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1. Introduction

We introduce the notion of quantum independent stationary increment processes
on superalgebras and prove a reconstruction theorem which establishes a one-to-
one correspondence between these processes and their infinitesimal generators. In
particular our result provides a new technique for constructing continuous tensor
products of Z,-graded »-algebras which is not based on the use of representations
of the canonical commutation (or anti-commutation) relations. We also obtain a
quantum version of the Lévy-Khintchine formula and a full classification of the
“continuous trajectories™ quantum processes with independent stationary additive
increments. Finally we prove that, both in the boson and the fermion case,
solutions of quantum stochastic differential eqnations on the Fock space over
L*(R,) give rise to quantum independent stationary increment processes in the
sense of the previously developed theory. We derive a formula for the generators of
these processes. ,

In classical probability theory a stochastic process, indexed by a set 7, with
values in a measurable space (E, &), is a family (X,),. of measurable functions
X,:Q—E defined on a probability space (2, U, P). If E is a complete metric space
with countable basis of its topology and & is the Boolean algebra of Borel subsets
of E then there is a one-to-one correspondence between measurable functions X:
- E and normal -algebra homomorphisms X : L= (E)— L® (2) which is given by
X(f)=f-X, fe L®(E); see [2, 17]. This establishes a one-to-one correspondence
between stochastic processes (X,),.r with values in E and families of normal
x-algebra homomorphisms (X,),.r from L=(E) to L=(2) where L®(2) is also
equipped with a normal state, still denoted by P, corresponding to the probability
measure F on £, i.e.

P(Fy=[dP{w)Flw); FelL®{Q).
Q
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_i‘a. *-mEndH.m.m L=(Q) and L=(E) both are commutative. This justifies the fol-
owing definition. > quantum stochastic process over a *-algebra # is a triplet
(A (J)ier P) consisting Sq. an other *-algebra &, homomorphisms j,: # ./, and
astate @ on .&f .wﬂ:m definition differs from the one in [4] only in that, in the w:,wmgﬁ
paper, we work in a purely algebraic category (thus omitti _ iti
e e o 3 or o gory { mitting any conditions of
Hwo mﬁm@dam % in our awmsaos plays the role of the algebra L®(E) in the
considerations .m,co<o and E is the “state space” of the process. The case in which
ma state space is t-dependent {i.e. each random variable X, has its own state space
5; can .cm%mm&m unacmma to the preceeding one by taking disjoint sums. Similarly
e case of a t-dependent algebra %, can be reduced iti ing
the case o uced to our definition by taking
; Let (F/,F,)bea EE.E of pre-closed operators defined on a common invariant
ense subspace D of a Hilbert space # and such that, for each ¢, F {is the adjoint of
Mw onﬁq D (for example 5 is the Bose Fock space over LYR,); for t=0
T=a"(0,0h FH.QQS._: where a' and a denote the creation and mnum::mﬁﬂon_
Operators resp; D is the space generated by the number eigenvectors). Let &/ be the
@oi_soaﬁ algebra mm:mamﬁma by all the F{, F,, te T, and denote by C{x*, x the
menoWé algebra in two non-commuting indeterminates x* and x. If im define
bﬁ. ﬁ {x* x>ouf wom.\ teTtobe Sn.woBoBoHdEmB given by j,(x)=F, then for any
Moﬂwie. on cﬁ the m:Emw (4, ], @) is a process over C{x*, x> in our sense. In the
ing, when no confusion can arise, we shall ref i 1 as®
A er to this process simply as “the
If (X,) e, is real-valued stochastic process the random variables X, =X,— X
S0 t k2l

< .

manr are oM:&. the increments .Om the process. More generally, we call a stochastic
process (X, S%xma by pairs (s,t)eR%, s<t, with values in a topological
semigroup G an increment process if

»N\.hmmﬁ“um_.: r<s<t C.:
Xy=e (1.2)

Ernﬁ ¢ denotes the unit element in G. In order to translate the properties (1.1} and
{1.2) into the language of the corresponding quantum stochastic process A.hsﬁbv
X, P) over L=(G), notice that for any measurable set E the algebraic SEOM
product L*=(E)® L*(E) can be embedded into L*(E x E) by the formula (f® g)
(a, b)=f(a)g(b), a,be E. For a semigroup H, let # (H) be the -algebra of ﬂ
ooM,_me-mmEna ?:nmﬂsm on H. Denote by 4: L™ (G)—=L*(G x G) the Wmaomosmno
L AQQ.V. of the mapping which maps an element fe#(G) to the clement
AfeF (G x G) given by 4f(x, y)=f(x)). Let fe L* (G} and assume that 4fis an
element of L®(G)® L®(G). Setting j, = X, we have

Je NN w)=(s ®Ja) o 2N, @), r<s<t
Jue m.\.v ﬁaw H,wﬁmv
If we write j, *j, () ={j s @ ju) o 4(w, w) the substitutes for equation (1.1} and (1.2)

are ]
\wu*:m_mh”u_._..uu w.Am..Am A..—.wv

Quantum 1depelletit LI 2o 7 R

j,=o1 (1.4)

where & is the linear functional given by & f=f(e). It is shown in [1] that Z(G)=
A" HF (G R F(G) is a sub-x-algebra of & (G) and that 4 maps #(G) to
R(G) ® R(G). Moreover, A(G) is the space of all coefficient functions of the finite-
dimensional representations of G. The tripiet (#(G), 4, 8) is an example of a
coalgebra and the coalgebra structure of #(G) together with its =-algebra structure
is an example of a =-bialgebra, which means that 4 and ¢ are -algebra homomor-
phisms. If G is a locally compact abelian group or compact group we can
substitute for L=(G) the sub-#-bialgebra of Z(G) consisting of all continuous
functions in #{G) without Joosing any information on the original stochastic
increment process (X ).

Hopf algebras, as considered in [1,21], and x-bialgebras have in common that
they both are bialgebras. But instead of the Hopf algebra antipode a =-bialgebra
possesses an involution; cf. [22]. If # is an arbitrary =-bialgebra and (j,)is a
quantum stochastic process over # indexed by pairs (5, t)} € R2,s<t, the conditions
(1.3)and (1.4) make sense, and we call ( j,,) a quantum increment process over & if it
satisfies (1.3) and (1.4).

A classical stochastic increment Process (X,) is called an independent
increment process if the random variables X, ¢ o -s X, .. 8re independent for
all £, < ... <lys1s ie.

PR nlf) - K ()
PR () - P OB

forallf; < .. - <ly+1 fir - fue LZ(G) The distributions P, of X constitute a
convolution evolution of probability measures on G. On the other hand, a given
convolution evolution of probability measures on G givesrise to a projective family
of probability measures which by the Kolmogorov reconstruction theorem de-
termines a stochastic process. This process yields an independent increment
process.

For the definition of a quantum independent increment process condition {1.5)
easily can be transferred. But we add the condition of physical independence, that is
we require the algebras () and j;.(#) to commute if (s, £} and (s, t') are digjoint
intervals in R,. (In a graded version we consider graded commutators.) The latter
condition of course becomes trivial in the commutative case. We prove a recon-
struction theorem for quantum independent increment processes over a (graded)
«-bialgebra # which as in the classical case establishes an up to equivalence one-to-
one correspondence between such processes and convolution evolutions of states
on @. In the case when the increments are also siationary the convolution
evolution becomes a convolution semi-group. The convolution semi-groups {@,} of
states on a =-bialgebra which are pointwise continuous at the origin are exactly
those of the form

(1.5)

P, =CXDy ()

where exp, denotes the exponential with respect to convolution and y i a
conditionally positive, hermitian linear functional on # vanishing at the identity
[197. Thus, by our reconstruction theorem, the quantum independent stationary
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increment processes ( j,) over # (such that j,, converges to juinlawassttiareup to
equivalence in one-to-one correspondence to linear functionals v on & of the above
type. <

We give two non-commutative examples. If ¥ is a complex vector space with a
selfinverse antilinear mapping v—»>v* the tensor algebra 7 (V) can be turned into a
«-bialgebra (cf. the notion of the enveloping Hopf algebra of a Lie algebra [16]).
Quantum independent stationary increment processes over F (V) can be regarded
as processes of operators F(r), t 20, on a Hilbert space which, in a sense made
precise in Section 4 of this paper, have independent stationary additive increments
F(1)— F(s). We prove that F(t) must be a quantum Brownian motion in the sense of
[9] if the fourth moments of F(t) are of order o(f). This result is related to the
quantum Lévy martingale representation theorem of [3]. We also derive a formula
for all conditionally positive, hermitian linear functionals on 7 {1}, thus establish-
ing a quantum version of the Lévy-Khintchine formula.

The other example is given by the unitary solutions of quantum differential
equations as introduced in [6, 14]. In our example these solutions are families U,
¢ 2 0, of unitary operators on C* ® I'L*(R,)) where de N and I'(L2(R.)) denotes
the Bose or the Fermi Fock space over L3(R,). We prove that U(t) gives riseto a
quantum independent stationary increment process over a {graded) »-bialgebra
which can be looked upon as the non-commutative analogue of the coefficient

algebra of the group of unitary 4 x d-matrices. We compute the generators of these
processes.

2. Preliminaries

All the vector spaces and algebras will be over the complex numbers. The algebras
are assumed to be associative and to have a unit element 1. An algebra homomor-
phism maps 1 into 1.

Denote by Z, the field Z/2Z with two elements 0 and 1. A graded vector space V'
is a vector space together with a pair (VO V') of subspaces such that V
— V0@ V'. The elements of V© are called even and the elements of V! are called
odd. If v is an element of V', 1e Z,, then v is called homogeneous and 1 is called the
degree of v. We write 1=g(v). If V is any vector space one always can define the
trivial graduation (¥°, ¥'}on Vby ¥°=V¥, V! ={0}. We consider the vector space
C of complex numbers as a graded vector space with the trivial graduation. If ¥
and W are graded vector spaces the space A(V, WY of all additive mappings from V'
to W becomes a graded vector space by the definition

AV, Wy={Re A(V, W) RV < Wet, k=0, 1}.

The algebraic tensor product V& Wof Vand W can be turned into a graded vector
space, which is sometimes denoted by V& W, by setting

vewy= ® rew

K+ K =1
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KR V—Vand 5: W— W are linear operators, § homogeneous, we define R ® St
VR WV @ Wtobe the linear operator given by

R& Sl ® w)=(— 1 Ro ® Sw
for ve V, we W, v homogeneous. A graded algebrais an algebra & which is graded
as a vector space such that
il = VPR, 1L, KE Z,.

Any algebra becomes a graded algebra with the trivial graduation. A =-algebra is

an algebra &/ with an involution ara*. A roBoEo%EmB R .Tl.& from *m
x-algebra & to 2 «-algebra # is an algebra homomorphism satisfying Enm
= R{a)* for all ae . A graded =-algebra is a graded algebra and a =-algebra mwoa
that the involution is even. For two graded algebras o and & we define the gra .as
algebra tensor product &/ @ % to be the graded vector space o @ % wit
multiplication given by
(@® b)@®b)={— 1y®@ag' @ bb’

for a, @ € o and b, b’ € where a' and b are homogeneous. If .&‘ mza..& do:g m_“m
mEama x-algebras o/ ® % becomes & graded »-algebra with the involution given by

(a@ by =(— )60 ¥ @ b*

for homogeneous elements aesf and bed. ‘
An algebra can be regarded asa triplet (7, M, m) where & is a vector space and

M o ®sf —»of and m C — o are linear mappings satisfying

§OA§®W&HEDA&®§V (2.1)

a .
" Mo(m®id)=M o (id @ m)=id. 2.2)

In the usual notation M(a @ a'}=aa and m(A}= Al wsm G.: is the mmmoﬂmﬂwi Emé
and (2.2) is the property of the unit element. m.w dualizing we get En ﬁﬂuoummﬁow
coalgebra; see [1, 8, 16,211 A coalgebra is a triplet (¥, P.& .nos.mmmﬁbm o wm.«_ to

space ¢, a lingar map A € —+%€ @, called the comultiplication, satistyng the

coassociativity identity .
ARid)-4=01d@ Aye 4

and a linear map & € —C, called the counit, satisfying the identity
(b ®id)c4=([d® §)ed=id.
If we define 4,, neN, inductively by
4,=id
Apsr=(id ® 47)° 4
then the general coassociativity law
4y ® ... ®d,)0d=0n
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L3
with m= %" n, holds. If (., M, m) is an algebra and (%, 4, 8) is a coalgebra and

=]
R, §: € -» o/ are linear maps the convolution R+S is the linear map from € to &
defined by

RxS=M-(R® S)o 4

The vector space L(#, o) of all linear maps from % to & is an algebra with respect
to convolution with unit mes. A graded coalgebra (¥, 4, §) is a coalgebra which is
also a graded vector space such that 4 and & are even, A graded w-biaigebra is a set
2 with both the structure of a graded *-algebra and the structure (#, 4, 6) of a
graded coalgebra such that 4 %@ # and 6 F—=C are x-zlgebra homo-
morphisms,

To a pair («, @) consisting of a *-algebra .+ and a state @ on & we associate
the GNS-construction which yields a Hilbert space 3, a linear mapping &: & — 3#°
with dense range, & representation = of < on o with cyclic vector = 9(1)e #*
characterized by the relations

CHa)n(d) 8(e)> =< P|nia*bc) D) = p(a*be); a,b,ce o,
We call (#, n, §) the GNS-triplet associated to (o, ).

3. Independent Increment Processes

In the following we simply say “stochastic process” instead of “quantum stochastic
process”.

Definition 3.1. A stochastic process, indexed by a set T, over a *-algebra 4, is a
triplet (<7, (j,),e 1. @) consisting of a x-algebra &7, a state ¢ on ., and foreach tin T
a homomorphism j,: @ — 7. A stochastic process (&, {j.)er, @) is called minimal if
o/ is algebraically generated by its elements Jib), teT, be®B. Two stochastic

processes (79, (j*). 1, @), i=1,2, over the same «-algebra @, indexed by the
same set T are said to be equivalent if

PR B iR = PR (by) . . 2B,
for all choices of neN, by, .. ., b,e#,and t,,...,t,eT
Two classical stochastic processes (X}, 7, i=1, 2, with values in E are stoch-
astically equivalent, ie. they have the same finite-dimensional distributions, if and

only if the associated processes (L*(QW), (£7),. 1, PO) over L™ (E} are equivalent
in the sense of Definition 3.1,

Proposition 3.1. (cf. Propos. 1.1 in [4]) Let (&, (i M%rs €, i=1,2, be two
minimal stochastic processes over a -algebra @ and denote by (#, 700, 3U) the
GNS-triplet associated to (&7, ™). Then the two processes are equivalent if and only
if there exists a unitary operator %: #'W = 3 such thar U ¢ = pi2) {where
9= 30(1)) and

U (OB U =D )
JorallteTand bed. 0O
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Denote by T the subset of R% of all pairs (s, f) with s S &.

Definition 3.2. Let 4 be a graded *-bialgebra. An increment process over 98 is a
stochastic process (&, (fo)s. ner» @) Over &, considered as a =-algebra, such that

ﬁm.v .H._G*.\.&".N.«: r<s<t
qu .\..zﬂmw.

Definition 3.3. An independent increment process over a graded »-bialgebra % is an
increment process (o, (j,.), @) over & such that

@ @Uuuby) - .. (0a))

=0 u®)) - Pl (B))
foralineN, t;,...,t,,, €R, witht; < ... <t,,,and by, ..., b,e&.

(6) Ju(BYjer (B)=(— 1)09®0 (b, (b) for all disjoint intervals (s, ¢} and (s, )
in B, and all homogeneous b, b’ € B.

A set {\,: (s,0)e T} of linear functionals \, on a coalgebra is .om:.nn_ a
convolution evolution if .+, =1, and =3 for all r<s<e If C.zv is an
independent increment process over # we denote by ¢ the state poj;, on 2.
Property (a) of Definition 3.3 yields

Gobﬁﬁ@.\ﬁv"@a ® @, r<s<t
and thus

Q= So&.: = Soﬁ.ﬁm*.\,&v" So:.wu ®.~.,:v a4
=0 ® Pyl 4= %y

which, together with (b) of Definition 3.3, means ﬁ.rm: TPH“ {s,1)e ﬁ isa mwiofzoﬂm
evolution of states on 4. The aim of this section is to mmwoﬁmﬁo a omsoEnm@

independent increment process to a given convolution 9.&565 of m.ﬁmnnm. Let mw e
a graded =-bialgebra. Denote by £4 the category of all objects (, ( Jsids, et E‘coam
&/ is a »-algebra and j, are homomorphisms from & to h\‘muor that (a) mwa.ﬁ MV ) o

Definition 3.2 and (b} of Definition 3.3 hold. A 50%.:“55 m.wwa (=, Jit ) to
(=7'¥, j2N is a homomorphism n: &£V — /%) such that h.uﬂ ofiid, >80.&:mwm to
the general definition of [15] a universally Rvnz.ﬁm oEmn.ﬁ A.Q%y h,) in 2g is
characterised by the following property. For all objects (&, j,) in £ there oﬁ.ﬂ.m a
unique homomorphism #: C(#)— .« such that j,=h, =7 for all ? fe H im give .,“w.
construction of a universally repelling object of £4 as an inductive limit o
s-algebras. Denote by 2 the set of all subsets of T of the form {(tata), . - o
(b tar ) lmeN £, < ... <l,.,. Toevery element a={(t;, 1), e sty Lay )} WE
associate the ordered n+ 1-tuple &=(t, . .., t,+,) of non-negative real numbers.
We set o =1y, &) =1,y and Z(t, £)={t, . . . , 1) for &, N.mﬁ, coesnt 1}, k<l For
a BeD, =1 v s lysr) F=(51s . s Suath sm.sﬁa a<f if {t,,.. o ot 1}
= {81, .+ - s Sme1}> turning & into an ordered set. F.x for each (s, t)e T an Hmomﬂw_‘..
phic copy 8., of &, ie. a pair (#,, ;) where 4, is a graded x-glgebra and I
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%i%& is an isom i
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C(#) such that (C(#), n,) has the universal property of an inductive limit of
=-algebras. We define the mappings hg, (s, t)e 7, by h,, =51 and xn"ﬁ?%iz for
5<L.

Preposition 3.3. The pair (C(B), (b ). ner) is a universally repelling object in 04q.
Proof. First we must prove that (C(#), k) is an object in £4. Denote by M the
multiplication in C(#). If o, e 2 with o, =f, then Byop=%B, @R, and
Me(n,@ng)=n,,; (3.1)

This yields forr<s <, 7={r, 5. t}

ho s hy

=Mo(h, @h,)ed=n,(I,,®I,} 4

=0Ty, 04

=M.
Equation (3.1) gives that for a, 22, a, < B, the mapping

Mo(n,®@n): B, @ B, C(B)

is a homomorphism which means that (b) of Definition 3.3 holds. To prove that
C(#8), h,) is universally repelling, let (¢, j,,) be an object in £,4. We must show that
there exists a unique homomorphism #: (&)~ &/ such that j,=#n-h,. For ac@
define the homomorphism 7,: &,—< by

ne=M | & fu ol ® I3
(s fea (s,t)ea

where for neN we denote by M;¥ the n-fold multiplication in /. The properties of
the j;, yield that nyen, ,=»n; for o, fe P, « < . By the universal property of the
inductive limit (C(#8), #,) there exists a unique homomorphism #: C(#)— & such
that i, =nen, for all e 2. The special case &=(s, 1) gives j,=1noh,. Conversely, if a
homomorphism 5"t C(#B)—f fulfills j,=#'sh,, then it also fullfills #, =70, thus
n=n. O

It is clear that {C(4), h,,) is also minimal in the sense that h, (b}, (s, ) e T, be @
generate the algebra C(%).

Theorer 3.1 Let {¢p,: (s, €T} be a convolution evolution of states on a graded
*-bialgebra @. Then there exists a uniquely determined state ¢ on C(%) such that
(C(9B), hy, @) is an independent increment process over & with convolution evolution
of states (¢ }. Two independent increment processes over @ are equivalent if and only
if they have the same convolution evolution of states.

Proof. For we P we define the state ¢, on %, by

o=l & o, ® 1;¢

(s,t)ea {5 lyea



460 L. Accardi, M. Schiirmann and W, von Waldenlels

Fora, S, a < g, Blag, o, )=f we have

@ge° g.a
= -1
- ® Py jo ® X ﬁ_#m?&. ) © ® Mh;.
8. nep s, e . Frea
= ® Py Jo ® M....ﬂqw
(3. t)eew 5 ) ea
=@y

by the evolution property of {¢,}. As ¢, (1})=1 for all {s, )e T'the equation Pgotlg o
=, also holds in the general case o < f. It follows the existence of a unique state ¢
on C(#) such that pen, =g, for all xe P, By construction ¢ fulfills property (a) of
Definition 3.3, Conversely, if ¢ is a state on C(#) having this property and
satisfying @'ot, =, it also fulfills @' o1, =, which means @=0". For the second
part of the theorem we prove that an independent increment process (, j,,, ¥) over
# with convolution evolution equal to {¢,} is equivalent to (C(B), hy, 0). As
{#7.),) 15 an object in L4 there is a homomorphism n: (%) satisfying j,
=1oh,. The state Yoy on C(#) has property (a) of Definition 3.3 and satisfies
Weonehy, =g, which gives Won=q, O

We now establish the connection with continuous tensor products. We call an
independent increment process (#, j., ¢} over a graded #-bialgebra % even if all the
states 9, = @oj, are even. A graded Hilbert space is a Hilbert space 5# together with
2 pair (#°°, #") of orthogonal subspaces of # such that # = #° @ !, Denote
by @ the system of open subsets of R, .

Definition 3.4. (cf, [18]) Let (Y)iee be & family of graded «-algebras (of graded
Hilbert spaces) such that for two disjoint open sets [, and I,in R, thereis an even
isomorphism (an even unitary map)

HQ‘Hu va.. u\.: ® M\:;rvu\_?rln.
If the condition
Ty, HUT?QH.?V®EV

(3.2)
HHQTFC»Jonm@aQEau:

is fulfilled for any three disjoint open sets I, Iand Iy in R, then ¥, ,lissaidtobea
continuous rensor product.

Theorem 3.2, [et (s, joes 0} be an even independent increment process over a graded

w-bialgebra & and denote by (5, n, 9) the GNS-triplet associated to (7, @). Then nt
(&) and # are continuous tensor products.

Proof. By Proposition 3.1 and Theorem 3.1 we may assume that & =C(#) and
Ja=hy. The algebra C(@)=C is an inductive limit of graded +-algebras and
therefore carries a naturaj graded =-algebra structure (C°% CY such that the
homomorphisms j,: #-—C are even. Moreover, as the states @, are even by
assumption, the stales ¢, on B, ue D, as defined in the proof of Theorem 3.1, are
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i i inductive limit of even states. For [ in @ we
e EanoEMM ww%ﬂvﬁ%ﬂmﬁﬂMmmwwnamaa by all elements of the moH.B F,_\ mm
%%H_M b HEE through all elements of & and (s, t) runs H::o:m: m:lo%mh M_:H 2
M.o%ﬁi& in I. As the h,, are even, we have nu_q = ﬂwomw OHh swm‘n m« Iwnmr& F“ iﬁmu
and the graduation of C induces the graduation (C;, Cj)o 2 .o bl\ojhha? (©
Fr=n(CY), # = HC,) and #{=9(C) for [e O and 1e Z;. fdisin &) N
mnﬂmﬁf ;Iww?uv for some ¢te CY. Thus for ¢),c,€C

C9(ey)lader)y = plct c®cz)=aplcte’ co)

i 0 *oleo is odd, thus {&{c )i
i homogeneous either cfc’ec; or ¢Tc'¢; thus €31
mwa _wvnH wz%nMM:MMne is oﬁwmn. But this means &=0. It foliows that A,nﬂ,. “.M‘__% ”mm M
anmﬁmwmﬁmé of the +-algebra &,. Similarly m.ﬁ.omﬂ be shown Emw MMMM ,En..:nnmﬂ
Mﬂmm:mmou of the Hilbert space ;. For disjoint I, f,e0 we

mapping

t(Iy, o) @~ i,
” (I, I)d, @ d,)=48,4dz; mﬁm..mw:,mume&:.

. . . . even
By property (b) of Definition 3.3 the map ©(J :.~ Nv.a an aoﬁoﬁrwwq?ﬁwﬁ mﬂm Hwoawv-
cw mosmzcn:ou. The associativity of multiplication in #n(C) .ww_n Mm nau the map-
pings t(I,, I,} fulfill condition (3.2). We proved that HC)=l g,

tensor product. . .
If we define the linear mapping

O.Q: ~uv” %Aﬁ:w ® %ﬁﬁhuuibﬁﬁrchuv

” o(l, I;)(9c) ® Ye)=8c 2} €, €6, c6Cp,

we have for homogeneous elements ¢, ¢) €C,, €2, 3€C;,
(o(8(c1) ® Fle)io(9(c) ® 9(c2))y
=(J(c, )| e er)y =plceteich)
= (-~ 1jote - siten o et ¢, )p(ef )
=lccy) pleich)
=(8{c,) ® {c,)19(ch) @ 9(ca)>

) . « i Hﬂ
where we used properties (a) and (b) of Definition u.u. and the J,Q Emw\% @ Mw oewwn u
follows that o(I;, I,) can be extended to an cven au.:mamn.w._mva MMMM " M_ﬁ © m%m .
in by iativi Itiplication in n{C) w
. Again Dy the associativity of mu : : she map
Mﬂ _Hcﬁv mm_m: condition (3.2), and # = #,_is a continuous 1ensor proauc

4, Generators of Convolution Semi-Groups

] -bi A& is
Definition 4.1. An increment ?onomm.?& s @) over mH mﬂmﬂom MW%%@B
called a stationary increment process if @oj,=pejy, -, for all ts, .



. ¢ n evolutio

ution s - o meq iy
Emi-group {o,} of states o:hw@ mu.mé b

Definition 4.2, An | oo

8raded =-bjaj i
gebra # is ¢ . .
of states {g,} alled continuoys if the associ »Jus @) Over a

mﬂz.-mwozmu

i -
for all e %, HHMM._ SAUV = nmﬂ&w AA. c

Let @
be a coalgebra, To every linear functi

linear o
perator T on
v O € defined by al v on € one can associate the

zm.mg..ﬁ_m use Om. kumw mQQﬂﬂ.ﬂ% NAC”T.. ® M.Qvn&.

m_o . .
S (t®id)=(p ®id ® id)o(id @ 4)
e i ol 5 lor any lineay functiona]

Or any two linear functiona]

N..eu.N...n

A one %, and usip

$vand p on @ g the coassociativity of ¢,

nﬁ<®~_&&o€®_.&om
=0vRidpr®ide id)e(id ® )0 4
={p @ v ® id)o(4 @id)-4
={lo=V) ®id)e =

We see that forevery | o mlﬁu:.

Parameter famjj “Parameter convolutj ;
¥ T N on 5¢mi- .
example illustra { gt 152 semi-group of line group {¢p,: feR, ) on % the 1.
tes k ar operators on & The fo] _
» +3¢ tollowing

“Broup of stateg me,w on a

ologic ; -group i -
gical mwﬂ_mwﬂm:w. Then for & ?nw“ww“_.wmwowwvnocmca@

v € R} of probability measures o mqw awﬁe
€ have

T ) =(0, @ id
3 i ) o A4f(x)={4
“T_.o_uo.mn.n_.c: 4.1, Let v be % Q%.E.\.C\kv.

; an even ij .
the foliowing are equipaje " finear functio

nt nal on q graded x

. -bial
.€ i gebra B, Then
ﬁ:c T, is positive
1] ]
) T, is completely pogitipe,

Proof. Clearly (i) ;
. Y D:vl.lvm:.v and .
Temains to prove (f) = (ij; the identity y=
: (iii} and, i °T, shows that (ij)=s
. {i). Thus i

momo i
Tphism is completely positive

o .Emzhnnaf._ﬁﬂ n
L s v |
, 1, be moaommuﬂ_o:m elements of @
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Then
i i n * n
~&®e.®:u M Dw@.@ﬁ@m&a M D:@@:q@@“_c
k=1 u,p=1
) Batbu)+ olbuo(bE b - 4.2)
= M Al. HYQA ){g(bu) + gl .:_:{AW_E @:cvnk a, ® Trﬁmu_:...

Khuve=1
Since v is even, the only non-zero elements in the sum (4.2) are those for which the
+ 1-factor is equal to 1. But then the complete positivity of v ®id follows by the
same argument 4s in the trivial graduation case. O

As a consequence of Proposition 4.1 an even convolution semi-group of states

{o; teR,} on a graded =-bialgebra & gives rise to a semi-group {7} of linear
operators on @ with the properties

T, is completely positive

T, )=1
for all teR,.

Let € be a coalgebra. The sum @+ '={d+d": de 2, d'e D'} of two sub-
coalgebras 2, 9’ of € is again a subcoalgebra of €. By the fundamental theorem on
coalgebras [21] the subcoalgebra of € generated by a single element in % s finite-
dimensional. It follows that & is the inductive limit of its system of finite-
dimensional subcoalgebras. For a linear functional v on % the operator T, leaves
invariant every subcoalgebra of . If 2 is a finite-dimensional subcoalgebra of ¢

we define the linear functional p(Z) on 2 by
& <*=

p@)d)= Y

n=0 n!

for de 9. The inductive limit of the family (p{2)) is a linear functional on € which
we denote by exp, v. Moreover, if {,: teR, } isa convolution semi-group on €
fulfilling the continuity condition (4.1) then the restriction T, |2 of T, to a
subcoalgebra 2 is a semi-group of linear operators on %, and if 2 is finite-

dimensional T 12 is of the form
T,|% =expl(t G(@))
for some linear operator G(@) on 2. We define the linear functional y on % to be the
inductive limit of the family (8« G(2}). Clearly
P =CXPx 7).

We see that the continuous semi-groups {¢,: t€ R, } on a coalgebra € are exactly
those of the form {exp, (ty)} for some linear functional y on %. Positivity conditions

on {p,} impose some further restrictions on y. One has [19, 20]:

@) (4.3)

Theorem 4.1. For an even linear functional y on a graded »-bialgebra & the following
are equivalent
(i) v is conditionally positive, i.e. y (b* b)Z0 for all be B with 6b=0, and y is

hermitian
(if) exp, (ty) is positive for all teR..
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By Theorem 3] and Theorem 4,] ap even, continugus independent stationary
increment Process over & ig {up to equivalence) uniquely determined by the
generator of its convolutiop Semi-group of states on #, which s g conditionally
positive, hermitian linear functional On # vanishing at 1. Conversely every linear
functional on g satisfying these Properties gives rise to an even, continuous
independent stationary increment process over &,

We give an example of a non-commutative graded #-bialgebra, Let (X
X=X}, ..., X1, be a Cvalued, 4 N, classical stochastic Process such that g
moements of the process exist We associate to this classical Process a stochastic
process (X)), ., over the polynomial aigebra Clxk, xyn=1,. . »d]1n 2d commuy.
ing indeterminateg Xy and x, by setting

Xy O3 =i Xl w)

=X/(wf .. X7 (o} X oy . X (w)e,

Korh=0,1, .. The algebra C[x*, x,] is a sub-»-bialgebra of Z(CY); the co-
multiplication g given by Ax,=x ®1+1 @ x,, the counit by 6x,=0, and the
involution by {x)*=x* The non-commutative analogue of Clx}* x,J is the
polynomial algebra ¢ {x¥, X, in2d ROR-commuting H.:aﬁnngmbmﬁam“ see [10]. More
generally, also including the graded case, |t }'= 0 @ V! bea graded vector space
and let v p* he 5 seifinverse, antilinear, evep map on V. Denote by (V) the
graded tensor algebra of 14 gee [8]. The space T (V) is equal to the direct sum

o0

B T V)™ where TV, neN, denotes the n-fold tensor product of 7 (V) with

H=g
itsell and 7 (1o - ¢ We denote by F(V}, the subspace () Ty of (v,

We turn J(V)into a graded «-algebra with the involution given by €xtension of
vru* The *-algebra F (V) becomes g graded =-bialgebra by defining
m@!:\vlw\lﬁﬁ ®QJ,.S and 8T ()= 1o be the roEoBoGEmEm given
by dv=v®1+1 ® v and dp=0(,

As an illustration of the above results let us determine the form of the most
general conditionally positive, hermitian linear functional ong (V) We introduce
the following notation, If 8 is 2 linear functional on ¥ which is hermitian, je.

Blv*)=B(v) for all € ¥V, we define the conditionally positive, hermitian linear fune-
tional 4, op F(¥) by AT (V)M =0 for n3]1 and d{v)=B) for pey
H.WIQ\VE.

Let (x,),., be a vecter space basis of ¥, which without loss of generality can be
assumed to consist of hermitian elements. An element Fip (V) can be written in
a unique way in the form

mﬁl.nﬁ.,:+.M,. ¢ (Fix; + )3 X Fyx;

el i, jef

where o{F)=5{F) and ci{F) iel, are complex numbers and Fiijel arein T (V).
We denote by M([) the algebra of matrices (Citkijers ¢;;€C, for which ¢y % 0 only
for a finite number of pairs (i, jle I x J. If o is any algebra an element 4 e ®
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.. i real nu ? ch tha

i) %2« mﬁw_ﬁnmﬁuzﬁ Non #(D® F (V) su u (4.3}
fnear i WF) =28 (F)+dypF) + NCFihjer

.. dNin
for all Fe T (V). linear functional the quantities o, B an
s itian

) itionally positive, hermi

Ifvis a conditiona

AD.WV are wﬁﬁwﬂﬂmmt &mﬁmy Eauw..—m&. ﬁ\
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roof. \)= 1 fﬂcﬂ set « v ”— .Q v vy mOH ve N.H_.Q.

ZAAQ. u—..u M ‘ —ﬁuﬁ—o:unqu

- isreal and B
, : tian, o is rea
e v is hermi
Ids and, sinc

iy for (Gi). ;€
for (G,))i € AU ® T (V). Then (4.3) ho hat N is positive. We have fo i
il J

i UWHE”.—QND. (_,c [ mﬁ.—: rm. ve o ﬁHO et
15 v

2 i

=Y v(xGhGn¥y)

[

*
=5 o{ (36w ) (56

I

0 = f=0. ‘We must
e ay assume &= e For
. itionally positive. (if)=(i): We .Bn %:mﬂu.im: if N is positive. Fo
prove that s nou&%wa @3)is condidionaly B ‘ﬁ }, 50 v is hermitian. Zoé*ﬂmﬁ
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8(F) . it
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.x:m.:_.“ Fhoee . ional on
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and we have
V(EF*F)

=% vixFel+F)* e+ Fyx;)

ijel

=1 8(c;1+F) %

z inf §&(c1+G) I3
(GieH,

= min || )+<¢N%
fediH}
={E=9)e; D%
=Q(Xc;x;)
=go(F* F).
If P is another positive sesquilinear form on V such that v—g, is conditionally
positive then for every I ¢;x;e ¥ and every ¢> 0 there is an element (G} in H, such
that
QX ¢:x;)
Z 91+ GP)%—e
=v[ T x¥ e+ G (e 1+G)x, | —e
Lt

ZPEcx)—¢

which means @z P. O

5. Processes with Independent Additive Increments

In view of the applications it is useful to look at quantum stochastic processes as
families of operators on some Hilbert space. In this section we will see that for an
interesting class of quantum stochastic processes this point of view is included in

Definition 3.3.

Definition 5.1. Let F (1), reV, te R, be linear operators on a Hilbert space 5 with
common dense domain D such that the domain of the adjoint F} (¢} of F, (¢} includes
D and Fi(r) and F,(t) leave D invariant. For {s,f)e T we denote by &/, the
polynomial algebra of operators on D generated by F,(s,)=F,(t)—F J(s) and
Flis, 1), ve V, and by o the polynomial algebra of operators on D generated by all
El(s,t) and F (5, 1), (5, }& T, ve V. Let there alse be given a unit vector @eD such
that &/ @=D. We call (F.(t)),cp, 1cp,a Drocess with independent additive increments
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in the Fermi case, the stochastic process (4, ,(t)) has been called a guantum
Brownian motion of variance o?= A%+ p? where the plus sign stands in the Bose

case and the minus sign stands in the Fermi case; see [9, 5].
We call a linear functional v on & (¥) gaussian if it is of the form

v=exp,(d;+4q)
where § is a linear functional on ¥ and @ is a sesquilinear form on ¥; see [10, 23]. In

the trivial graduation case a gaussian functional is positive if f {s hermitian and @ is

positive by Theorem 4.1. If the graduation is non-trivial g, is even, but d; is not
even if < 0. Thus in this case a gaussian functional is positive if f=0and Q is

positive, again by Theorem 4.1.
Theorem 5.1. Let (F(£)) be an even, continuous process with independent stationary

additive increments such that
lim t™1{@|F,, (}F,, () F,, () F,, ()@ =0 (5.3)
t10
for any chaice of vy, v, U3, U in V. Then the convolution semi-group {o,=exp, (t7}}
of the process is gaussian, that is all the states ¢, are gaussian, and have the form

P=EXPy Amu + va
where B(v)=7(v) and Q(r, w)=y(t*W), v, we V. Moreover, one (and only one) of the

following statements holds:
() #° =C and there exists a complex number z such that F(t)=zt
(i) there exist complex numbers 2, 2., 2, |z,|+]|2;|% 0, such that (F(5)) is
(5.4}

equivalent to
{(zt4z, A{D)+z,AM(t)

with cyclic vector the vacuum in I

(i)} there exist complex numbers z,z,, #,, |2, | > 125|, such that (F (1)) is equivalent
to

(zt4zy A, (42,47, () {5.5)

with cyclic vector the vacuum in T @ I
{iii}? there exist complex numbersz,zy, z,, |z, | +12,| +0, and uniguely determined
positive real numbers A, p, 4> p, satisfying (5.1) in the trivial graduation case
and (3.2) in the non-trivial graduation case, such that {F(t)) is equivalent to

(zt+z A, (0+2, AL, (B) (5.6)

with cyclic vector the vactum in I @ I,

The constant z is uniquely determined and equal to 0 in the non-trivial graduation
case. The pair (z,, z,) in (ii) and (1ii) is uniquely determined up to a transformation of

the form (z,, z;)—(e¥z,, €% z,;), $eR.

Proof. Because of
O Xy ={@sx @ }x) = 0,(x) + @,(x)

and the continuity of {¢,} the function t+— @,(x) must be of the form zt for some
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zeC. As {g,} is even we must ha i
X ve z=0in the Fermj
s . : rmi case. We set M) = F(s\—
fad nmEmH MMM%MMMMQP continuous family (M (1) of operators with an%mvnamhﬁvw M
increments. The generator 3 of (M (1)) coincides with Yo n:
2 na
monomials in 9 {¥) not of length 1 and vanishes on x* and x. As Hm r~! (F)
. @

=7(F) for all F&77 (V) we have by (5.3) o

Oun:“EiH .
. HSAEEE_ etulr,e (b1 25 vy v,)

Eomn.va:.mﬂ not of length 2, and y* is equal to g, where
matrix ] given by Qu=y(xtx,), k, 1= 1,2, where x, =
positive definite, so it is of the form '

Q is represented by the 2 x 2.
x* and x, = x. The matrix Qis

r m
— (5.7

where r and 5 are non-negative real numbers and m=|m
chr that rs = _Eﬁp. If @ is equal to O then F(t)=2z blu..

“lofe we continue, we observe that the processes wc (i
Even, continuous processes with independent statio y
sense of Definition 5.1. If we assume z=0 the QﬂmQ
simultaneously by looking at processes of the monsnnn

le% is a complex number
C®, and we are in case (i).
 (iii)! and (iii)? are indeed
additive increments in the
cases can be dealed with
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o ¢ definite 2 x 2-matrix glven
211207 + [z, 122
BRI ) g ) G4

m ora W:‘ND @Omuﬁ_.rﬂ Qmmﬂunﬂ matnx Om :um HQHﬁ— M.m WE now HH( to mmﬂnm Oowwmﬁm:u.ﬁm
2y, & 3 \m.u H m_.“_ﬁ: ME.NH HTQ Huum.gﬁn & Oh ﬁ:ﬂ HOH:H .mw 15 GD.C.NL to @. H irst we assume
1 2 ﬁ v

ﬁ_.-—m.ﬁ P +t = H. ww OOHH:VNHEH QHO entries t Aw W ¥
m I ON. Wwﬂ matrices P NU& < m:—-.—‘m e at ﬁT.ﬂ

212; (A% + )

ab=|m| (5.9)
@4 blmrts (5 H.e
a2 —pY=r_-s G.:v

Mgm a=lzi}, b=|z;) and 1=12 — 42 If we have a soluti

an = = hei

b ?.MMWMH mH :mem = w% S, A=(}1 +§*. and u=(1—4%)* which is a solution of

AN moE.:.og : ns { .3. and G.Ho.v BIve a quadratic equation and there is
nloraand bin R, , which is unique up to interchanging a and b

on of these equations for a,
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Assume that rank Q= 1. Then a=r?, b=s* solves (5.9} and (5.10), and if we put t=1
equation (5.11) is fulfilled, too. We also have a+b + 0 which shows that we are in
case {ii). Now assume that Q is non-singular, Then a # b must hold. Equation (5.11)
is solved by setting 1=(r—s)(a? —b*)~!. If r=s we have 1=0 and this is case (iii)*, If
r =+ s we may assume £ > 0. (If t < O interchange g and b!) If r % s and the graduation
is non-trivial we are in case (iii)%. If,F+s and the graduation is trivial we set
=1tz zh=1tz,, V=1 "%l and ' =1ty Then ()?—(u)?=1 and, substituting
2y, 2y, A, i for z,, z;, 4, 4, we get the same matrix P. This is (iii)? for the trivial
graduation case.

The matrix P remains unchanged if we substitute (el z,, & z,), &R, for
(241, 23). On the other hand, given a matrix of the form (5.8), the quantities |z|, |z,
A, 4 must satisfy equations (5.9), (5.10), (5.11) which yields the uniqueness statement
for (z,,2,). O

From Definition 5.1 it follows that for the validity of Theorem 5.1 it is sufficient
to require that (5.3) holds only when each of the vectors v, v,, vs, v, coincides
either with x* or with x. Condition (5.3) becomes the condition of “continuity of the
trajectories” introduced in [3]. The “canonical forms” (5.4), (5.5) and (5.6) corre-
spond to the canonical forms deduced in [3].

6. Generators of Processes Given by Solutions of Quantum Stochastic
Differential Equations

Let % (d), d e N, be the group of unitary d x d-matrices. Denote by fir, k, I=1, ... ,4d,
the complex-valued function on %(d) given by fidU)=Uy, U={U,\lpnn=1,... 4€
%(d), and by fif the complex conjugate function of f, ie fH{U)=Uy. The
subalgebra K{[d] of the *=-algebra # (¥ (d})) of all complex-valued functions on
% (d} generated by the functions iy and f;is a sub-*-bialgebra of Z (% (d)) and can
be identified with the space of all coefficients of continuous, irreducible unitary
representations of % (d). The »-algebra K [d] is often called the coefficient algebra
of %{d) [12] and is an example of a Krein algebra [11]. The coalgebra structure of
K[d] induced by £ (% (d)) is given by the comultiplication

N—.b.:—“ W .\m: ®&:.

n=1

and the counit
dfui= 6 (Kronecker delta).

Let (X).r be a classical stochastic process with values in %(d) and consider the.
stochastic process (L*(2), (X,),e1> P) over K[d] given by X,(f}=f°X,,feK[d].
The process (X,) is uniquely determined by (X,) via the equation

(X (=X, fe)(@).

Denote by .#(d) the »-algebra of complex d x d-matrices. If &/ is any algebra an
element A .4 (d)® o can be regarded as a d x d-matrix (Agy =1, 4 With entries
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Ay of. The classical stochastic process (X} can also be identified with the family
(U,),.7 of unitary elements in . (d)® L> () given by

(U (@)= (U, (@)u-
The non-commutative analogue K {d)» of K[d] is the polynomial algebra
C¢xif xi k=1, .., d) in the 2d* non-commuting indeterminates xi and xg
d
divided by the #-ideal J generated by the elements Y Xp.xp—0y and

n=1

4

Y xmexy— Oy see [24) If (Uer 1s @ family of unitary elements in . (d) ® &
n=1

where & is a =-algebra, and if ¢ is a state on &/ then a stochastic process
(o, (j)er> @) Over K{d> can be defined by

RO+ ) =(Ui.

We describe the construction of a graded version of K {d); see [20].

Let 3 be & finite-dimensional graded Hilbert space; dim # =d. Then & is the
orthogonal sum #° @ # ' of its subspaces # ° and # * of even and odd elements.
We denote by L{#) the graded vector space of linear operators on & and by
L{# Y the complex conjugate graded vector space of L(o#). As a set L{#)
consists of elements af, ae L(# ). The vector space structure of L(#)° is given by
a‘+ b =(a+ by and da‘=(ZdF. We form the graded tensor algebra Jy of the
graded vector space L(# )@ L(#). The algebra Ty is a graded =-algebra with
the involution given by a*=a"c L{# ) for ac L(o#). If {e(k): k=1,.. ., d} is an
orthonormal basis of # adapted to the graduation of # we define the
homomorphisms A: Fy— T ® T and 81 T —C by

Ae(k, )= vm elk, n)@eln, 0)

n=1
and
delk, I)="05y

where e(k, ), k, I=1, .. ., d, denote the matrix urlits associated with {e(k)}. The
aigebra 7y is a graded #-bialgebra with comultiplication 4 and counit 6. We {form
the *-ideal J of 4 generated by the elements

d

Mp e(k, @ e(l n)*—dy

d
2. eln, K ®eln Db
A simple computation shows that J is a graded coideal in Fu, so
K{# Y=y /J is a graded =-bialgebra with the structure induced by F . The
construction of K ¢ # > does not depend on the choice of the adapted orthonormal
basis of #. We denote by 7, the canonical homomorphism from F to K (3’ >
Let I' again be the Bose or Fermi Fock space over L?(R,) depending on
whether the graduation of #” is trivial or not. We consider the Bose Fock spacecasa
graded Hilbert space with the trivial graduation and turn the Fermi Fock space
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into a graded Hilbert space by setting

o

o= @ hu@ﬁ\f v®nua

=0
@
H.H - @ H\NQE+V®“M=+—
n=0

where ®,m denotes the m-fold anti-symmetric tensor product of Hilbert spaces.
For NeNlet b, r=1,..., N, and k be clements in L{H#°), h hermitian. Let b, be
odd and let & be even in the non-trivial graduation case. We consider the N-

dimensional quantum stochastic differential eGuation in the sense of [14] or [6] of
the form
N _. N
dU=U(| Y dA1b,—bldd, |+|ih—5 3 blbdr) )
p=1 r=7j

U{0)=id;

see also [13]. The solution U(z) consists of unitary operators on # @I %% A
bounded operator A on #@I®Y is regarded as a matrix (dider=1,....a
Ay=A(k, Ne®(r®"), with respect to the orthonormal basis {e(k)} of »#.
By @ we denote the vacuum state on @ (I ®"). We define homomorphisms j;:
K{A#>—B(I®") by

&maﬁﬁhmk_w"mqh_vﬁ

where U,=U} U, sst.

Theorem 6.1, The stochastic process (B(I®Y), Uuls.ner, @) over K{# ) is an
even, continuous independent stationary increment process.

Proof. We restrict ourselves to the case N =1 and h=0. We denote by '], s=t, the
Fock space over L[s, £]. For an element a of a =-algebra o/ we set a®=a and
a*=a* where 0, 1 are considered as elements of Z,. By Theorem 2.5 of [13] (the
theorem only deals with the Bose case, but the proof is almost the same in the
Fermi case) the unitary operators U, commute with ali operators of the form
idy ® T ®id® with TeZ(I'y). This implies that Uy(k, 1), 1€ Z,, is of the form

id5 &S @id®
for some SeZ (). As U, is even we have g(U.k D) =glek, ) and for
{s. )N, )=

Uy, 1Y U U, V) 22lle, LK, IV U (0, 1) Uik, 1Y

where we set g(k, I, k', I')=(— 1)o(el Melel. 1), This gives property (b) of Definition
3.3. Using this result, the increment properties (a) and (b) of Definition 3.2 follow by
an easy computation. It is clear that the vacuum @ has the property (a) of
Definition 3.3. For the proof of stationarity denote by ¢,, r € R, the shift operator
on L*(R,) given by o,f(}=0 for t <r and o,f(t)=f(t—r} for t=r and by &, its
second quantisation. By Theorem 2.5 of [13] (which can be proved in exactly the
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same manner for the Fermi case} we have
SFIU k1 = U, _ (K, ).

Using this cocycle property, one immediately arrives at @oj,=®oj, ... The
continuity of the process follows by [6], page 486, and by [14], Coroliary 2. As the
operators U/, are even and as € is an even state all states @« J, must be even. O

By Section 4 the process (B{I"® "), j,,, P) is determined by its generator up to

equivalence. We proceed to compute this generator,
For a matrix a=(a(k, ) ;=y..... 4 in #(d) define a =-derivation (that is a

derivation which is also a *-map) D, on 7 by

d
Daelk, =Y alk, n)e(n, ).
LS
If 2 is skew hermitian D, leaves invariant the ideal I and gives rise to a *-derivation
D, on K{5# . For two matrices a, b .#(d) define the linear operator L,, on
by
d

anm:ﬁ. :" M nﬁﬁ xvmﬁxu _:

n=1]
where c=i{a, b] and by requiring I,,= L to satisfy the functional equation
HF® ) =(IF)®R G+F®(L)+2iD,F® D,6-D,F® D,G)

forall F, Ge I . The operator L,, leaves I invariant if a and b are skew hermitian
and, in this case, induces a linear operator L, on K {3 >. Denote by @ e L{) the
parity operator given by @ov=({~—1)*"'y for ve # homogeneous. Notice that
Ba=(—1)""a @ for ae L{3#) homogeneous. Define the linear operator § on
K{H> by

N
mum ,MH DI+DI+L,, |+Dy

where
p,=3@b,—b @)

q,=—3(0b,+b! 9).
Theorem 6.2. The generator v of (B(I®N), j,, @) is equal to §. S,

Proof. We again assume N =1 and h=0. We substitute the operator @(p+iq)forb
in the quantum stochastic differential equation

dU=U(dA'b—bTdA—1bbdr)
and get the equation
dU=U(pdF +qdG +%cdt) (6.1)
where
dF=dA'@+&dA4

dG=i(dA' O —© d4)
c=p*+q*+i[p. q].
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Now let R, Te#(I") be homogeneous and let T be odd. Then we have for
ki=1,...,d
(e, N® RO & T)

=(- 1) Bk RO & T)
HAI:m:S_EE e(k, 1@ ® RT
Hﬁlcnﬁtxﬁzim:ﬁ: mQﬁ 3 ® RT
=elk,)® RT

which yields together with {6.1)

o

d Y e h® Uk

hi=1

d

MH ek N UMD ) pO R A" +A)+q@ ®id(A* —A)+Lc®dD

ki=

It
[gn

ek, 1@ Mu,\ Uk, n)(p(n, Dd(A™ + A)+gn, i d(AT—4)
1

n=1]

+ie(nm, Ddt)
or

d
UGk D= 3 Uk mydM(n, 1)
=1
with
dM (k, N =p(k, Dd{A* + Ay +qik, Did{AT — A)+Lc(k, Ddt.

Using the quantum Ito formula [6, 14] we obtain

AM{k, D Mk, Y

=(plk, 1) pUK, 1) +qlh, [V q(k, 1) (62)

+ip(k, 1Y q(k", I') —ig({k, I p(k’, I')")dr.

For an element F=elk, [ )"® ... ®e(k,, ) of F» we compute the
expression

(e )F)
d .
=2 (DU ki )" Uil b @i 3

We set Y,=U,(k, ). The value of (6.3} is equal to the di-part at =0 of

d(Y, ... Y,). Using again the quantum Ito formula, we have
a(¥,... Y,)
=(d¥)Y,...Y,+...+Y,...Y, ., (dY,)
+( @Y )AdY) Y. V4 ... +(dY))Y,... Y, (dY,) (6.4)

Fooid Y Ve (dY,_)dY,)

Taking under account the initial condition U(0}=1id, we get that the terms of first
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order in (6.4) contribute _
1S DF).

As U, is non-anticipating and even we have for r<s
T\.M M\L u\1+w L M\hl;m M\L
- M {— Hvrim?:e:+:.£m:m.u:

ek bonr) oo e(kens o) e(ks, 0)

Ul wi Uy (ks g g e

e Ul g Lo 0 Uik, 0)s

dM{w, 1Y dM (v, 1,)"
where we put e(k, {y=(—1)9*% Using (6.2) we have that the second order terms
in (6.4) contribute

10D} + D]+ L, .~ DINF)
which completes the proof. O

Ifin the case N =1 the operator b is hermitian or skew hermitian then p=0 or
g=0and S is equal to a second order derivation D? on K {#).

In the Bose case we have S§={y ® id)»4 and § is the generator of the semi-
group of operators associated to the process while this is not true in general in the
Fermi case.

We treat a special case of Theorem 6.2. Let N=2 and A, peR bhe.#({d), h
hermitian, b odd and h even if the graduation of # is not trivial. We consider the
quantum stochastic differential equation on " @I & I'

\H_.n _:m
dU=UldA}  b—bTdA,; .+ Ellmi wsuima BbT |dr J;
sce [13] and Section 5. The generator of the process associated with the solution of
this equation is equal to §+5 where
S=3A%+u*) Dy + D +H(A* —u?) L,y + Dy
The penerators of processes constructed in [24] by a method called the multi-

plicative Ito integral are of the same type.
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