2.

The geometric meaning of condition (13) can be expressed in this way:
denote Pjσ the j–th component of the state σ ∈ QN ; then the sequence
(σi)1≤i≤R+2 can be realized if and only if for every j = 1, . . . , N the vector
−(Pjσ)σR+1 = τj does not belong to the convex cone generated by the set I ′j
(see (7)); this means that for no positive numbers (λσ′)σ′∈I′j one has:∑

σ′∈I′j

λσ′ · σ′ = τj (14)

taking scalar products for τj on both sides, on finds∑
σ′∈I′j

λσ′〈σ′, τj〉 = N (15)

so that a sufficient condition for the realizability of the sequence (σi)1≤i≤R+2

is that for every j = 1, 2, . . ., one has:

〈σ′, τj〉 ≤ 0 ; ∀σ′ ∈ Ij (16)

Suppose now that the sequence (σi)1≤i≤R is N–net realizable. Then defining
in the above notations the sets Γ(I ′j); 1 ≤ j ≤ N , as the closed convex hull
of I ′j, the following proposition answers the question.

Proposition 1 If the sequence (σi)1≤i≤R is N–net realizable, and ν is the
number of indices j = 1, . . . , N , such that the line y = λ ∈ R, does not
intersect the set Γ(I ′j), then there exist 2ν vectors σ ∈ QN such that the
sequence {(σi), σ} is N–net realizabe.
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In fact, from Eq. (10) one can see that the sequence {(σi), σ} is N–net
realizable if and only if for every j = 1, . . . , N vector λ(Pjσ)σR does not
belong to Γ(I ′j) where λ < 0 and Pjσ is the j–th component of σ. So, if the
straight line y = λσR does not intersect Γ(I ′j), then the j–th component of
σ ca be arbitrary. If λσR belongs to Γ(I ′j) for some λ, then −λσR cannot
belong to T (I ′j) since (σi)1≤i≤R is realizable.

Thus our hypothesis is equivalent to saying that ν components of σ are
arbitrary.

3 The “Global” Problem of Synthesis

The formulation of the problem of synthesis given in the preceding paragraph
depends on the initial state: i.e., if a matrix A is found which realizes a
preassigned sequence of states (σi)1≤i≤R+1, nothing in general is known about
the evolution of the network when an initial state τ is chosen different from
any of the σi in the sequence. There are, nevertheless, some problems in
which one is mainly interested in the final stable configuration of the network
resulting from an arbitrary initial excitation. One can refer, for example, to
Caianiello et al . (1967) for a theoretical statement of the problem, and to
Burattini and Liesis (1970) for an analysis of this kind of situation from
an experimental point of view. This problem can clearly be reduced to the
preceding one by the consideration of a sufficiently large number of systems
of linear equalities, but this technique soon becomes very involved, even for
small N (number of neurons) and R (length of reverberations). To handle
this problem from an intrinsic standpoint, we want to develop a geometric
formulation of it. We denote QN the set of states of the network, identified,
as usual, with the set of vertices of the unit symmetric cube in RN , and define
the mapping

TA : σ ∈ QN → sgn (Aσ) ∈ QN (17)

the evolution equation of the network is then written

TA(σi) = σi+1 (18)

and a generic state σ belongs to a reverberation of length R if and only R is
the smallest positive integer such that:

TRA (σ) = σ ; where T 0
A(σ) = σ; T n+1

A = TA(T nA) (19)
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If, on the contrary, for every natural integer R one has TRA (σ)not = σ the
state σ is said to belong to a transient. The function TA has the following
two properties:
(i) TA is symmetric, i.e., TA(−σ) = −TA(σ) for every σ in QN .
(ii) TA maps Q into itself: i.e., TAQ

N ⊆ QN .

Since QN is a finite set, and, for every integer n one has:

T n+1
A (QN) ⊂ T nA(QN) (20)

the inclusion can be proper only for a finite number of steps. Let m be the
least integer such that equality holds in (20) and set

TmA (QN) = V (21)

the subset QV of QN thus defined, is the largest among the subsets of QN

on which the function TA acts as a permutation. This will be called the
“core” of the network whose matrix is A and is characterized by the following
property: a state belongs to a reverberation of the network if and only if
it belongs to V . In analogy with QN , the points of V may be considered
as the vertices of a “polyhedron” (in general not a cube!). Like QN , the
polyhedron V is symmetric because such is the map TA. We can sum up the
above consideration in this way: to every self–dual network A corresponds
a symmetric subset V of QN such that TA acts as a permutation on the
elements of V , and V is the largest subset of Q with this property.

We can express the global problem of synthesis as follows: given a sym-
metric subset V of QN and a permutation P on the points of V , does a
self–dual network A exist, such that V is the “core” of A and the permu-
tation induced by TA on V coincides with P? The “core” of a network is
its final stable configuration since starting from an arbitrary state after a
finite number of steps (≤ m) the network decays into a state belonging to
the “core” which is “stable” with respect to the evolution of the net, in the
sense that if the initial state belongs to the “core”, all the subsequent states
of the network also belong to it.

Thus the problem of vector realizability of networks can be generalized
as follows: given a set S and an action on S of a subgroup G of the group
of permutations on elements of S, we look for the minimum integer N such
that there exists a one to one map ϕ of S into a polyhedron P of KN (K
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an arbitrary field) and an homomorphism % of G into the group of trans-
formations (not necessarily linear) of P into itself such that if g ∈ G one
has ϕ ◦ g = %(g) ◦ $. This approach is by no means restricted to the case
of autonomous threshold nets, but extend to the general problem of vector
realizations of automata. This formulation allows a mathematical approach
to the problem of realizability of nets (i.e., systems of boolean functions)
which is different from the usual ones. As long as we are concerned with the
reverberation behavior of the net we see that the central concept involved is
that of action of the permutation group on the vertices of a polyhedron. This
action is usually expressed by means of the Heaviside function composed
with an affine mapping, denoting with ϕ the transformation which maps the
boolean cube onto the unit symmetric one, with H the action of the Heavi-
side function, with S the action of the Heaviside function, with S the action
of the “signum” function one obtains the equality:

ϕH = Sϕ (22)

The transformation ϕ has two peculiar geometric features: 1) it preserves
dimension; 2) it maps a cube onto a cube. The meaning of these properties
is simple: the transition from one model to the other preserves both the
number of neurons and the code. It is apparent that in equality (22) every
trace of these properties is lost, so that this equation can be assumed (ϕ being
one to one) as the definition of equivalence of two vector–models of the same
neural net. More precisely: if V is an arbitrary polyhedron of a space KN

and S is an action of a subgroup of a permutation group, we say that the
couple (V, S) is an equivalent vector–model of a couple (Q,H) if there exists
a map ϕ : QN → V such that ϕH = Sϕ. As an example of global property
of a network we consider the following proposition which extends a recent
result of one of the authors.

Proposition 2 Let A be an N–network of rank K, then, if we denote with
(Ri)1≤i≤m the lengths of all its reverberations, we have

m∑
i=1

Ri ≤ 2N − 2N−K+1 + 2 (23)

Proof . Since A has rank K, it projects all the points of QN (states of the
network) on a K–dimensional linear manifold. It ha been shown (Accardi,

9



1971) that such a manifold can intersect at most 2N−2N−K+1+2 “quadrants”
so that this will be “a fortiori” an upper bound for the number of points
belonging to the core (which must belong to one of these “quadrants”). This
number, because of the characteristic property of the core stated previously,
is more than the sum of the lengths of all the reverberations of the network.

The limitation expressed in (??) is the best possible one, depending only
on the rank of the matrix. We refer, for this and other considerations, to the
above–mentioned paper in which an example is given where equality holds
in (??).

Thus the rank of a network provides an upper bound for the number of
states in its core. It can be shown (see Section 3) that this is not the case
for a lower bound of this number; therefore it may be of interest to know
some type of sufficient conditions which supply such a lower bound. This will
ensure, as in the following example, that the network is sufficiently rich in
reverberations, either in number or in length.

Let, for simplicity, N = 2r. In such a case one can choose from Q an
orthogonal basis (σi)1≤i≤N (this is trivially verified by induction on the tensor
product of q copies of R2). Put K = 2q with p < q and S = [σ1, . . . , σN ];
S1 = [−σ1, . . . , σK ; sK+11, . . . , sN ] where sj is an arbitrary linear combination
of the (σi)1≤i≤K for j = K + 1, . . . , N . Now define A by

AS = S1 ; A =
1

N
SiS

T (24)

Then clearly A has the rank K; its core contains the ν vertices of QN which
are linear combinations of the (σi)1≤i≤K and the network A acts on each
of these vertices as a non–linear oscillator. Obviously a similar argument
may hold for any matrix of the type AB where B is a matrix which leaves
invariant the polyhedron Q(K) generated by the (σi)1≤i≤K . For any such
matrix, denoted by (Ri) the set of the lengths of all the reverberations, one
has:

ν ≤
∑
i

Ri ≤ 2N − 2N−K+1 + 2 (25)

(for example if K = N − 1 then ν =

(
N
N/2

)
).

The upper bound given in Proposition 2 for the number of states of the
core of a network of rank K can be improved with some additional hypothesis
on the matrix A of the network. We consider here one of these cases as

10



an illustration of the method. Suppose xTU = 0 is the equation of the
K–dimensional subspace defined by A. The matrix U (which is of order
N × (N −K) and rank N −K can be decomposed into: U =

[
B
V B

]
where B

is of rank N −K and the above equation is equivalent to the following:

xT = [−yTV |yT ] (26)

where y is an arbitrary vector with K components.
We want to look for the number of signs obtainable with vectors x of

the form (??) when the matrix V is such that in each of its columns there
may occur some zero and, if v(j) denotes its j–th column, for every couple
of indices h and i there exist at least two components, say the α–th and the
β–th, non null both in v(h) and v(i) and such that:

sgn v(i)α = − sgn v(h)α

sgn v
(i)
β = sgn v

(h)
β

(27)

(this is surely possible if, for instance, 2K−1 ≥ N −K).
Then, if νh is the number of zeros in the column v(h), the set Mh of all the

σ ∈ QK such that the sign of the product 〈x, v(h)〉 does not depend on the
|xi|’s when–ever sgn x = σ, contains exactly 2νh+1 elements. Furthermore
Mh ∩ Mi = ∅ if h 6= i, in fact, because of our hypothesis there exist two
components α and β such that if

sgn (xα) sgn (v(h)α ) = sgn (xβ) sgn (v
(h)
β ) (28)

then, necessarily:

sgn (xα) sgn (v(i)α ) 6= sgn (xβ) sgn (v
(i)
β ) (29)

which means that if sgn x = σ ∈ Mh, then the product 〈x, v(i)〉 depends on
the |xi|’s.

Now for every σ ∈ QK , let hσ be the number of columns v(j) in V such
that the product 〈x, v(j)〉 does not depend on the |xi|’s whenever sgn x = σ.
Our hypothesis implies that hσ = 1 or hσ = 0. Then the vector xTV can
give rise to at most 2N−K−hσ different signs, so that, when σ ranges in QK

the number ∑
σ∈QK

2N−K−hσ (30)
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is an upper bound for the number of vertices in the core of the network. We
have, then, ∑

σ∈QK
2−hσ =

N−K∑
j=1

∑
σ∈Mj

2−hσ +
∑
τ∈L

2−hτ (31)

where L denotes the set of the σ ∈ QK not belonging to any of the Mj, i.e.,
such that if sgn x = σ the product 〈x, v(i)〉 depends on the |xj|’s for every
i = 1, 2, . . . , N − K. Since the Mj are disjoint and each of them contains
2νj+1 elements, then ∑

τ∈L

2−hτ = 2K −
N−K∑
j=1

2νj+1 (32)

but if σ ∈Mj then hσ = 1 and therefore

N−K∑
j=1

∑
σ∈Mj

2−hσ=
1
2

N−K∑
j=1

2νj (33)

which yields ∑
σ∈QK

2N−K−hσ = 2N − 3

2
2N−K

(
N−K∑
j=1

2νj

)
(34)

It has already been observed (see Accardi, 1971) that besides the rank–
degeneration which has been investigated in Proposition 2 there may arise
another kind of degeneration, called “quadrant–degeneration” which takes
place when different vertices of QN are mapped into a single quadrant of RN

so that the “signum” function, when applied to them, maps them all into
the same vertex of QN . The following example shows that these two kinds
of “degeneration” are independent within the limits of Proposition 2 and
that the essential feature of the equivalence of nets is topological–stability
of the evolution within some “tolerance cone” - rather than algebraic - rank
invariance.

Moreover, this example solves, without the introduction of any controlling
element, the problem, examined in Caianiello et al . (1967), of synthesizing
a net which has the same immediate reaction regardless of the impinging
excitation.

We are thus looking for a matrix A such that for a preassigned τ ∈ QN

sgn Aσ = ±τ ; ∀σ ∈ QN (35)
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i.e., A must map the whole symmetric cube into the quadrants defined by τ
and −τ . And a sufficient condition for this is that A maps QN into the cone
C(τ) of the axis the direction of τ and tangent to the “walls” delimiting the
quadrant identified by τ itself.

Denoting θj(τ) the angle between τ and its projection on the j–th wall
of the τ–quadrant, then for j = 1, . . . , N ,

cos θj(τ) =
〈τ, τ〉 − (〈τ, ej〉)2√

N(N − 1)
=

N − 1√
N(N − 1)

=

√
1− 1

N
(36)

Therefore a vector x belongs to the cone C(τ) if | cos(x̂τ)| ≥
√

1− 1
N

. Thus,

choosing A such that τ is an eigenvector of AT corresponding to the positive
eigenvalue λN one has,

〈Aσ, τ〉 = 〈σ,AT τ〉 = λN〈σ, τ〉 (37)

and if N is odd

| cos(Aσ̂ · τ)| = |〈Aσ, τ〉|
‖Aσ‖ · ‖τ‖

= λN
|〈σ, τ |

‖Aσ‖ · ‖τ‖
≥ λN

‖A‖ ·N
=

λ

‖A‖

where ‖A‖ is a norm for the matrix A satisfying the inequality ‖Ax‖ ≤
‖A‖ · ‖x‖ see, for example, Gantmacher (1964) and the required conditions
on A are (N being odd):

AT τ = λN · τ

λ\‖A‖ ≥
√

1− 1

N

It is instructive to give a geometrical interpretation of this problem. Suppose
first, as is always possible, that the matrix A in (??) is positive definite. Then
it is well known (see Gantmacher, 1964) that its action on the vectors of RN

consists of a “stretching” of their components along N orthogonal directions
(the “eigen–axis” of the matrix). Condition (??) can therefore be interpreted
as imposing that the “stretching” along the axes of τ must be much bigger
than along other axes of A.

In particular, we can choose A in (??) as any positive (not necessarily
definite) matrix of arbitrary rank K (1 ≤ K ≤ N) which shows that the
essential feature for the evolution of a network A is the geometrical action of
A on the points of Q and not the rank of A.
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