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Abstract.
We prove the stochastic independence of the basic integrators of the renor-

malized square of white noise (SWN). We use this result to deduce the uni-
tarity conditions for stochastic differential equations driven by the SWN.

1 Introduction

Linear quantum stochastic calculus on the Boson Fock space, as developed
in [7], is associated with the stochastic differentials

dB(t) = b(t)dt , dB+(t) = b+(t)dt , dN(t) = b+(t)b(t)dt

corresponding to functionals of the Boson Fock white noise b, b+ satisfying
the commutation relation [b(t), b+(s)] = γ ·δ(t−s) where γ > 0 is the variance
of the quantum Brownian motion defined by B and B+, and δ is the delta
function (cf. [2], [5]). A general, representation free, quantum stochastic
calculus which included [7] and all other known examples of linear quantum
noise was developed in [1] (see also [4], [5], [6]).

The theory has recently been extended (cf. [2], [3]) to include normally
ordered nonlinear stochastic differentials of the form

dB(m,n) = b+(t)mb(t)ndt

where m,n ∈ {0, 1, . . .}. This extension required the introduction, in classical
probability theory, of renormalization techniques, widely used in quantum
field theory.

The white noise b+, b is defined as follows: let L2
sym(Rn) denote the space

of square integrable functions on Rn symmetric under permutation of their
arguments, and let

F =
∞⊕
n=0

L2
sym(Rn)

where: if ψ = {ψ(n)}∞n=1 ∈ F , then ψ(0) ∈ C, ψ(n) ∈ L2
sym(Rn), and

‖ψ‖2 = |ψ(0)|2 +
∞∑
n=1

∫
Rn
|ψ(n)(s1, . . . , sn)|2ds1 . . . dsn
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Denote by S ⊂ L2(Rn) the Schwartz space of smooth functions decreasing
at infinity faster than any polynomial and let

D =

{
ψ ∈ F |ψ(n) ∈ S,

∞∑
n=1

n‖ψ(n)‖2 <∞

}
For each t ∈ R define the linear operator b(t) : D → F by

(b(t)ψ)(n)(s1, . . . , sn) =
√
n+ 1ψ(n+1)(t, s1, . . . , sn)

and the operator valued distribution b+(t) by

(b+(t)ψ)(n)(s1, . . . , sn) =
1√
n

∞∑
i=1

δ(t− si)ψ(n−1)(s1, . . . , ŝi, . . . , sn)

Then

B(t) =

∫ t

0

b(s)ds ,B+(t) =

∫ t

0

b+(s)ds ,N(t) =

∫ t

0

b+(s)b(s)ds

are, for each t, operators acting onD. The renormalized Itô table, proposed in
[3], for the stochastic differentials dt, dB, dB+, dB2 = dB(0,2), dB

+
2 = dB(2,0),

and dN is

dt dB dB+ dB2 dB+
2 dN

dt 0 0 0 0 0 0
dB 0 0 γdt 0 2γdB+ γdB
dB+ 0 0 0 0 0 0
dB2 0 0 2γdB 0 4γdN 2γdB2

dB+
2 0 0 0 0 0 0

dN 0 0 γdB+ 0 2γdB+
2 γdN (1)

Since L2
sym(Rn) = L2

sym(R⊗n) we can identify F with the symmetric
(Boson) Fock space over S. In the case when the elements of S are defined
on [0,+∞) we denote the Fock space by Γ(S+). If ψ = {(n!)−1/2f⊗n} we
denote ψ by ψ(f). With these notations:

btψ(f) = f(t)ψ(f), b2tψ(f) = f(t)2ψ(f), 〈ψ(g), b+t btψ(f)〉 = g(t)f(t)〈ψ(g), ψ(f)〉
(2)
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Throughout this paper b+2
t will be interpreted as a quadratic form defined

on the linear span of the exponential vectors.
We couple Γ(S+) with an initial Hilbert space H0 and we define an

adapted process A = {A(t) : t ≥ 0} to be a family of operators on

H0⊗Γ(S+) such that for each t, A(t) = At⊗ 1 where At acts on H0⊗Γ(S
t]
+)

and 1 is the identity operator on Γ(S
(t
+), where S

t]
+ = {f · χ[0,t]/f ∈ S} and

S
(t
+ = {f ·χ(t,+∞)/f ∈ S}. If, for each t, A(t) = A⊗1, where A is on operator

on H0 and 1 is the identity on Γ(S+), then A is a constant process . If, for
each t, A(t) is a (locally) bounded operator then A is a (locally) bounded
process .

In what follows we identify B(t), B+(t), B2(t), B
+
2 (t), and N(t) with

1 ⊗ B(t), 1 ⊗ B+(t), . . . , 1 ⊗ N(t) where 1 is the identity on H0. For a
constant adapted process A = {A(t)/t ≥ 0} we denote A(t) simply by A.

Once a quantum stochastic calculus has been constructed, one usually
considers the problem of finding conditions under which stochastic differential
equations driven by quantum noise admit unitary solutions. It is well known
(cf. [7]) that the unique solution U = {U(t) : t ≥ 0} of the initial value
problem

dU(t) =

[
(iH − 1

2
L∗L

)
dt−L∗WdB(t)+LdB+(t)+(W−1)dN(t)]U(t) (3)

U(0) = 1 , 0 ≤ t ≤ T < +∞

where L, H, W are bounded, constant adapted processes with H self–adjoint
and W is unitary i.e. U(t)U∗(t) = U∗(t)U(t) = 1 for each t.

In this note we discuss, in Sections 2 and 3, the unitarity of the solution
U of the initial value problem

dU(t) = [A1dt+A2dB(t)+A3dB
+(t)+A4dB2(t)+A5dB

+
2 (t)+A6dN(t)]U(t)

(4)
U(0) = 1 , 0 ≤ t ≤ T < +∞

where the coefficients A1, A2, . . . , A6 are bounded, constant adapted pro-
cesses.

The derivation of the unitarity conditions depends on the linear indepen-
dence of the stochastic differentials which is established in Section 4.

For an operator K we denote its adjoint by K∗ while its real part is
Re K = K+K∗

2
.
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2 Necessary and sufficient unitarity conditions

In this note we suppose that equation (4) has a solution, defined as a quadratic
form on the exponential vectors and we also assume that the expression

〈U(t)ψ(f), U(t)ψ(g)〉

has a meaning as a quadratic form on the exponential vectors. Under these
assumptions we study under which conditions on the coefficients of equation
(1.4), the solution of this equation is unitary, in the sense that the identity
between quadratic forms on the exponential vectors

〈U(t)ψ(f), U(t)ψ(g)〉 = 〈ψ(f), ψ(g)〉

takes place.

Proposition 1 The solution U of (4) is unitary if and only if

A1 + A∗1 + A2A
∗
2γ = 0 (5)

A2 + A∗3 + A4A
∗
22γ + A2A

∗
6γ = 0 (6)

A4 + A∗5 + A4A
∗
62γ = 0 (7)

A6 + A∗6 + A4A
∗
44γ + A6A

∗
6γ = 0 (8)

and
A∗1 + A1 + A∗3A3γ = 0 (9)

A∗3 + A2 + A∗3A6γ + A∗5A32γ = 0 (10)

A∗5 + A4 + A∗5A62γ = 0 (11)

A∗6 + A6 + A∗5A54γ + A∗6A6γ = 0 (12)

Proof : U is unitary if and only if for each t ∈ [0, T ], U(t)U∗(t) =
U∗(t)U(t) = 1. Since U(0) = U∗(0) = 1, U(t)U∗(t) = 1 ⇔ d(U(t)U∗(t)) =
0 ⇔ dU(t) · U∗(t) + U(t) · dU∗(t) + dU(t) · dU∗(t) = 0 which by Itô’s table
(1.1) is equivalent to

(A1+A∗1+A2A
∗
2γ)dt+(A2+A∗3+A4A

∗
22γ+A2A

∗
6γ)dB(t)+(A3+A∗2+A2A

∗
42γ+

A6A
∗
2γ)dB+(t) + (A4 +A∗5 +A4A

∗
62γ)dB2(t) + (A5 +A∗4 +A6A

∗
42γ)dB+

2 (t)+

(A6 + A∗6 + A4A
∗
44γ + A6A

∗
6γ)dN(t) = 0 (13)
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By the linear independence of the stochastic differentials (see Proposition
38), (13) is equivalent to (5) – (8).

Similarly U∗(t)U(t) = 1 is equivalent to (9) – (12). �

Remark : By (6) and (10), A2 and A3 are either both zero or both nonzero.
The same is true, by (7) and (11), for A4 and A5.

Corollary 2.1: The solution U of

dU(t) = [A1dt+ A4dB2(t) + A5dB
+
2 (t) + A6dN(t)]U(t) (14)

U(0) = 1 , 0 ≤ t ≤ T < +∞
is unitary if and only if

A1 + A∗1 = 0 (15)

A4 + A∗5 + A4A
∗
62γ = 0 (16)

A6 + A∗6 + A4A
∗
44γ + A6A

∗
6γ = 0 (17)

A∗5 + A4 + A∗5A62γ = 0 (18)

A∗6 + A6 + A∗5A54γ + A∗6A6γ = 0 (19)

Proof : The proof follows from Proposition 5 by letting A2 = A3 = 0. �

Corollary: The solution U of

dU(t) = [A1dt+ A2dB(t) + A3dB
+(t) + A6dN(t)]U(t) (20)

U(0) = 1 , 0 ≤ t ≤ T < +∞
is unitary if and only if

A1 + A∗1 + A2A
∗
2γ = 0 (21)

A2 + A∗3 + A2A
∗
6γ = 0 (22)

A6 + A∗6 + A6A
∗
6γ = 0 (23)

A∗1 + A1 + A∗3A3γ = 0 (24)

A∗3A2 + A∗3A6γ = 0 (25)

Proof : The proof follows from Proposition 5 by letting A4 = A5 = 0. �

Remark : Conditions (21) – (25), for γ = 1, are well known (cf. [7])
and they are certainly satisfied if A1 = W−1

γ
, A2 = −L∗W , A3 = L, and

A1 = iH − γ
2
L∗L where L, W , H are bounded operators with W unitary

and H self–adjoint. For γ = 1 we obtain (3).
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3 Sufficient unitarity conditions

Proposition 2 Let L, H, W , M be bounded operators with H self–adjoint
and W , M unitary. Suppose also that

L∗(1−W ) +
√

2(1− Re W )1/2ML = 0 (26)

Then A1 = iH − γ
2
L∗L, A2 = −L∗W , A3 = L

A4 = −
(

1− Re W

8γ2

)1/2

MW , A5 = M∗
(

1− Re W

8γ2

)1/2

and A6 =
W − 1

2γ

satisfy (5) – (12). Therefore, the solution U of

dU(t) =
[(
iH − γ

2
L∗L

)
dt− L∗WdB(t) + LdB+(t)

−
(

1− Re W

8γ2

)1/2

MWdB2(t)+M
∗
(

1− Re W

8γ2

)1/2

dB+
2 +

W − 1

2γ
dN(t)

]
U(t)

(27)
U(0) = 1 , 0 ≤ t ≤ T < +∞

is unitary.

Proof :

A1 + A∗1 + A2A
∗
2γ = iH − γ

2
L∗L− iH − γ

2
L∗L+ (−L∗W )(−W ∗L)γ = 0

A2+A
∗
3+2γA4A

∗
2+γA2A

∗
6 = −L∗W+L∗+2γ

(
−
(

1− Re W

8γ2

)1/2
)
MW (−W ∗L)+

γ(−L∗W )
W ∗ − 1

2γ
= −L∗W + L∗ +

1√
2

(1− Re W )1/2ML+
L∗W − L∗

2
=

1

2
[L∗(1−W )−

√
2(1− Re W )1/2ML] = 0 by (28). (28)

Finally,

A6 + A∗6 + A4A
∗
44γ + A6A

∗
6γ =

W − 1

2γ
+
W ∗ − 1

2γ
+(

1− Re W

8γ2

)1/2

MWW ∗M

(
1− Re W

8γ2

)1/2

4γ
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+
W − 1

2γ

W ∗ − 1

2γ
γ =

Re W − 1

γ
+

1− Re W

2γ
+

1− Re W

2γ
= 0

thus proving (5) – (8).
The proof of (9) – (12) is similar. �

Remark : Equation (28) connects the linear case (20) with the non–linear
case (14). Several examples of L, M , W satisfying (28) are given in the
following corollary to Proposition 28.

Corollary 3.1: Let L, M , W , H be bounded operators with H self–
adjoint and M , W unitary. The solution U = {U(t) : 0 ≤ t ≤ T < +∞}
of each of the following initial value problems, with initial value U(0) = 1, is
unitary.

dU(t) = [iHdt]U(t) (29)

dU(t) =
[(
iH − γ

2
L∗L

)
dt− L∗dB(t) + LdB+(t)

]
U(t) (30)

dU(t) =

[
iHdt+

W − 1

2γ
dN(t)

]
U(t) (31)

dU(t) =
[
iHdt−

(
1− Re W

8γ2

)1/2
MWdB2(t) +M∗

(
1− Re W

8γ2

)1/2
dB+

2 (t)(32)

+W−1
2γ

dN(t)
]
U(t) (33)

dU(t) =
[(
iH − γ

2
|γ|2
)
dt− γeiθdB(t) + λdB+(t) (34)

− (eiθ−1)eiθ
4γ

λ
λ
dB2(t) + (eiθ−1)

4γ
λ
λ
dB+

2 (t) + eiθ−1
2γ

dN(t)
]
U(t) (35)

where θ ∈ R− {2kπ/k = 0,±1,±2, . . .}, λ ∈ C− {0}.

dU(t) =
[(
iH − γ

2

)
dt− eiθL∗dB(t) + LdB+(t)− (eiθ−1)

4γ
(L2)∗dB2(t) (36)

+ e−iθ−1
4γ

L2dB+
2 (t) + eiθ−1

2γ
dN(t)

]
U(t) (37)

where θ ∈ R− {2kπ/k = 0,±1,±2, . . .} and LL∗ = L∗L = 1.

Proof : The proof follows from Proposition 28 by taking
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(a) L = 0, W = 1

(b) W = 1

(c) L = M = 0

(d) L = 0

(e) L = λ1 , W = eiθ, M =
eiθ − 1√

2(1− cos θ)1/2λ

λ

λ
1

(f) W = eiθ1, M =
eiθ − 1√

2(1− cos θ)1/2
(L2)∗ �

4 Linear independence of the stochastic dif-

ferentials

Proposition 3 For each i = 1, 2, . . . , 6 let Ai = Âi⊗1 be a constant adapted
process acting on H0 ⊗ Γ(S+) and suppose that for all t ≥ 0

A1dt+ A2dB(t) + A3dB
+(t) + A4dB2(t) + A5dB

+
2 (t) + A6dN(t) = 0 (38)

Then
A1 = A2 = . . . = A6 = 0 (39)

on the exponential domain.

Proof : By (38), for all f , g ∈ S+, u, v ∈ H0, and t ≥ 0

〈u⊗ ψ(f), [A1dt+ . . .+ A6dN(t)]v ⊗ ψ(g)〉 = 0 (40)

By (2), (5) implies

〈u⊗ ψ(f), A1v ⊗ ψ(g)〉+ g(t)〈u⊗ ψ(f), A2v ⊗ ψ(g)〉+

f(t)〈u⊗ ψ(f), A3v ⊗ ψ(g)〉+ g(t)2〈u⊗ ψ(f), A4v ⊗ ψ(g)〉+

f(t)
2
〈u⊗ ψ(f), A5v ⊗ ψ(g)〉+ f(t)g(t)〈u⊗ ψ(f), A6v ⊗ ψ(f)〉 = 0 (41)
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Since, for each i = 1, 2, . . . , 6, 〈u⊗ψ(f), Aiv⊗ψ(g)〉 = 〈u, Âiv〉〈ψ(f), ψ(g)〉
and 〈ψ(f), ψ(g)〉 = exp(〈f, g〉) 6= 0, (41) implies

〈u, Â1v〉+ g(t)〈u, Â2v〉+ f(t)〈u, Â3v〉+ g(t)2〈u, Â4v〉+ f(t)
2
〈u, Â5v〉+

f(t)g(t)〈u,A6v〉 = 0 (42)

Taking f and g to be such that g(t) = 0 and f(t) 6= 0 we obtain

〈u, Â3v〉+ f(t)〈u, Â5v〉 = 0 (43)

for all u, v ∈ H0. Since f(t) can be fixed, while u, v are arbitrary, it follows
that 〈u, Â3v〉 = 〈u, Â5v〉 = 0 and so Â3 = Â5 = 0.

Similarly, if g is such that g(t) = 0 then

〈u, Â2v〉+ g(t)〈u, Â4v〉 = 0 (44)

from which we obtain Â2 = Â4 = 0.
Thus Âi = 0 and so Ai = 0 for all i = 1, 2, . . . , 6. �

Proposition 4 For each i = 1, 2, . . . , 6 and t ≥ 0, let Ai = {Ai(t) = Âi(t)⊗
1 : t ≥ 0} be an adapted process acting on H0 ⊗ Γ(S+) and assume that:
(a) The map t ∈ [0,+∞) → 〈u ⊗ ψ(f), Ai(t)v ⊗ ψ(g)〉 is continuous for all
u, v ∈ H0 and f , g ∈ S+.
(b) The map (v, g) ∈ H0 × S+ → Ai(t)v ⊗ ψ(g) is continuous for all t ≥ 0.
(c) For all t ≥ 0, u, v ∈ H0, and f , g ∈ S+ with Re f · Re g = 0, Im 〈u⊗ψ(f),
Ai(t)v ⊗ ψ(g)〉 = 0 for all i = 2, 3, . . . , 6.

Then

A1(t)dt+A2(t)dB(t)+A3(t)dB
+(t)+A4dB2(t)+A5(t)dB

+
2 (t)+A6(t)dN(t) = 0

(45)
for all t ≥ 0, implies

A1 ≡ A2 ≡ . . . ≡ A6 ≡ 0

on the exponential domain.

Proof : As in the proof of Proposition 38, in view of (45), for all f , g ∈ S+,
u, v ∈ H0, and t ≥ 0

〈u⊗ ψ(f), A1(t)v ⊗ ψ(g)〉+ g(t)〈u⊗ ψ(f), A2(t)v ⊗ ψ(g)〉
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+f(t)〈u⊗ ψ(f), A3(t)v ⊗ ψ(g)〉+ g(t)2〈u⊗ ψ(f), A4(t)v ⊗ ψ(g)〉

+f(t)
2
〈u⊗ψ(f), A5(t)v⊗ψ(g)〉+f(t)g(t)〈u⊗ψ(f), A6(t)v⊗ψ(g)〉 = 0 (46)

Allowing f , g to vary over continuous functions with compact support
contained in [0, t), (46) implies 〈u ⊗ ψ(f), A1(t)v ⊗ ψ(g)〉 = 0. By the
adaptedness of A1 and the totality of {u⊗ψ(f)/f continuous, sup pf ⊂ [0, t]}
in H0 ⊗ Γ(S+) it follows that Âi(t) = 0 and so A1 ≡ 0.

Allowing g to vary over continuous functions with compact support con-
tained in [0, t), and taking f such that Re f = 0 and f(t) 6= 0 we obtain
from (46), with A1(t) = 0,

i〈u⊗ ψ(f), A3(t)v ⊗ ψ(g)〉+ Im f(t)〈u⊗ ψ(f), A5(6)v ⊗ ψ(g)〉 = 0 (47)

By assumption (c) and the fact that Im f(t) = f(t) 6= 0, (47) yields

〈u⊗ ψ(f), A3(t)v ⊗ ψ(g)〉 = 〈u⊗ ψ(f), A5(t)v ⊗ ψ(g)〉 = 0

and so, as before, A3 ≡ A5 ≡ 0.
Repeating the above argument interchanging the roles of f and g we

obtain A2 ≡ A4 ≡ 0.
Finally, if we vary f , g over continuous functions such that f(t)g(t) 6= 0,

we conclude that A6 ≡ 0. �

Proposition 5 Let Ai = {Ai(t)/t ≥ 0} be, for each i = 1, 2, . . . , 6, an
adapted process in H0 ⊗ Γ(S+) such that
(a) For fixed f , g ∈ S+ and u, v ∈ H0 the map t ∈ [0,+∞) → 〈u ⊗ ψ(f),
Ai(t)v ⊗ ψ(g)〉 is continuous
(b) For fixed t ∈ [0,+∞) the map (v, g) ∈ H0 × S+ → Ai(t)v ⊗ ψ(g) is
continuous.

Then the stochastic differentials dt, dB, dB+, dB2, dB
+
2 , and dN are

linearly independent i.e.

A1(t)dt+ . . .+ A6(t)dN(t) = 0 for all t ≥ 0 implies A1 ≡ . . . ≡ A6 ≡ 0

on the exponential domain.

Proof : For all u, v ∈ H0 and f , g ∈ S+

〈u⊗ψ(f), [A, (t)dt+A2(t)dB(t) +A3(t)dB
+(t) +A4(t)dB2(t) +A5(t)dB

+
2 (t)
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+A6(t)dN(t)]v ⊗ ψ(g)〉 = 0

implies

〈u⊗ ψ(f), [A1(t) + g(t)A2(t) + f(t)A3(t) + g(t)2 + f(t)
2
A5(t)+

f(t)g(t)A6(t)]v ⊗ ψ(g)〉 = 0 (48)

Allowing f , g to vary over continuous functions with compact support
contained in [0, t) we obtain from (4.11) 〈u⊗ ψ(f), A1(t)v ⊗ ψ(g)〉 = 0. By
the adaptedness of A1 and the totality of {u ⊗ ψ(f)/u ∈ H0, f continuous,
sup pg ⊂ [0, t)} in H0 ⊗ Γ(S+) it follows that A1 ≡ 0.

Letting f , g vary over continuous functions with f(t) 6= 0 and sup pg ⊂
[0, t) (48) implies

〈u⊗ ψ(f), [f(t)A3(t) + f(t)
2
A5(t)]v ⊗ ψ(g)〉 = 0

and so
〈u⊗ ψ(f), [A3(t) + f(t)A5(t)]v ⊗ ψ(g)〉 = 0

Thus
〈u⊗ ψ(f), [A3(t)dt+ f(t)A5(t)dt]v ⊗ ψ(g)〉 = 0

i.e.
〈u⊗ ψ(f), [A3(t)dt+ A5(t)dB

+(t)]v ⊗ ψ(g)〉 = 0 (49)

By a totality argument and by the arbitrariness of t, (49) implies

A3(t)dt+ A5(t)dB
+(t) = 0 (50)

But dt, dB, dB+ and dN are known to be linearly independent (cf. [8]).
Thus (50) implies A3 ≡ A5 ≡ 0.

Similarly A2 ≡ A4 ≡ 0.
Now letting f , g be such that f(t)g(t) 6= 0 we conclude that A6 ≡ 0.

�Remark : A formal proof of the linear independence of dt, dB, dB+, dB2,

dB+
2 , and dN can be obtained with the use of Itô’s table as follows: suppose

that
A1dt+ A2dt+ A3dB

+ + A4dB2 + A5dB
+
2 + A6dN = 0 (51)

Multiplying (51) from the left by dB we obtain by (1)

A3dt+ 2γA5dB
+ + γA6dN = 0 (52)
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By the linear independence of dt, dB, dB+, and dN (52) yields

A3 ≡ A5 ≡ A6 ≡ 0

Multiplying (4.14) from the right by dB+ we obtain

A2dt+ 2γA4dB = 0 (53)

As before, (53) yields A2 ≡ A4 ≡ 0.
Finally A1dt = 0 implies A1 ≡ 0.
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