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Extensions of Spaces With Cylindrical Measures
and Supports of Measures Determined by the Lévy Laplacian
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ABSTRACT. Extensions of noncountably additive (cylindrical) measures are described, and examples of Hilbert
supports of the Lévy—Gauss measure are given.
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Recently, the operator known as the Lévy Laplacian has become popular thanks to the discovery [1, 2] of
the equivalence between the Yang-Mills equations and the equation with this Laplacian. The authors [3-6]
described a new approach to the study of differential equations with the Lévy Laplacian; the approach
was based on the application of the Lévy-Gauss measure, which was introduced in these works as a
noncountably additive cylindrical Gaussian measure defined on some nonseparable Hilbert space and
admitting no countably additive Hilbert extensions (because the space was nonseparable); all definitions
will be given later. The question on the existence of a Hilbert support for the Lévy-Gauss measure
remained open.

In this paper, extensions of noncountably additive (cylindrical) measures are systematically described
and examples of Hilbert supports for the Lévy—Gauss measure are given.

§1. Preliminaries

A measurable space is a pair ({2, %), where Q is a set and 2 is an algebra of its subsets (this definition
differs from the standard one). A measure on (£2,2) (or, shorter, on Q, or on ) is a finitely additive
complex-valued bounded function on .

Let (2;,%;) with j = 1,2 be measurable spaces.

Definition 1. The space (Q2,%;) is called a (measurable) eztension of the space (Q,,%,) if

(a) @ C Qy;
(b) % = {ANQ: A € M};
(c) [AN2;, =BNQy| = A=B forall A,Beq.

Remark 1. If (£;,2,) is isomorphic to a measurable space (§13,3), then any extension of the space
(€23, 93) is also called an extension of (£2;,2;).

Remark 2. Conditions (b) and (c) determine an isomorphism of the algebras 2; and 2;; we call it
canonical.

Definition 2. Measurable spaces (;,%;) with 7 = 1,2 are called versions of each other if there
exists a measurable space that is an extension of each of them.

Note that, by Remark 2, the algebras 2; and 2, are then (canonically) isomorphic.
Throughout the following, the field of scalars is assumed to be the field of real numbers.
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Example 1. Consider some vector space E and the vector space G of linear functionals on E. For each
subset Gy € G, we define A(E, Gy) as the algebra of all Gy-cylindrical subsets of E; thus A € A(E, Go)
if and only if there exist a positive integer n, elements ¢,,...,9n € Go, and a Borel subset B of the
space R™ such that A = {z € E: (g1(z), ..., gn(z)) € B}. For each subset Ey of E, A(G, Ey) is the
algebra of all Ey-cylindrical subsets G; it is defined similarly.

Consider a vector space E. Let G, where j = 1,2, be vector spaces consisting of linear functionals
on E and being in natural duality with E (this means that for any nonzero = € Ey there exist g; € G;
such that g;(z) # 0 for j = 1,2). Suppose that G is some vector space of linear functionals on E that
contains the set G; UG2. Then the measurable space (G, (G, E)) is an extension of each of the spaces
(Gj, A(Gj, E)); therefore, the spaces-(G;,%(Gj, E)), j = 1,2, are versions of each other.

We say that a measure space is a set (£, 2, v}, where (2, 2) is a measurable space and v is a measure
on A (this definition also differs from the standard one).

Definition 3. Suppose that (;,;, v;), where j = 1,2, are measure spaces. The space (£, Az, 1,)
is called an eztension of (U, %1, 1) if (Q2,2A2) is an extension of the measurable space (2, ) and
mA = 1n(ANQ,) for each A € A, (this equality justifies the term eztension of a measure space). I
(2,22, 12) is an extension of (23, Ay, 1), then v, is called an extension of u.

Note that in Definition 3 v, is the image of 1 under the canonical embedding F': 2; — (1;.

Definition 4. Measure spaces (Q;,?;, v}, j = 1,2, are called versions of each other if they have a
common extension; the measures v; and v, are then also called versions of each other. If, in addition,
tq is countably additive, then ); is called a support of 1.

Note that it may happen that Q2 is a support of vy, but nevertheless 2 N2 = @.

Remark 3. If measurable spaces (2;,2;) with j = 1,2 are versions of each other, then the alge-
bras 2; and 9 are canonically isomorphic, and therefore, for any measure v, on 2;, there exists a
(unique) measure v, on 2, such that the spaces (2,21, 11) and (Q2, %z, v2) are versions of each other
(v2 is the (canonical) image of »; under the corresponding isomorphism). Thus € is a support of the
measure v, if the canonical image of this measure is a countably additive measure on .

§2. Countably additive extensions of measures

Theorem 1 (cf. [7]). Any measurable space (2, A) has a (measurable) extension (23, ;) such that
is a support of every measure on (2, ).

Proof. Let F be the set of all functions that are defined on the set of all subsets of Q@ and range
in {0,1}, and let Q; be the set of all functions that are defined on F and take values in {0,1}. We
denote the set of characteristic functions of all sets from 2 by Fy (thus Fo C F) and the algebra of
all subsets of 2; that is generated by sets of the form {a € f; : a(f) < 1} with f € 7 by ;. The
map € 3z [F 3 fw— f({z})] € Q is an embedding of Q into Q;. Let (2',2') be the image
of (,2) under this embedding. Then (£,,%;) is an extension of the space (f¥',2') and therefore,
of the space (2,2). If v is a measure on 2, then its image in (;,2,;) is countably additive by the
Daniel-Kolmogorov theorem.

Next, for a vector space E, we write E* ( E') to denote the algebraically (topologically) dual space,
i.e., the space of all linear (linear continuous) functionals on E. If E is a vector space, G is a vector
space of some linear functionals on E, G¢ C G, and Ey C E, then a Gy-cylindrical measure on E is an
arbitrary measure on A(E, Gy) whose restriction to any algebra A(E,T) of sets with finite T C G, is
countably additive; similarly, an Ey-cylindrical measure on G is an arbitrary measure on (G, Eq) whose
restriction to any algebra (G, T') of sets with finite T C Ej is countably additive. If E is a vector space,
Ey, C E, spaces G; C E* with j = 1,2 separate points in E (i.e., are in canonical duality with .E),
and v is an Ej-cylindrical measure on Gy, then the canonical image of this measure in A(Gz, Eo) is
an Ej-cylindrical measure on G (and is a version of the measure v). O
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Theorem 2. Suppose that E is a vector space and G is a vector space of some linear functionals on E
that separate points in E. Let E, be a linearly independent subset of E such that g, = go whenever
g1, 92 € G and g\(z) = ga(z) for all £ € E,. Then the vector space Gy of all real-valued functions f
on Ey for which the sets {z € Eq : f(z) # 0} are at most countable is a support of any Ey-cylindrical
measure on G. '

Proof. Let G; be the vector space of all (real-valued) functions on Ey. Then Ep can be consid-
ered a subset of each of the spaces G} and G§, which allows us to define the algebras %(G,, Ey) and
A(Go, Eo) of sets. Since (G, (G, Ey)) is an extension of both measurable spaces (Go, %(Gq, Ey)) and
(G-' , A(G, Eqo )) , it follows that these two spaces are versions of each other. If vy is the canonical image in
A(Go, Eo) of an Ey-cylindrical measure » on G, then vy is countably additive by the Daniel-Kolmogorov
theorem. This completes the proof of Theorem 2. O

Note that G, is also a support of any FEy-cylindrical measure on G, because G; D Gq. _
Recall that if E and G are vector spaces, G C E*, Eq C E, and v is an Ey-cylindrical measureon G,
then the Fourier transform of v is the function Fv on E, defined by

Fuy(z) =/ei’(") v(dg).

It is known [7] that if Ey is a vector subspace of E, then the function Fv uniquely determines the
measure V. .

Recall also that if E, is a vector subspace of E, then an Ey-cylindrical measure v is called Gaussian
(with zero mean) if :

Fy(z) =exp (— %b(z)) )

where b is a (nonnegative definite) quadratic form on Eqg (the correlation functional associated with the
measure v), i.e., b(z) = (Bz)(z), where B is a linear map of Ey into G called the correlation operator
(or covariance) of the measure ».

Remark 4. Suppose that G; and E are vector spaces, Gj C E*, each G; separates points in E,
and v; are E-cylindrical measures on G; (j = 1,2). These measures are versions of each other if and
only if Fvy = Fusy.

Thus the Fourier transform of an E-cylindrical measure v uniquely determines all E—cylihdrical mea-
sures that are versions of v.

Theorem 3 (cf. [8]). Suppose that Hj, j = 1,2, are Hilbert spaces, H; is a dense vector subspace
of H,, and the canonical embedding p: Hy — H, is Hilbert-Schmidt. Let vy be an Hj-cylindrical
measure on H, with a continuous Fourier transform. Then Hj is a support of the restriction of v, to the
algebra of p*H}-cylindrical subsets of Hy (which is a subalgebra of A(H;, H1)).

Proof. It suffices to show that the H}-cylindrical measure on H, that is the image of v, under p is
countably additive. But F(vp~!)(z) = Fv(p*z) and since Fv is continuous, it follows that the function
F(vp™!) is continuous with respect to the Sazonov topology. 0O

Remark 5. For a Gaussian measure v, Theorem 3 can be strengthened. Namely, H; is then a support
not only of the restriction of the measure v but also of the measure itself. Indeed, if v is Gaussian, then
every functional f € H} can be (uniquely) extended to a linear measurable functional on (Hz,0.);
here o, is the o-algebra where the Lebesgue extension of the measure v = vp~! is defined. Moreover,
each linear measurable functional on (Hz,0,) can be obtained in this manner. Next, let H3® be the
set of representatives of all equivalence classes of measurable linear functionals on (H3,0,). Taking into
account the preceding, we can assume that HJ® = H{; this means that (H,, A(H2, HJ*)) is an extension
of (Hy,A(H,, H])). The canonical image of the measure v; in A(H:, HJ*) is countably additive (it
coincides with the restriction of the Lebesgue extension of v, to 2A(H,, Hj*)), which implies that H; is
a support of the measure v, .

The following example can be viewed as standard.
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Example 2. Consider the space H; of all absolutely continuous functions ¢ on [0, 1] that vanish at
zero and have square integrable derivatives; the norm on H, is defined by

el = j ' () d

(i.e., Hy = W}[0,1]). Let v be the canonical Gaussian measure on H), i.e., the measure such that

Fuly) = exp(~5llel)-

Then the standard Wiener measure on C|0, 1] is a (countably additive) extension of v, as follows from
Remark §, because the space of measurable linear functionals on C[0, 1] equipped with the Wiener measure
is isomorphic to the space of measurable linear functionals on Hy = £5(0,1) equipped with the extension
of v described in Remark 5.

According to Theorem 3, a cylindrical measure can have a “Hilbert support.” Below, we define this
notion and state a related (negative) result.

Suppose that E is a normed space, G C E* is a vector space (separating points in E), and v is an E-
cylindrical measure on G with continuous Fourier transform (defined on E). An (E-) Hilbert version
of the measure v is a Q-cylindrical measure vy on some Hilbert space @ (which is identified with its
strong dual) such that vg has a continuous Fourier transform and if v; is a version of v defined on the
strong dual Ej of E, then there exists a continuous map P: Ej — @ with dense range such that the
measure vQ coincides with the image of v under P.

If G is a vector space and v is a G-cylindrical Gaussian measure with a nondegenerate correlation
functional, then an arbitrary (G, || - ||s)-Hilbert version of vg, where || - ||y is the norm on G generated
by b, is called a Hilbert version of v; if the measure vg is countably additive, then Q is called a Hilbert
support of v,

Proposition 1. If G is a vector space, v is a G-cylindric Gaussian measure with a (nondegenerate)
correlation functional b, and the pre-Hilbert space (G, || - ||s) is nonseparable, then v has no Hilbert
support,

This follows from the criterion for countable additivity of Gaussian measures on Hilbert spaces.

§3. Lévy—Gauss measures

Suppose that E is a (separable) locally convex space, || - || is a continuous Hilbert norm on E, and H
is the completion of the space (E, || - ||); thus E ¢ H = H' C E' is a rigged Hilbert space. Next,
let b = (en) be an orthonormal basis in H such that it consists of elements of E and for any bounded
sequence (cn) of couiplex numbers the series ) cne, convergesin C® Ej . For every dense subset A of

the reals, by S§* we denote the linear hull in C® E} of {Z e, } A€h equipped with the inner product

(+ - )pL defined by
(:A; Cnny ) dnen) T Jlim ;1; D eids;

n=}

in what follows, we call it the Lévy scalar product. The existence of the limits of ¢,, = e**'" and d, = e**"
is proved as follows:

n

1 - 1 = . :

im — d: = lim — (AL —A2)5

Jm o 2 i = lim 3 e
1= 1=

1 ) :
= lim —(1 — ™M=y — ¢iM-2ahy=1 — ¢ A # Az

n==00 1



Let S} denote the vector subspace of Sf* consisting of all elements of Sf* having the form }" aje;,
where A; € R! (thus S{* = C® SP); we assume that S} is equipped with the inner product induced by
(- - )pL (we denote it by the same symbol).

Consider Sy = |J, 5P, where the union is over all countable dense subsets of R'. The inner product
(- -)pL determines natural dualities between Sj* and S and between Sj and S,. In addition, each
of these spaces is dual to E; the duality is induced by the duality (unrelated to those just mentioned)
between E and E', because E' O S;. Thus we can assume that E C Sy, E C (5)*, S, C 57, and
S c (8M)*. Since EN Sy = {0} (C S;), the linear hull of the vector spaces E and S in S is their
direct sum; we denote it by K. Similarly, for the space Sy, weset K =E® Sy (C 53).

fz=2z+2z2€K (CS5}), z1 €K, 22 € S5, and a € S, then (z, a) = a(21) + 22(a).

The situation considered above can be described by the relations

E'>HDE, E>5, EoS=KC5D2S525;
similar relations hold for Sp.

Definition 5. The Lévy-Gauss measure corresponding to a basis b and a countable dense subset
A C R? is the Gaussian S{-cylindrical measure (defined on an arbitrary space dual to S, e.g., on E, or
on S, or on K) whose correlation functional coincides with the inner product (- - )pr . The Sj-cylindrical
Lévy—Gauss measure v{;L is defined similarly (we sometimes denote both measures by vpy,).

The origin of the Lévy-Gauss measure is described below.
Theorem 4. Suppose that A is a countable dense subset of R! and

(=~}

a) = Zcosln-e,.

n=1
for each A € A. Then the vector space _.5—'2 of all sequeﬁces
(ajaA; :j €N, Aj €A, E_—;<m)
=1 7 .
(S is canonically embedded in this space) is a Hilbert support of the measure vi} ; the Hilbert norm
on S, is defined by

o 2
Iesar) )P =D =5
=17

Theorem 4 follows from Theorem 3.

Remark 6. The analog of Theorem 4 for the measure v}, is invalid: by Proposition 1, this measure
has no Hilbert support.

On the other hand, the following proposition is valid.
Proposition 2. Suppose that A € R! and S} is the vector space of all sequences
(aja)t; :7€N, a; € Rl, /\J' € Rl),

be represented as a vector subspace of S§ by virtue of the relation

[==] [= =] n
(Z aja,\,.) (Z d_,—a)\l.) = Z ajdj(a;, ax; )pL-
i=1 j=1

i=1
Then S is a support of the measure v5; .

Proposition 2 follows from Theorem 2. _
If E is represented as a vector space of some functions (on a domain in Euclidean space), then S,

=A T
and S, can be represented as vector spaces of (some) distributions.
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Example 3. Suppose that E = W}[0, =}, H = L3(0,7), and, for each k € N, ex € E and ex(t) =
cx sinwkt. Consider the vector subspace

E, :{Z‘Bja'\"’ JEN, A €A, Z]zﬁf <00}

of H (we use the notation and assumptions of Theorem 4).

Let || - |1 be the Hilbert norm on E; defined by || - |1 = “Zf__lj!ﬁf" The inequality 3 287 < oo
implies the convergence of the series ) |8;| and therefore, the inclusion E; C E; in addition, E; is
contained in the completion S of the space (S, || - |lpL), and the canonical embedding E; — S is
Hilbert-Schmidt; thus S is embedded (by a Hilbert-Schmidt map) in a Hilbert space Ej, which is a

support of the measure vp;, (actually, the space E] is isomorphic to the space F: ). Thus the support
of the measure vp, can be represented as the dual space of a subspace E; of the space E'; this space
consists of some distributions on [0, 7], so the elements of the subspace can also be called distributions.

§4. Lévy Laplacians, Lévy traces, and related objects

This section describes the origin of the Lévy—Gauss measure.

Let @ be the vector space of twice Fréchet differentiable functions on a Hilbert space. Then the second-
order differential operator A! on & specified by a linear (continuous) functional I on the space L(H) of
linear continuous operators in H is defined by (A’f)(z) = I(f"(z)). If I(A) = tr(BA), where B is a
trace class operator in H, then A! is called the Volierra-Gross Laplacian; if the restriction of [ to the
set of operators of the form a«-Id+D (where Id is the identity map, @ € R!, and D is a compact map)
is defined by (o -Id+D) = a, then A! is called the Lévy Laplacian.

We can similarly specify (second-order) differential operators on spaces of functions defined on dense
subsets of a Hilbert space.

Let E, H,and b be the same as in the preceding section, and let & be the vector space of functions on E
twice Gateaux differentiable at each point. Consider the linear functional ! defined on some subspace Ly
of the space of all linear maps from E into E' by the formula

o 1g
1(4) :nlix.nm;Z{Ae,,cJ),

=1

it is assurned that Ly consists of all operators for which the limit on the right-hand side in this equation
exists. The functional on Lo defined in this way is called the Lévy trace and denoted by trpr, (of course,
the Lévy trace and its domain depend on the choice of the basis b). In what follows, we denote the Lévy
Laplacian by Apr; thus Apy f(z) = trpy f(z) for f € . To solve the equation

a 1
Ef = z0eLf

with respect to the function f: [0, 00) x E — R! by the method of Fourier transform (for the first time,
this was done in {3]), it is useful to apply a fundamental solution of this problem, i.e., (some) solution of
the equation

av(t) 1
a2
for a function v of real argument ranging in a space of (some) measures on E. It can be shown that
these measures are G-cylindrical for a suitable space of linear functionals on E, and the operator Apg is
defined as the pseudodifferential operator corresponding to the Lévy inner product with the sign reversed.

Thus the Fourier transform reduces (1) to the equation

Appy(t) (1)

(1)
at

= —5(, )0



(¥ = Fv) for a function ranging in the space of functions on S}. The solution of the Cauchy problem for
this equation with initial data (0, 1) is the function specified by H(t)(z) = e~ 3(=:#}*L; but H(2)(-) is just
the Fourier transform of the Lévy—Gauss measure.

Let us make several additional remarks about the relation between the usual (Volterra~Gross) Laplacian
and the Lévy Laplacian and between ‘ntegration with respect to the Lévy-Gauss measure treated as an Sp-
cylindrical measure on E and integration with respect to its countably additive version, which is a measure

on oy .

Let ¢ be a function on S{ that is the Fourier transform of some S} -cylindrical measure v on E (we
are interested in the case where v is the Lévy~Gauss measure). As was mentioned above, on each space
dual to S we can then define exactly one S}-cylindrical measure with the same Fourier transform; it
is natural to apply the term Lévy—Gauss measure to these measures too. On the other hand, if of is
the o-algebra of subsets of S} that is generated by E-cylindrical sets, then, as can readily be verified,
og coincides with the o-algebra generated by (S{)'-cylindrical sets. Thus, the Fourier transform of a
countably additive measure on g can be defined as a function on either E or (S{)'; the uniqueness of
a measure with a given Fourier transform implies that the Fourier transform of the countably additive
measure defined on the algebra of E-cylindrical sets (the transform is a function on E) uniquely determines
a function on (S&) whose (inverse) Fourier transform coincides with the restriction to (S, (S2)') of
this measure extended to o .

Suppose that v is a countably additive measure on g, Fgv is the Fourier transform of its restriction
to A(SA, E) (so Fgv isafunctionon E), and Fsv is the Fourier transform of its restriction to A(S}, S3)
(so Fsv is a function on S{); suppose also that

[ el ndz) < o0

and A is the Volterra-Gross operator on the space of functions on S{. Then the functions A(Fsv) and
ApL(Fgv) are everywhere defined and can be expressed in terms of each other.

Now note that if a function f defined on a vector space G dual to (some) vector space Z is a limit
function for a uniformly convergent sequence of Z-cylindrical functions, then on any other vector space G,
dual to Z there exists a function that is the uniform limit of “the same” sequence of Z-cylindrical functions.
(A function f on a space G dual to Z is called Z-cylindrical if there exist n € N, z;1,...,2, € Z, and
w:R® — R! such that fle)= (P((gle): R zn))'

Thus, to integrate a function that is defined on E and is the uniform limit of a sequence of S}-
cylindrical functions with respect to the Lévy-Gauss measure, we can find a function that is defined on
the support of the Lévy-Gauss measure and is the limit function for “the same” sequence of Sp-cylindrical
functions and declare the integral of this function with respect to the (countably additive) Lévy—Gauss
measure to be the integral of the original function with respect to the (non-countably additive) Lévy—-Gauss
measure. It can be verified that this definition is independent of the choice of the convergent sequence
of cylindrical functions. Of course, instead we could integrate every cylindrical function from the initial
sequence with respect to the noncountably additive Lévy—Gauss measure, prove that the sequence of the
obtained integrals converge, and declare its limit, which does not depend on the sequence of cylindrical
functions, to be the integral of the limit function with respect to the noncountably additive measure.
Nevertheless, inclusion of the Lévy—Gauss measure in the standard Lebesgue theory is useful.

Note that the integral with respect to the Lévy-Gauss measure of a function that is the Fourier transform
of a countably additive measure on (S, o) can be determined via the Parseval identity; this identity is
proved with the use of the notion of support of a Lévy—Gauss measure.

To conclude, we give several formulas related to the Lévy Laplacian. We use the notation of §3.

(1) For a linear map A: E — E', the Lévy-Fredholm determinant is detp, A = e'™PL!"4_ [t can be
shown that if this determinant exists, then

T . 1/n . _
c%’fitfl_ﬂlingo(det|fie,(ek)[) , 5Lk=1,2,...,n
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(2) If A is a trace class operator in S} and A* is the map from E into S} C E' specified by

(Az)(z) = (=, A*z)pL, then trp;, A* = tr A (this formula was implicitly used above) and detp;, A* = det 4
(the right-hand side is the usual Fredholm determinant).

(3) The Lévy-Fredholm-Carleman determinant can be defined similarly.
(4) ¥ a,b€ S} C E', then

/Ea(z)b(m) vpL(dz) = (a, b)pL.
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