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1 Introduction

It is well known that the crux of the interpretation of quantum theory is
the superposition principle and it is a common place among physicists that
the only way to exorcize the interference terms, related to this principle,
is to accept the statement: observables not looked at cannot have definite
values . According to this point of view, definite values arise from measure-
ments and the term objectification, invented to describe this transition adds
a metaphysical touch to contemporary physics.

Statements like the above one (and its consequences) have plagued the
interpretation of quantum theory since its origins. Therefore, if one would be
able to deduce the superposition principle from physically meaningful axioms
which involve only observable quantities and experimentally performable op-
erations and do not include any metaphysical assumptions, then quantum
theory shall be made free of interpretations and statements which consti-
tute a source of embarassment and uneasiness for all those who believe that
the inner coherence of physics should not be saved at the price of accepting
statements such as the above one.

The widespread attitude of dismissing these problems by claiming that
. . . they have no practical implications . . . are the expression of a too narrow
vision of science, tending to reduce scientific research to the production of
algorithms which should be used for so called practical purposes. But many
people have been, and probably shall always be, fascinated by theoretical
physics not as a branch of applied research, but as a creative and speculative
adventure. For them the pretense to close a speculative challenge by claiming
that . . . it has no practical implications . . . , is not very convincing.

The present paper is an attempt to meet this challenge with the usual
strategy adopted to clarify the foundations of a theory: to axiomatize it.
The idea is very simple to state: To formulate a set of axioms in terms of
statements which are, at least in principle, physically meaningful, model inde-
pendent and whose content is generally accepted by the physical community.
Then to proceed by means of pure mathematical deduction and prove that the
whole mathematical apparatus of quantum theory is a necessary consequence
of the stated axioms.

The two main ideas introduced here to achieve this goal are:
(i) to extrapolate from the Heisenberg indeterminacy principle, a univer-

sal, information theoretic statement which should govern any form of acqui-
sition of information through experiments. This shall require an epuration
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of all the specifically physical notions (such as mass, Planck constant, en-
ergy,...) from the formulation of this principle.

(ii) to perform a similar operation on Schwinger’s proposal of taking
measurements rather than events as starting point for the description of
the conceptual structure of quantum theory. We propose to use the no-
tion of Schwinger algebra of measurements as the basic framework of a new
axiomatic approach to probability theory in which the platonic events of
pre–quantum physics are replaced by the measurement operations .

Within this new axiomatization of probability the information theoretic
formulation of the Heisenberg principle appears as an optional axiom, just
as Euclid’s parallel postulate in the modern approaches to geometry. The
introduction of this new, apparently purely qualitative, axiom has some very
strong mathematical implications whose investigation is the main goal of the
present paper.

It is a non trivial fact that all the basic features of quantum theory
can be deductively obtained within this axiomatic approach: from
the necessity to introduce amplitudes rather than probabilities, to the su-
perposition principle; from the Schrödinger equation to the symmetry of the
transition probabilities; from the emergence of complex numbers to that of
unitary representations of groups . . .. It is worth to draw the reader’s atten-
tion on the fact that also the reversible character of the Schrödinger equation
has a purely statistical and information–theoretic origin, stemming from the
symmetric role that two maximal (nondegenerate) observables play in their
mutual conditioning: it is a kind of information theoretic relativity principle,
asserting that, from the point of view of statistical predictions there exist no
priviliged set of compatible observables (cf. the remark after Theorem 122).

The fact that such a rich and detailed structure emerges from very general,
qualitative and (most of all) physically meaningful axioms, is responsible
for the lengthy mathematical procedure. This deductive chain is not only an
amusing intellectual game: the conceptual implications of the final result are
relevant for the interpretation of quantum physics because of the following
reasons. Suppose one accepts the axioms at the basis of the present approach,
then, since no theory requires, for its interpretation, more than it is required
for the interpretation of its axioms and since the axioms themselves do not
require the introduction of strange properties such as non reality, objectifi-
cation, non locality, non separability,... it follows that the interpretation of
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quantum theory can do without these things and students shall no longer be
obliged to learn them.

Another advantage of the present axiomatization is that it suggests some
nontrivial geometric generalizations of the quantum formalism: an example
is described in Section (8.) below, other shall be discussed elsewhere.

The information theoretic formulation of the Heisenberg principle which
we propose is the following:

There exist pairs of observables which cannot be simultaneously
measured with arbitrary precision on the same system.

We interpret this statement not as a specific statement of quantum physics,
but as a universal principle of any experimental science. The first conceptual
implication of this statement is that the identification event ≡ measured
event , implicit in classical probability, should not be taken for granted in
nature and one should distinguish between the two statements:

The observable A has the value a (platonic statement).
The measurement of the observable A has given the value a (experimental

statement).

In other words: while in classical probability the experiment is neutral
and there is no distinction between platonic statements and experimental
statements, in quantum probability the experiment is active and the conse-
quences of this distinction have to find some expression in the mathematical
model.

All this has been well understood since a long time in the literature on the
foundations of quantum theory, but the recognition that from these state-
ments one can deduce some very detailed informations on the mathematical
structure of quantum theory seems to be a characteristic of the present ap-
proach which, even if absorbing ideas and terminology of practically all the
previously developed attempts to deduce the quantum mechanical formalism
from physically meaningful requirements (axioms), is based on quite different
ideas. The basic construction, described in the following was first discussed
in [Ac82] for observables assuming only a finite set of values. A preliminary
formulation of the axioms (but without proofs) was discussed in [Ac94]. In
the present paper we concentrate on the deduction of the quantum model
from physically meaningful axioms; a detailed discussion of the implications
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of this deduction for the interpretational problems of quantum theory, in-
cluding the so–called paradoxes, the hidden variable question, the statistical
invariants and the related Bell (and two slit) inequalities, the probabilistic
meaning of the use of complex numbers in quantum theory, . . ., can be found
in [Ac82], [Ac84], [Ac86], [Ac93].

2 Algebras of measurements: heuristic con-

siderations

The main difference between classical and quantum probability is that in the
former theory acquisition of information is considered a cumulative process
(new informations do not destroy old ones) while in the latter the process
may not be cumulative, in the sense that acquisition of new informations
may alter previously acquired informations. Since alterations may occur
because we act upon a system by a measurement, it is natural to set up our
mathematical model as an idealization of the various operations which are
present in the measurement procedures. The usual Boolean-Kolmogorovian
structure will be recovered as the limiting case, in which the informations
acquired in a measurement process do not affect those acquired by previous
measurements. The heuristic considerations of this Section are inspired by
the essay [Schw70] of J. Schwinger and are aimed at justifying, on a physical
level, the notion of algebra of measurements introduced by him. On
the other hand, the mathematical analysis of the algebra of measurements,
contained in the following Sections, was first developed in [Ac82].

In this Section we shall use terms such as measurement, ensemble, . . ., in
their intuitive meaning. The axioms are formally stated in Section (3.).

Let n be an integer or +∞ and let A be a discrete observable whose
values we denote aj (j = 1, . . . , n). With the pair {A, (aα)} we associate
an idealized measurement instrument, denoted Aα, which from an ensem-
ble of independent similar systems selects those for which the value of the
observable A is aα schematically:

[A = ?] ⇒ Aα ⇒ [A = aα]

Such an instrument will be called an elementary filter.
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We shall call an apparatus any object obtained by repeated applica-
tion to a set of elementary filters of the basic operations to be described
below (how these operations can be effectively realized realized is described
in Feynman [Fey66], Chapters (5), (6)).

The symbol Aj · Bk will be associated with the apparatus corresponding
to the consecutive application, to the same ensemble, first of the filter Aj
and then of Bk. The operation Aj, Bk 7→ Aj · Bk, called multiplication,
is associative, with an identity, denoted 1 and consisting of the apparatus
which does not filter away anything.

The multiplication between elementary filters is extended to a multipli-
cation between apparata simply by the requirement of associativity.

In the present idealization, the interaction with any apparatus is instan-
taneous, and between two interactions the system is isolated. The only role
played by time in the present discussion is through its order: the symbol
AjBk means that we first apply Aj and then Bk. When a chain of measure-
ments is considered, any consecutive pair is thought to be separated from the
others by a very short time (the colloquial expression that one takes place
immediately after the other is often used in the literature).

Our apparata are idealizations of the so-called first-kind measure-
ments. This means that the measured system is not destroyed by the ap-
paratus but emerges from it and can again be subjected to measurements.
Elementary filters Aj have the additional property that, in the apparatus
Aj · Aj, each particle which passed the first filter will also pass the second
(i.e., if the observable A has the value aj at certain moment t− 0, it will also
have this value also at t+ 0) schematically:

⇒ Aα ⇒ Aα ⇒ ≡ ⇒ Aα ⇒

Thus elementary filters act both as measurement apparata and as prepar-
ing apparata. This symmetry will be reflected by the formalism (cf. Theorem
20).

Not all measurements in nature are of the first kind, but in this and the
following Section our considerations will be limited to this class. Since the
measurements which do not disturb the system at all are of the first kind, it
follows that all the events considered in the classical theory are included in
the present discussion.

7



Two apparata X, Y are called compatible if

X · Y = Y ·X (1)

Two observables A,B are called compatible if for any pair of values aj
of A and bk of B

Aj ·Bk = Bk · Aj (2)

The commutativity of the observables A,B means that acquisition of infor-
mation on the observable A does not alter previous information acquired on
B, and conversely.

Two apparata (observables) X, Y are called mutually exclusive if they
are compatible and

X · Y = 0 (3)

where 0 denotes the filter which does not allow any particle to pass.

Elementary filters are mutually exclusive in the sense that, if an observ-
able A has the value aj at time t, then it cannot have any other value a short
time (immediately) after t. In symbols:

Aj · Ak = δjkAj (4)

where δjk = 0 if j 6= k and =1 if j = k. Another natural operation on filters
is the time reversal, which will be denoted ∗ and which corresponds to the
applications of the filters Aj and Bk in reversed time order. More generally,
if A(x1), . . . , (xn) are observables and Aj(xk) denotes the elementary filter
corresponding to the j-th value of the observable A(xk), then(

Aj1(x1) · . . . · Ajn(xn)
)∗

= Ajn(xn) · . . . · Aj1(x1) (5)

in particular, for n=1, and for any elementary filter Aj:

A∗j = Aj (6)

The self–adjointness denotes reversibility of the apparatus:

⇒ Aα ⇒ = ⇐ Aα ⇐

If p is a number in [0, 1] and Aj an elementary filter, the symbol p ·Aj will be
associated with an apparatus which, from an ensemble of particles identically

8



prepared so that A = aj, selects at random a fraction p of these particles. In
symbols:

(p · Aj) · Ak = Ak · (p · Aj) = δjkp · Aj (7)

Theorem (5.9) below shows how to realize experimentally such an apparatus.

Compatible mutually exclusive filters Aj, Bk can be applied in parallel.
The resulting apparatus, denoted

Aj +Bk (8)

is characterized by the fact that it will allow the passage of those particles
for which either

A = aj (9)

or
B = bk (10)

Elementary filters corresponding to different values of the same observable
are always compatible and, moreover:

A1 + . . .+ An = 1 (11)

By standard mathematical procedures (quotienting a free algebra by certain
relations) this structure of partial algebra – i.e. one in which addition, mul-
tiplication, and scalar multiplication are not everywhere defined – can be
embedded in a real associative ∗-algebra with identity.

These algebras generalize the usual Boolean structure of the Kolmogoro-
vian model. The following section shows that this generalization is not too
wide, in the sense that in some significant cases it allows a complete classifi-
cation of the new models which can arise.

3 Axioms of probability

In the present Section we shall formulate a set of axioms which account for
the intuitive properties of measurements, described in the previous Section.

Let M be a set whose elements shall be denoted X, Y, Z, . . . ∈ M and
called indifferently measurements, measurement apparata, apparata or instru-
ments.
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(A1.) (Composition axiom) There exists a binary composition law

(X, Y ) ∈M×M =⇒ X · Y ∈M

called multiplication. Interpretation: The multiplication of two instruments

X, Y corresponds to the consecutive performance of each of them (in series):

input =⇒ X =⇒ Y =⇒ output

For non 1–st kind measurements multiplication is meaningless.

(A2.) Associativity of the multiplication

(X · Y ) · Z = X · (Y · Z)

Interpretation: The definition of instrument is largely arbitrary: one can
always consider two consecutive measurements as a single one according to
the following scheme:

=⇒ (X =⇒ Y ) =⇒ Z =⇒ = =⇒ X =⇒ (Y =⇒ Z) =⇒

(A3.) There exist a measurement, denoted 1, characterized by the prop-
erty:

X · 1 = 1 ·X = X ; ∀X ∈M

Interpretation: 1 is the trivial measurement in which there is no interaction
between the system and the apparatus therefore every system passes through
the apparatus.

(A4.) There exists a measurement, denoted 0, caracterized by the prop-
erty:

X · 0 = 0 ·X = 0 ; ∀X ∈M

Interpretation: 0 is the trivial measurement which destroys every system,
therefore no system passes through the apparatus.

(A5.) There exist an operation

∗ :M =⇒M
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called time reversal, such that

(X · Y )∗ = Y ∗X∗

(X∗)∗ = X

Moreover
1∗ = 1 ; 0∗ = 0

Interpretation: The time reversal of X corresponds to do in reverse order all
the physical operations corresponding to the measurement X.

(=⇒ X =⇒)∗ = ⇐= X∗ ⇐=

A symmetric instrument is one in which the order of the sequential operations
is irrelevant.

X∗ = X

(A6.) Randomization axiom For each instrument X and each num-
ber p ∈ [0, 1] there exists an instrument, denoted pX with the following
properties:

(pX) · Y = p(X · Y ) = X · (pY )

(1 ·X) = X ; (0 ·X) = 0

Interpretation: For any input, pX either produces the same output as X or
no output. In many trials of X and pX with the same preparation the ratio

#outputs of p X

#outputs of X

is approximatively p.

Definition 1 Two instruments X, Y are called compatible if:

X · Y = Y ·X

Interpretation: (the information in the two experiments is cumulative):

⇒ X ⇒ Y ⇒ = ⇒ Y ⇒ X ⇒

The previous axioms concerned measurements in series. Now we discuss
measurements in parallel. Because of the indetedrminacy principle not all
measurements can be performed in parallel. This means that the correspond-
ing composition law cannot be everywhere defined.
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(A7.) (Sum Axiom) There exist a binary composition law among com-
patible measurements

X · Y = Y ·X ⇒ X + Y ∈M

satisfying the following conditions:

(A7.1) COMMUTATIVITY:

X + Y = Y +X

(A7.2) ASSOCIATIVITY:

(X + Y ) + Z = X + (Y + Z)

(A7.3) NEUTRALITY OF ZERO

X + 0 = 0 +X = X

(A7.4) CANCELLATION LAW:

X + Y = X + Z ⇒ Y = Z

The following Lemma shows that the distributive property is meaningful:

Lemma 1 If Xo, is compatible with X1, . . . , Xn then it is also compatible
with
X1 ·X2 · · · · ·Xn.

Proof. Simple computation.

(A7.5) Distributivity: if X, Y, Z are pairwise compatible, then

(X + Y ) · Z = X · Z + Y · Z

The interpretation of the axioms concerning the addition is straightforward.

Definition 2 An algebra of measurements is a quintuple:

{M, ·,+, ∗,multiplication by p ∈ [0, 1]}

whereM is a set and the operations ·,+, ∗ and the multiplication by p ∈ [0, 1]
satisfy the Axioms (A1.), . . . , (A7.).
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Now we begin to explore the mathematical consequences of the axioms.
The first main remark is that the physical operations can be uniquely ex-
tended to all measurements and give rise to a ∗–algebra.

Theorem 1 Given an algebra of measurementsM, there exists a, unique up
to isomorphism, ∗–algebra A over the reals and an injective map j :M⇒A
which preserves the algebraic structure, i.e. such that

j(X)∗ = j(X)∗

j(XY ) = j(X) · j(Y )

j(pX) = pj(X) , ∀p ∈ [0, 1]

j(1) = 1A ; j(0) = 0

j(X + Y ) = j(X) + j(Y ) if XY = Y X

And such that if B is a ∗–algebra and k : M ⇒ B is a map satisfying the
above identities, then there exists a ∗–homomorphism α : A ⇒ B such that:

k = α ◦ j

The pair {A, j} is called the ∗–algebra generated by M. Since A is de-
termined by M up to isomorphism, in the following we shall also call A a
measurement algebra.

4 Classical probability

What characterizes the structure of the classical events in terms of measure-
ments is the following axiom:

Universal Compatibility. All measurements are mutually compatible.

The implication of this axiom on the mathematical model is that the
measurement algebra is commutative.

Definition 3 An algebra of measurements M is called classical if the mul-
tiplication in M is commutative.
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Theorem 2 If M is a commutative measurement algebra, then there exist
a topological space S and an ∗–homorphism

j :M⇒ C(S)

Where C(S) denotes the ∗–algebra of continuous complex valued functions on
S with the pointwise operations. If the states on M separate the points, then
the homomorphism can be taken to be injective.

Proof. Simple application of the GNS construction.

Definition 4 Let A be a ∗–algebra of measurements. A subalgebra Ao of A
is called maximal abelian if it is abelian and not properly contained in any
abelian subalgebra of A.

Remark (1.) If Ao ⊆ A is maximal abelian then necessarily Ao contains
the center of A.

Remark (2.) Any abelian subalgebra Ao ⊆ A is contained in a maximal
abelian subalgebra (by Zorn’s lemma).

Definition 5 A ∈M is called a projection if

A = A∗ ; A2 = A

In the following we shall use the notation Proj(M) to denote the family of
all projections on M.

Lemma 2 LetM be a classical measurement algebra generated (algebraically)
by its projections. Then Proj(M) is a Boolean algebra with the operations:

p ∧ q = pq

p ∨ q = p+ q − pq

Theorem 3 The two categories
i) Boolean algebras
ii) Classical algebras of measurements generated by projections are iso-

morphic.
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Proof. By Stone’s representation theorem for Boolean algebras.

Remark. No probability has been introduced up to now! Only Boolean
algebras. This is natural since a classical theory needs not be a priori a
statistical one. We shall see that the situation with a quantum theory is
quite different.

Once recovers the usual framework of classical probability by introduc-
ing the axioms, characterizing the probability measures on Boolean algebras.
These are the usual ones. In this sense our extension of the axioms is a
conservative one: classical probability is included in the new formulation,
but this is a proper inclusion because the structure, as we shall see, is richer.
This last statement is clarified by the fact that any self–adjoint element X
in a measurement algebra M generates a classical subalgebra of measure-
mentsMo ⊆M hence, by Zorn’s lemma, is contained in a maximal classical
subalgebra M. This property shall be called local Kolmogorovianity.

At the moment there are no examples of models, with reasonable proba-
bilistic properties, which do not satisfy this condition.

Thus the new probabilistic models can be looked at as a bunch of clas-
sical probabilistic model lumped together in a more or less fancy way: as
long as we remain in a classical submodel, classical probability applies, but
when we consider the mutual relationships among observables in different
(incompatible) submodels, the new features emerge.

Not all measurement algebras contain some projectors. Our further ax-
ioms shall be formulated for the class of algebras that are algebraically gen-
erated by their projectors.

5 Schwinger Algebras

Now we want to formulate in terms of measurements the fundamental new
qualitative feature of quantum physics, i.e. the Heisenberg principle.

As stated in the introduction, we want to formulate this principle as a
general
information–theoretic statement, whose application should not be restricted
to the domain of micro–physics. More specifically, we individuate the quali-
tative essence of the Heisenberg principle in the mere statement of existence
of incompatible observables. In order to translate this statement in terms of
measurements we need to introduce some more notations.
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Throughout this Section, as well as in Sections (3.) and (4.), n will denote
a fixed natural integer or +∞ and, unless the contrary is explicitly specified,
A will denote a topological ∗-algebra over the reals such that addition and
multiplication are jointly continuous in A and the involution ∗ is continuous.
If n = +∞, a sum of the form

n∑
j=1

aj ; aj ∈ A (12)

is meant in the topology of A. If n <∞, the topology of A will play no role
in what follows. The center of A will be denoted κ, thus

κ = {c ∈ A : ca = ac ; ∀a ∈ A} (13)

Definition 6 Let A be an associative real algebra and let n be an integer or
+∞. A partition of the identity of rank n in A is a set A = {A1, ..., An}
of elements of A satisfying the following relations

Aj = A2
j (14)

Aj · Ak = δjkAk ; j = 1, ..., n (15)

n∑
j=1

Aj = 1 (16)

Condition (15) implies that in any moment an observable assumes only one
value. Condition (16) means that in any moment an observable assumes at
least one value.

If A is a ∗-algebra it is also required that Aj is self- adjoint, i.e.

Aj = A∗j (17)

Moreover, if A = {A1, ..., An} is a partition of the identity in A we denote
BA the abelian ∗-algebra generated by A and κ i.e., the set of all linear
combinations of the form

BA = {
n∑
j=1

γjAj : γj ∈ κ ; j = 1, ..., n} (18)
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Definition 7 A partition of the identity (Aj) in an associative real algebra
A is called maximal if the algebra BA coincides with its commutant i.e., if
for any X in A

XAj = AjX ∀j = 1, ..., n⇐⇒ X ∈ BA (19)

Summing up, within the general correspondence among physical quantities
and mathematical objects, one has the more specific correspondences:

– apparatus ≡ element of A
– Filter ≡ projection
– elementary filter ≡ atomic projection (precise value of an observable)
– an observable assumes one value at the time ≡ α 6= β ⇒ AαAβ = 0
– all values are present ≡

∑
αAα = 1

– concatenation of filters ≡ multiplication
– simultaneous action of compatible filters ≡ addition
– observable ≡ maximal partition of the identity
In the classical case there can be at most one maximal partition of the

identity and conversely if this is the case then the measurement algebra is
classical in the sense of the previous definition. Thus a necessary condition
for a measurement algebra to describe a non trivial quantum situation is that
it admits at least two different maximal partitions of the identity. We shall
see that, to a large extent, this conditionis also sufficient. So we formulate
the distinctive axiom of quantum probability as follows:

(A8.) HEISENBERG PRINCIPLE (weak form)
There exist two different maximal partitions of the identity (Aα), (Bβ).

In order to explore the consequences of this axiom we introduce the fol-
lowing defintion:

Definition 8 A Schwinger algebra of rank n over a set T is a triple

{A, T, (A(x))x∈T} (20)

where A is a real associative ∗-algebra, T is a set and, for every x in T ,
A(x) = {A1(x), ..., An(x)} is a maximal partition of the identity in A such
that for any x, y in T, for any j, k = 1, ..., n and for any γ ∈ κ, the following
conditions hold:

γAj(x)Ak(y) = 0⇐⇒ γ = 0 (21)
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γAj(x) ≥ 0⇐⇒ γ ≥ 0 (22)

Recall that, by definition, a positive element in a ∗–algebra is a linear com-
bination of elements of the form a∗a or a limit thereof.

Writing Aj(x) as Aj(x) ·Aj(x), it follows that, because of (21) equality holds
in the right hand side of (22) if and only if γ = 0.

Remark. The conditions (21) and (22) are of a generic nature. Dropping
them from the definition of Schwinger algebra should not change too–much
the overall picture.

Example (4). Let n be a natural integer or +∞. Let H = Cn with the
usual Hermitean product if n is finite and let H be any separable complex
Hilbert space if n =∞. Let T denote the set of all self-adjoint operators on
H with non degenerate spectrum (discrete spectrum, if n =∞), and let, for
each x ∈ T , (φj(x)) be the orthonormal basis of H of the eigenvectors of x.
Denote Aj(x) the rank one projector:

Aj(x) : ψ ∈ H →< φj(x), ψ > ·φj(x) = Aj(x)

where < · , · > denotes the the scalar product in H. In this case the
Schwinger algebra A, generated by the Aj(x), is the algebra of all n × n
matrices if n is finite and, if n = +∞ a natural choice for A is the ∗–algebra
generated by all the countable linear combinations of the form

∑
j γjAj(x)

with γj ∈ C and
sup
j
|γj| <∞ (23)

Remark. In the classical case on the same Boolean structure one can put
several probability measures, i.e. the Boolean algebra model cannot be in-
trinsically related to a single set of probabilities. However, if we are dealing
with two different maximal observables, then by definition the acquirement
of an exact information on the values of one of them implies that the infor-
mation on the values of the other one cannot be but statistical. Therefore,
in this case we expect a set of privileged probabilities intrinsically associated
to the observables. It is a remarkable feature of the Schwinger algebra of
measurements that they provide a mathematical support for this intuition
in the sense made precise by Theorem 20 below which shows that, intrinsic
in the very definition of Schwinger algebra, there is a well defined form of
stochasticity.
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Definition 9 Let A be an associative topological real algebra and let S be
an at most countable set. A family (aj) (j ∈ S) of elements of A is called
linearly independent over κ if for each family (λj) (j ∈ S) of elements
of κ one has ∑

j∈S

λjaj = 0⇐⇒ λj = 0 ; ∀j ∈ S (24)

(aj)j∈S is called a κ-basis of A if any element x of A can be written in the
form

x =
∑
j∈S

λjaj (25)

for some λj ∈ κ. In the following, unless otherwise stated, the term linear
combination shall mean linear combination with coefficients in the centre n
of A.

Proposition 1 Let A = (Aj) be a partition of the identity in A and let BA
denote the algebra generated by it. The map

E : X ∈ A →
∑
j

Aj ·X · Aj (26)

is a projection onto the commutant of BA. Moreover, if the partition A
is maximal then for each a ∈ A and j = 1, . . . , n there exists an element
pj(a) ∈ κ such that

Aj · a · Aj = pj(a)Aj ; j = 1, . . . , n (27)

Proof. Clearly E maps A into commutant of BA and if X is in the
commutant of BA then E (X) = X. Thus E is onto. Hence, if A (hence BA)
is maximal, E is a projection onto BA and therefore, for each element aεA,
there exist elements pj(a) ∈ κ such that:

E(a) =
∑
j

AjaAj =
∑
j

pj(a)Aj

Multiplying both sides of this identity by a fixed Aj one finds (27).

Definition 10 Let κ be a real ∗-algebra and let n be an integer or +∞. A
n-dimensional κ-valued stochastic matrix is a matrix P = (pij) (i, j =
1, ..., n) such that

pij ∈ κ ; pij ≥ 0 ;
n∑
j=1

pij = 1 (28)
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where 1 denotes the identity in κ. If also the condition

n∑
i=1

pij = 1 (29)

is satisfied, then we say that P is a κ-valued bi-stochastic matrix.

Remark (8). If κ is a commutative C∗-algebra, as it will be the generic
case for us, then we can realize it as the algebra C(S) of continuous complex
valued functions on a compact Hausdorff space S. In this case a κ–valued
stochastic matrix is simply a function on S with values in the usual real
valued stochastic matrices. If the indices i, j = 1, ..., n are thought to label
the states of a discrete system, then the points s ∈ S should be thought of as
additional (superselection) parameters to be fixed in order to obtain a well
defined transition probability i→ j for any pair of these states.

Theorem 4 Let {A, T, (A(x))x∈T} be a Schwinger algebra. Then for any
pair of elements x, y of T there exists a κ-valued n -dimensional bi-stochastic
matrix P = (pij) (i, j = 1, ..., n) such that for any i, j = 1, ..., n one has

Ai(x)Aj(y)Ai(x) = pij(x, y)Ai(x) (30)

pij(x, y) = pji(y, x) (31)

Proof. Let x, y ∈ T and i, j = 1, ..., n. Then, because of Proposition 17, and
of the maximality of A(x), Ai(x)Aj(y)Ai(x) must have the form

Ai(x)Aj(y)Ai(x) =
∑
i′

pi′j(x, y)Ai′(x) (32)

for some elements pij(x, y) ∈ κ. Multiplying both sides of (5.20) on the right
by Ai(x) (i = 1, ..., n) and using (15) one finds that

pij(x, y)Ai(x) = Ai(x)Aj(y)Ai(x) =
(
Aj(y)Ai(x)

)∗(
Aj(y)Ai(x)

)
≥ 0

and because of (22) this implies that pij(x, y) is positive. Summing (32) over
j and using (15), (16) leads to

Ai(x) =
( n∑
j=1

pij(x, y)
)
Ai(x) (33)

20



and this implies (28) because of (22). The symmetry relation (31) follows
from associativity in fact:

pij(x, y)Ai(x)Aj(y) = Ai(x)
(
Aj(y)Ai(x)Aj(y)

)
= pji(y, x)Ai(y)Aj(x)

which implies (31) because of (21).

We can now formulate the structure axiom which defines the natural
mathematical model for the first kind measurements.

SAQ Let T be a set and let {Ā(x) : x ∈ T} be a family of n-valued
maximal (physical) observables. Denote aj(x) (j = 1, ..., n) the values of
A(x) and let

Prob

{
A(y) = aj(y)|A(x) = ai(x)

}
= pij(x, y) ; x, y ∈ T , i, j = 1, . . . , n

the (experimentally measured) transition probabilities among their values.
Then there exists a Schwinger algebra {A, T, (A(x))x∈T} with the prop-

erty that for any pair of elements x, y in T and for any i, j = 1, ..., n one
has

Prob

{
A(y) = aj(y)|A(x) = ai(x)

}
= pij(x, y) (34)

where P (x, y) = (pij(x, y)) is the transition matrix associated to the pair of
partitions of the identity A(x), A(y) according to Theorem 20.

This means that the empirical data are said to satisfy the above (quantum
structure) axiom if there exists a mathematical model which is related to the
empirical data through the identity (??).

In view of the structure axiom above we shall identify, in the follow-
ing, the maximal discrete observables with their mathematical models in the
Schwinger algebra (i.e., the partitions of the identity) and for two such ob-
servables A(x), A(y) the associated bistochastic matrix P (x, y) = (pij(x, y))
will be called the transition probability matrix between A(x) and A(y).
The following theorem shows that the structure axiom SAQ above extends
in a natural way the corresponding structure axiom of the Kolmogorovian
model.
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Theorem 5 Let A be a real ∗- algebra such that the triple {A, T, (A(x))x∈T}
satisfies all the axioms of a Schwinger algebra with the exception of maximal-
ity. If A is abelian. Then there exist
(i) a set Ω and a Boolean algebra F of subsets of Ω
(ii) for any observable A(x) = (Aj(x)) an n -valued F–measurable function
Ā(x) : Ω −→ R such that, denoting aj(x) the j-th value of Ā(x) and

Āj(x) := χaj(x)(Ā(x)) ; χaj(x)(r) = 1 if aj(x) = r ; = 0 if aj(x) 6= r i, j = 1, ..., n
(35)

the correspondence
Aj(x) ∈ A 7→ Āj(x) (36)

establishes an isomorphism between the Schwinger subalgebra of A, generated
by the Aj(x) and the Schwinger algebra of all finite real linear combinations
of the Āj(x).

Conversely any pair {(Ω,F), {Ā(x)} } where Ω and F are as in (i) above
and {Ā(x)} is a family of n-valued random variables, is obtained from a
Schwinger algebra in the way described above.
Proof. Let, in the statement of the theorem, A be abelian. Then A coincides
with its center κ and the Boolean algebra generated by the Aj(x) with j =
1, ..., n and x in T with the operations

X ∧ Y = XY ; X ∨ Y = X + Y −X ∧ Y (37)

can be realized, by Stone’ s theorem, as a Boolean algebra of subsets of a
certain set Ω. Therefore A itself can be realized as the family of real linear
combinations of charachteristic functions of sets in this Boolean algebras.
The converse is trivial because if {(Ω,F), {Ā(x)} } is a pair with the prop-
erties described in the theorem, then the complex combinations of the char-
acteristic functions of the events [Ā(x) = aj(x)] define he required Schwinger
algebra.

Now, just as Stone’s theorem provides a standard mathematical model
for the Boolean algebras of classical probability, we would like to have a
standard representation theorem for Schwinger algebras in order to obtain a
classification of all the possible mathematical models of first kind measure-
ments.
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Lemma 3 Let {A, T, (A(x))x∈T} be a Schwinger algebra. For any pair of
elements x, y of T the set

{Ai(x)Aj(y) : i, j = 1, ..., n} (38)

is linearly independent over κ in the sense of Definition (6).

Proof. If, for given x, y ∈ T , there exist elements γij ∈ κ (i,j = 1,..., n) such
that

n∑
i,j=1

γijAi(x)Aj(y) = 0 (39)

then fixing i and j in {1, ..., n} and multiplying (39) on the left by Ai(x) and
on the right by Aj(y) one finds

γijAi(x)Aj(y) = 0 ∀i, j = 1, ..., n

Hence all the γij are zero by condition (21).

Corollary (12) . In the conditions of Lemma 8, if T is a finite set then

(n | T | −1)! > dimκ(A) ≥ n2 (40)

where | T | denotes the cardinality of T. In particular if n < ∞, then A is
finite dimensional as a module over κ.

Proof. By definition A is generated by the elements Ak(x) with x in
T and k = 1, ..., n. This means that A coincides with the set of all linear
combinations of the form

Aj1(x1)....AjM (xM) ; M ∈ N ; j1, . . . , jM ∈ {1, ..., n} ; x1, ..., xM ∈ T
(41)

Let N < ∞ be the cardinality of T. If M ≥ n ·N , then in the string (5.30)
at least two of the Aj(x) must be equal. So the string (5.30) contains a
substring of the form

Aj(x)Ak1(y1)....Akm(ym)Aj(x) (42)

which belongs to the commutant of A(x). Hence, by Proposition 16 such
a string must be of the form γAj(x) for some γ ∈ κ. Thus the strings of
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the form (41) with M ≥ nN are multiples of strings of the same type with
M < nN . If M < nN − 1, then we can use the identity

n∑
j=1

Aj(x) = 1

to express the string (41) as a sum of strings of length nN − 1. Thus every
element in A is a linear combination, with coefficients in κ of strings of the
type (41) with M = nN − 1. And this proves the left inequality in (40).
The right inequality has been proved in Lemma 20 and is independent of the
cardinality of T .

Summing up we have shown that if A(x) and A(y) (x, y ∈ T ) are two
maximal observables in a Schwinger algebra A, then there exists a bistochas-
tic matrix P (x, y) = (pij(x, y)) with values in the center of A such that:

Ai(x) · Aj(y) · Ai(x) = pij(x, y) · Ai(x) (43)

pij(x, y) = pji(y, x) (44)

Thus: not only two maximal observables in a Schwinger algebra canonically
define a transition probability matrix, but this matrix has necessarily the
symmetry property (44) which is found in the usual quantum mechanical
(Hilbert space) model where the explicit form of the transition probabilities
is (in obvious notations):

pij(x, y) = |〈ai(x), aj(y)〉|2 = |〈aj(y), ai(x)〉|2 = pji(y, x)

Therefore the following problem arises quite naturally: given a set

{P (x, y) : x, y ∈ T}

of n × n κ-valued bistochastic matrices (the experimental data), determine
under which conditions there exists a Schwinger algebra A associated with a
family {A(x) : x ∈ T} of n-valued observables, such that

(i) each A(x) is maximal in A
(ii) for each x, y ∈ T the bistochastic matrix canonically associated to the

pair A(x), A(y) according to Theorem 20 is P (x, y)
Remark. In the following we shall characterize the Schwinger algebras

which have minimal dimension over their center. They shall be called Heisen-
berg algebras.
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Definition 11 Let n be a natural integer or +∞; let κ be a commutative
∗-algebra and let P = (pab) be a κ-valued n × n bistochastc matrix. An
Heisenberg algebra with center κ and transition probability P is an as-
sociative ∗-algebra A such that:

i) The center of A is isomorphic to κ.
ii) There exist two maximal partitions of the identity in A

A = (Aa) ; B = (Bb) ; a, b = 1, . . . , n (45)

such that:
AaBb · Aa = pabAa ; BbAaBb = pbaBb (46)

iii) Any element x ∈ A can be written in the form

x =
∑
ab

λabAaBb (47)

for some λab ∈ κ.

Although not conceptually necessary we shall include, in the definition of
Heisenberg algebra, the condition that the transition probabilities are strictly
positive, i.e.

pab > 0 ∀a, b (48)

Notice that, because of (46) this implies

AαBβ 6= 0 ∀α, β = 1, · · · , n

Condition (48) is a genericity requirement which makes several computa-
tions much more transparent. The qualitative picture emerging from the
classification theorem should not change in an essential way if one drops this
condition.

6 Deduction of the superposition principle

We can summarize what achieved up to now as follows: Let T be a set;
{Ā(x) : x ∈ T} a family of n-valued maximal observables; {aj(x) : j =
1, ..., n} the values of Ā(x). Suppose that there exists a Schwinger algebra
{A, T, (A(x))x∈T} such that, for any element x of T there exist a maximal
partition of the identity {Aj(y) : i, j = 1, ..., n} in A and these partitions
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generate A over its center κ. Then, for any pair of elements x, y in T the
transition matrix P (x, y) = (pij(x, y)), associated to the partitions of the
identity A(x), A(y) according to Theorem 20, is uniquely defined.

But, since the transition probabilities are model independent quantities,
which could be obtained in a set of experiments, completely independent
of any mathematical representation, it is quite natural to ask the converse
question, namely: given a family Ā(x) of observable quantities, their values
aα(x) and, for any pair of elements x, y in T , a transition probability matrix

Prob

{
Ā(y) = aj(y)|Ā(x) = ai(x)

}
= pij(x, y)

when does there exist a Schwinger algebra and, for any observable Ā(x), a
partition of the identity Aj(x), with the property that for any x, y ∈ T the
transition probability matrix , associated to A(x) and A(y) is precisely
P (x, y) = (pij(x, y))?

It can be proved that the Heisenberg principle is not contained in the
transition probabilities (i.e. transition probabilities among incompatible ob-
servables may, in some cases, admit a Kolmogorov model): it is a genuine
physical principle that cannot be read off from the only knowledge of them.
Therefore it is natural to ask oneself: Beyond the Heisenberg indeterminacy
principle (in weak form), what else is needed to deduce the structure of com-
plex Hilbert space and the statistical interpretation of its vectors? The answer
([Ac82]) is: Essentially Nothing! In this Section we shall prove this state-
ment.

Let A be an Heisenberg algebra in the sense of Definition 26. Then there
exist elements γcdab ∈ κ (a, b, c, d = 1, ..., n) such that

Bb · Aa =
n∑

c,d=1

γcdabAc ·Bd (49)

these elements will be called the structure constants of A in the (AaBb)-
basis.

Theorem 6 Let A be an associative algebra with identity and let κ denote
its center. Let (Aa), (Bb) (a, b = 1, ..., n) be partitions of the identity in A
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such that the set {Aa · Bb : a, b = 1, ..., n} is a κ-basis of A, and let γcdab
(a, b = 1, ..., n) be elements of κ such that the identity (6) holds. Then

n∑
a=1

γa
′b′

ab = δbb′ (50)

n∑
b=1

γa
′b′

ab = δaa′ (51)

γab
′

a′bγ
ab′′

a′′b′ = γab
′′

a′b γ
a′b′′

a′′b′ (52)

If moreover A is a ∗-algebra then

n∑
c,d=1

(γcdab)
∗ · γc′d′cd = δac′ · δbd′ (53)

(γab
′

a′b)
∗ · γa′′b′′ab′ =

n∑
e,d=1

γa
′′d
a′b′ · γa

′′b′′

ed · γeb′′ab (54)

Conversely, if κ is a commutatve associative real ∗-algebra with identity and
γcdab (a, b = 1, ..., n) are elements of κ satisfying (2), (51), (52), then there
exist an associative algebra A with center κ and two partitions of the identity
in A, A = (Aa) B = (Bb), such that Aa · Bb is a basis of A over κ and
(6) holds. If moreover (53) and (54) hold then A has a unique structure of
∗-algebra whose involution is characterized by the property that its restriction
on κ coincides with the original involution on κ and for all a, b

Aa = A∗a ; Bb = B∗b (55)

Proof. Necessity. Associativity and (6) imply that for any a, b, a′, b′ =
1, . . . , n

Aa′BbAaBb′ = γaba′b′Aa′Bb′ (56)

Summing (12) over b (resp a) and using (x.10) one finds (51) (resp. (2)).
Using twice (6) in the identity

[AaBbAa′Bb′ ] · Aa′′Bb′′ = AaBb · [Aa′Bb′Aa′′Bb′′ ] (57)

the identity (52) follows from (58). Taking adjoints of both sides of (6) we
obtain

AaBb =
∑
cd

[
∑
c′d′

(γcdab)
∗γc

′d′

cd ] · Ac′Bd′
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which is equivalent to (53) because of the independence of the AaBb over κ.
Moreover

(AaBbAa′Bb′)
∗ = (γab

′

a′b)
∗ · (AaBb′)

∗ =
∑
a′′b′′

(γab
′

a′b)
∗ · γa

′′
b
′′

ab′ · Aa′′Bb′′ (58)

On the other hand

(AaBbAa′Bb′)
∗ = (Aa′Bb′)

∗·(AaBb)
∗ =

(∑
a′′d

γa
′′
d

a′b′ ·Aa′′ ·Bb

)
·
(∑
eb′′

γeb
′′

ab ·Ae·Bb′′

)
=

=
∑
a′′b′′

[γa
′′
d

a′b′ · γeb
′′

ab · γa
′′
b
′′

ed Aa′′ ·Bb′′

]
(59)

and (54) follows from the independence of the productsAaBb over κ. Sufficiency.

Let κ be a commutative associative real ∗-algebra with identity, let the γi
′j′

ij

satisfy the conditions (2), (51), (52), (53), (54) and let A be the real vector
space of all formal series of the form

n∑
a,b=1

λabAaBb +
n∑
a=1

λaAa +
n∑
b=1

νBb + λ · 1 (60)

with λab, λa, νb, λ ∈ κ and with relations

n∑
a=1

Aa =
n∑
b=1

Bb = 1 (61)

On A we define a multiplication by

1 · x = x · 1 = x ; x ∈ A (62)

(
∑
ab

λabAaBb) · (
∑
a′b′

µa′b′Aa′Bb′) =
∑
a′b′ab

λabµa′b′γ
ab′

a′bAaBb′ (63)

and an involution ∗ by

(
∑
ab

λabAaBb)
∗ =

∑
a′b′ab

λ∗abγ
a′b′

ab Aa′Bb′ (64)

One easily checks the distributivity of the multiplication. This and the rela-
tions (66) imply that conditions (62), (63) above uniquely define a multipli-
cation on A. In particular (62), (63) imply that

AaBbAa′Bb′ = γab
′

a′bAaBb′ (65)
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Summing (65) over b and using (66) and (51) we find

AaAa′Bb′ = δaa′AaBb′ (66)

hence, again by
AaAa′ = δaa′Aa (67)

From (66) and (51) we also deduce that

A∗a = (
∑
b

AaBb)
∗ =

∑
a′b′b

γa
′b′

ab Aa′Bb′ =
∑
a′b′

δa′aAa′Bb′ = Aa (68)

Hence A = (Aa) is a partition of the identity in A in the sense of Definition
(x.1). Similarly for B = (Bb). For the associativity of A it will be sufficient
to check the identity (4); but due to (65) and (52) this is immediate. It
remains to be shown that A is a ∗-algebra. According to (64) one has

(
∑
ab

λabAaBb)
∗∗ =

∑
aba′b′

λab(γ
a
′
b
′

ab )∗ · γa′b′
a
′′
b
′′Aa′′Bb′′ (69)

which, because of (53), is equal to∑
ab

λabAaBb

So for any x ∈ A one has (x∗)∗ = x. Finally,

[(
∑
ab

λabAaBb) · (
∑
a′b′

µa′b′Aa′Bb′)]
∗ = [

∑
a′b′ab

λabµa′b′γ
ab′

a′bAaBb′)]
∗ =

=
∑

a′,b′,a,b,a′′ ,b′′

λ∗abµ
∗
a′b′(γ

ab′

a′b)
∗γa

′′
b
′′

ab′ Aa′′b′′Bb′′ (70)

and, because of (54) this is equal to

(
∑
a′,b′

µa′,b′Aa′, ·Bb′)
∗ · (
∑
a,b

λabAaBb)
∗ = (

∑
a′,b′

µ∗a′b′γ
a
′′
d

a′b′Aa′′ ·Bd) · (
∑
a,b

λ∗abγ
eb
′′

ab ) =

=
∑

a,b,a′,b′,a′′ ,b′′

λ∗abµ
∗
a′b′γ

a
′′
d

a′b′ γ
eb
′′

ab γ
a
′′
b
′′

ed Aa′′ ·Bb′′ (71)

So for any x, y ∈ A one has (xy)∗ = y∗x∗, and this ends the proof.
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The following Proposition shows that, under generic conditions ((AI) be-
low always holds if κ is a field and (AII) if A is a C∗-algebra) the strict
positivity of the transition probabilities implies the linear independence of
the AjBj over κ.

Proposition 2 Let A be an associative real algebra and let (Ai), (Bj) be
a pair of maximal partitions of the identity in A. Consider the following
statements:

i) Condition (59) holds in A with equality if γ = 0 and for each i, j ∈
1, . . . , n one has

pij(B|A) > 0 (72)

ii) Condition (58) holds in A (iii) Condition (58) holds in A and the products

Ai ·Bj are independent over κ. Then (i)⇒ (ii)⇒ (iii) and (iii) implies that

pij(B|A) = γij
′

ij = γi
′j
ij ; ∀i, i′, j, j′ ∈ 1, . . . , n (73)

If moreover
– (AI) The product of two positive elements in κ is zero if and only if one

of them is zero.
– (AII) For every a ∈ A one has

a∗a = 0⇐⇒ a = 0 (74)

then (iii) =⇒ (i) and

γi
′j′

ij 6= 0 ; ∀i, j, i′, j′ ∈ 1, . . . , n (75)

Proof. (i) ⇒ (ii). Assume that (??) holds and that, for some pair i, j ∈
1, . . . , n, one has AiBj = 0. Then

0 = AiBjAi = pij(B|A)Ai

which contradicts (??) by (6.11). The implication (ii) ⇒ (iii) has been
proved in Lemma 60.

(iii)⇒ (i). Assume that for some i, j, i′, j′ ∈ 1, . . . , n, one has

γi
′j′

ij = 0
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Then, using (6) one finds
Ai′BjAiBj′ = 0

which implies, multiplying on the right by Ai and on the left by Bj, that:

pji′(A|B)pij′(B|A) ·BjAi = 0 (76)

hence taking adjoints of (76) and using (58)

pji′(A|B)pij′(B|A) = 0

Therefore, by the assumption (AI) one of the two factors must be zero.
Assuming that pij′(B|A) = 0, one has:

0 = pij′(B|A)Ai = Ai ·Bj′ · Ai = (Bj′ · Ai)∗ · (Bj′ · Ai)

By assumption (AII) this implies that Bj′ · Ai = 0 hence AiBj = 0 which
contradicts the independence of the products AiBj.

Corollary (6.3). If BA and BB are maximal Abelian with transition matrix
P = (pab) then

pa′b′pabγ
a′′b′′

ab′ = γa
′b
ab γ

a′′b
a′b′γ

a′′b′′

ab (77)

pa′b′pabpab′ = γa
′b
ab′γ

a′′b
a′b′γ

a′′b′

ab (78)

Proof. Since κ is commutative, the expression

γa
′b
ab′γ

a′′b
a′b′γ

a′′b′′

ab (79)

is equal to (
γa
′′b
a′b′γ

a′b
ab′

)
γa
′′b′′

ab (80)

and applying (52) to the expression in parentheses in (79), this becomes equal
to

γa
′′b′

a′b′

(
γa
′′b
ab′ γ

a′′b′′

ab

)
(81)

Applying again (52) to the expression in parentheses in (81), this becomes
equal to

γa
′′b′

a′b′ γ
a′′b′′

ab′ γ
ab′′

ab

which, because of (73), is equal to

pa′b′pabγ
a′′b′′

ab′
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and this proves (75). Since (76) is obtained from (75) by putting b′′ = b′ and
using (??), the Lemma is proved.

Remark (6.4). From (79) it follows that, if for each a, b = 1, ..., n one has

pab > 0

(i.e. pab ≥ 0 and invertible) then each of the structure constants γa
′′b′

ab is
invertible. In fact, assuming the contrary would lead to the contradiction
that, for some choices of a, b, a′, b′, a′′, the left hand side of (79) is invertible
while the right hand side is not.

Theorem 7 Let A be an associative real algebra generated by the maximal
partitions of the identity A = (Aa) ; B = (Bb). Assume that the transition
probability matrix P = (pab) between A and B is strictly positive in the sense
of (??) and denote γcdab the structure constants of A in the (AaBb)-basis. Then
there exists a κ-valued matrix U = (uab) such that

n∑
b=1

ua′b(
pab
uab

) = δa,a′ ; a, a′ = 1, ..., n (82)

n∑
a=1

(
pab
uab

)uab′ = δbb′ ; b, b′ = 1, ..., n (83)

γa
′b′

ab =
uab′ua′b
uabua′b′

pab ; a, b, a′, b′ = 1, ..., n (84)

Conversely if κ is a real commutative ∗-algebra then, given a κ-valued strictly
positive bi-stochastic matrix P = (pab) and a κ-valued matrix U = (uab)
satisfying (82), (83), (84) then there exist:
- an associative real algebra A with center κ
- two maximal partitions of the identity A = (Aa) B = (Bb) in A with
transition matrix P such that the γcdab, defined by the right hand side of (84),
are the structure constants of A in the (AaBb)-basis.

Proof. Necessity Since each pab is invertible, we can define the nor-
malized structure constants

Γa
′b′

ab = γa
′b′

ab

/
pab a, b, a′b = 1, ...n (85)
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which, because of (73) satisfy

Γab
′

ab = Γa
′b
ab = 1 ∀a, a′, b, b′ (86)

Now, using (52) twice and (73), we obtain(
γa
′′b
a′b′γ

a′b
ab′

)
γa
′′b′′

ab = γa
′′b′

a′b′

(
γa
′′b
ab′ γ

a′′b′′

ab

)
= γa

′′b′

a′b′ γ
a′′b′′

ab′ γ
ab′′

ab = pab′pabγ
a′′b′′

ab′ (87)

hence, dividing both sides of (6.38) by pab′ one finds

Γa
′′b
a′b′Γ

a′b
ab′Γ

a′′b′′

ab = Γa
′′b′′

ab′ (88)

Choosing b′′ = b in (88) and using (86), we find

Γa
′′b
a′b′Γ

a′b
ab′ = Γa

′′b′′

ab′ (89)

In particular, letting a′′ = a in (89) we obtain

Γaba′b′ = (Γa
′b
ab′)
−1 (90)

Now fix an index ao arbitrarily and denote

γ
(
a;
b

b′

)
= Γaobab′ (91)

With these notations, using (89) and (90), we find that every Γa
′b
ab′ can be

written as

Γa
′b
ab′ = Γaobab′ Γ

a′b
aob =

γ
(
a; b

b′

)
γ
(
a′; b

b′

) (92)

and therefore (88) becomes

γ
(
a; b

′′

b′

)
γ
(
a′′; b

′′

b′

) =
γ
(
a; b

b′

)
γ
(
a′; b

b′

) · γ
(
a; b

′′

b

)
γ
(
a′′; b

b′

) · γ
(
a; b

′′

b

)
γ
(
a′′; b

′′

b

) (93)

This implies that the expression

γ
(
a; b

b′

)
γ
(
a; b

′′

b

)
γ
(
a; b

′′

b′

) (94)
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does not depend on a and therefore it must be necessarily equal to 1, which is
the value obtained by choosing a = ao. Therefore, fixing arbitrarily an index
bo and denoting

uab = γ
(
a;
b

bo

)
= Γaobabo

(95)

we have that uab is invertible because of Remark (52) and, using (94):

γ
(
a;
b′

b

)
= γ

(
a;
bo
b

)
γ
(
a;
b′

bo

)
=
uab′

uab
(96)

so that from (85), (92) and (96) we conclude

γa
′b′

ab = pabΓ
a′b′

ab = pab
γ
(
a; b

′

b

)
γ
(
a′; b

′

b

) = pab
uab′ua′b
uabua′b′

(97)

and this proves (84). Once proved (84), (82) and (83) are immediate conse-
quences of (2) and (51) respectively.
Sufficiency. It is a straightforward verification to check that, if (uab) is a
κ-valued matrix satisfying (82) and (83) then the γa

′b′

ab defined by (84) sat-
isfy the equations (2), (51), (52) and (??). The statement then follows from
Theorem 6 and Proposition 2.

Remark (6). Introducing the matrices U(A|B) = (uab(A|B)) and U(B|A) =
(uba(B|A)) defined respectively by

uab(A|B) = uab ; uba(B|A) =
pab
uab

(98)

where (uab) is the matrix introduced in Theorem 7, the orthogonality relations
(82) and (83) become respectively

U(B|A)U(A|B) = 1 ; U(A|B)U(B|A) = 1

Remark (7) Let P = (pab) be a κ-valued bistochastic matrix and let U =
(uab) be a solution of the equations (82) and (83). Then one immediately
verifies that for any invertible qb, rb (b = 1, . . . , n) the κ-valued matrix

Vab = qauabrb (99)

is also a solution of the equations (82), (83) and

vab′va′b
vabva′b′

=
uab′ua′b
uabua′b′

(100)
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Definition 12 Two κ-valued matrices (uab) (vab), related by a transforma-
tion of the form (99) will be called equivalent . Thus, by definition, two

equivalent κ-valued matrices (κab), (vab) generate the same family of structure
constants by formula (84).

Lemma 4 Suppose that in κ any positive element has a square root and let
P = (pab) be a κ-valued bistochastic matrix; let (uab) be a solution of the
equations (82) and (83); and γa

′b′

ab be defined by (84). Then the γa
′b′

ab satisfy
the equations (2), (51), (52), (53), (54) if and only if (uab) is equivalent, in
the sense of Definition ?? to a matrix (vab) satisfying:

pab = |vab|2 ; a, b = 1, . . . , n (101)

Proof. Because of Theorem 7 We have only to check (7) and (1). If the
γa
′b′

ab are defined by (84) then writing equation (54) in terms of the uab and
their adjoints one finds, after trivial simplifications

u∗a′b′u
∗
ab

u∗a′bu
∗
ab′

pa′bpab′

uab′
=
pa′b′pab
ua′b′uab

∑
d

ua′d
∑
e

ueb(
ped
ued

) (102)

Using (83), (??) can be written in the form

pa′b
|ua′b|2

pab′

|uab′ |2
=

pa′b′

|ua′b′|2
pab
|uab|2

(103)

Denoting qab the ratio
qab = pab/|uab|2 (104)

equation (54) means that the quotient

λa
′

a = qa′b/qab (105)

is independent of b and therefore we can take

λa
′

a = qa′a/qaa (106)

From (??) one immediately deduces that for any a, a′, a′′ = 1, . . . , n

λa
′

a′′ = λa
′

a · λaa′′ ; (λa
′

a )−1 = λaa′ (107)
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and therefore there exist positive invertible elements sa ∈ κ such that

λaa′ = sa/sa′ ; ∀a, a′ = 1. . . . , n (108)

Since κ admits square roots, (??) and (??) imply that
if, for each a = 1, . . . , n, qa is a square root of sa in the sense that

q∗aqa = sa (109)

then the quotients:
pa′b

|qa′ua′b|2
=

pab
|qauab|2

= vb (110)

are independant of a, σ and therefore, if rb is a square root of vb and if we
define

vab := qσuab rb (111)

then (vab) is equivalent to (uab) and equation (??) is satisfied.

Lemma 4 shows that, up to replacement of (uab) with an equivalent solu-
tion of the equations (82) and (83) (in the sense of Definition ??), we can
always assume that

pa′b
|ua′b|2

=
pab
|uab|2

; ∀a, a′, b = 1, . . . , n (112)

Denoting tb the common (positive invertible) value of the expressions (112)
for a fixed b = 1, . . . , n, one obtains:

pab = tb|uab|2 ; a, b = 1, . . . , n (113)

and, with the same argument as before, we can suppose that, up to equivalence

pab = |uab|2 ; ∀a, b = 1, . . . , n (114)

Conversely, if (??) is satisfied then (??), and therefore (1), hold in an obvious
way. Finally, expressing (7) in terms of the (uab) through (84), one finds,
after simplifications:

|uab|2

pab
δac′δbd′ =

∑
cd

u∗cbucd′
pcd
|ucd|2

u∗cduc′d (115)
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Definition 13 Let κ be a commutative ∗-algebra and let P = (pab) (a, b =
1, . . . , n) be a n × n κ-valued bistochastic matrix. A κ-valued transition
amplitude for P is a κ-valued unitary matrix U = (uab) such that, if U∗ is
defined by

(U∗)ba :=
pab
uab

=: uba ∀a, b = 1, . . . , n (116)

then
UU∗ = U∗U = 1 (117)

Notice that the notation uba might be misleading. When confusion can arise
it is better to use uab(A | B) for uab and uba(B | A) for uba.

Theorem 8 Let κ be a commutative ∗-algebra such that any positive element
in κ has a square root and let P = (pab) be a κ-valued bistochastic matrix
with invertible elements. An Heisenberg algebra with center κ and transition
probability P exist if an only if P admits a κ-valued transition amplitude
U = (uab). In this case the structure constants of A have the form (84).

Proof. The proof follows easily from the above discussion.

7 Deduction of the Schödinger equation and

of the Hilbert space

Now we want to extend the above theorem to the case of an arbitrary family
of maximal partitions of the identity. More precisely, the present section
is devoted to the solution of a problem which is the quantum probabilistic
analogue of the following, well known, problem in classical probability: given
a family of transition probability matrices {P (s, t) : s < t, s, t}, when does
there exist a Markovian process (A(t)) such that for each s < t, the transition
matrix canonically associated to the pair of random variables A(s), A(t) is
P (s, t) ? It is well known that the classical probabilistic problem has a positive
solution if and only if the family of transition probability matrices (P (s, t))
satisfies the Chapman–Kolmogorov equation:

P (r, s) · P (s, t) = P (r, t) ; r < s < t
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A quantum generalization of this problem can be formulated as follows: given
a natural integer n = 1, 2, . . . , (or +∞), a a commutative associative real ∗-
algebra with identity κo, a set T and a family {P (x, y) : x, yεT} of κo–valued
n× n transition probability matrices, find:

i) an Heisenberg algebra A of dimension n2 over its center κ and such
that κ contains a subalgebra isomorphic to κo.

ii) for each x ∈ T , a maximal abelian partition of the identity {Aa(x) :
= 1, ..., n} in A, such that for each x, y ∈ T the transition probability matrix
associated to the pair (Aa(x)) (Ab(y)) in the sense of Theorem 20 is P (x, y)
Notice that, since the symmetry condition

pab(x, y) = pba(y, x)

has been shown in Proposition 13 to be a necessary condition for the solution
of the problem, we can assume that it is satisfied. Moreover we will assume
that:

P (x, x) = 1 ; ∀x ∈ T

pab(x, y) > 0 ; ∀x ∈ T ∀a, b = 1, ..., n

and we shall look only for generic solutions (i.e. such that the structure
constants of A in all the (Aa(x)Bb(y))–bases are invertible.

A rather surprising fact is that the above stated quantum–
probabilistic problem has a positive solution if and only if to each
transition matrix P (x, y) one can associate an amplitude matrix U(x, y)
with coefficients in an abelian algebra κ containing a subalgebra
isomorphic to κo, so that the family U(x, y) with x, y ∈ T satisfies
a generalization of the Schrödinger equation (in integral form) (cf.
Theorem 122 below and the remarks following it).

In order to state precisely, and then prove, the above mentioned result
we begin to determine the structure of the maximal abelian partitions of the
identity (Ca) of A which are generic in the sense that if

Cg =
∑
ab

Cg
abAaBb ; Cg

ab ∈ κ (118)

then all the Cg
ab are invertible.
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Lemma 5 Let (Ca) (Db) (a, b = 1, . . . n) be two maximal generic partitions
of the identity in A. Denote δa

′b′

ab the structure constants of A in the (Ca ·Db)-
basis, and P (C|D) = (pab), the κ-valued bistochastic matrix associated to the
pair (Ca), (Db). If pab is invertible for any a, b, then for any set x(a, b) of
invertible elements of κ, the following two identities are equivalent:

δa
′b′

ab =
x(a′, b)x(a, b′)

x(a′, b′)x(a, b)
pab (119)

Eab · Ea′b′ =
pa′b

x(a′, b)
Eab′ (120)

where, by definition Eab = CaDb/x(a, b)

Proof. By definition of structure constants:

Ca′DbCaDb′ = δa
′b′

ab Ca′D
′
b (121)

or equivalently:

Ea′b · Eab′ = δa
′b′

ab

x(a′, b′)

x(a′, b)x(a, b′)
Ea′b′ (122)

thus (10) is equivalent to:

δa
′b′

ab

x(a′, b′)x(a, b)

x(a′, b)x(a, b′)

1

pab
= 1 (123)

which is (9).

Theorem 9 In the notations and the assumptions of Lemma (7.1) let (Ca)
be a generic maximal abelian partition of the identity in A. Then there exists
two κ-valued matrices U(A|C) = (ρ(a, b)) and U(B|C) = (τ(b, c)) (a, ,=
1, ..., n) satisfying

n∑
c=1

ρ(a, c)τ(c, b) = uab (124)

n∑
a,b=1

τ(c, b)ubaρ(a, c′) = δcc′ (125)

n∑
a,b=1

ρ(a, )τ(c, b)

uab
AaBb = Cc (126)

Conversely, any pair of κ-valued matrices U(A|C) = (ρab) U(B|C) = (τbc)
satisfying (124) and (125) defines, through (126) a generic maximal abelian
partition of the identity in A.
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Proof. Sufficiency. Let (ρab) (τbc) be κ-valued matrices satisfying (124),
(125). Defining (Cc) by (126), the conditions (72) are easily verified by di-
rect calculation. Denote A(C) the ∗-algebra generated by κ and the Cc. To
prove that A(C) is maximal abelian, it will be sufficient show that it is the
image of A for the conditional expectation X ∈ A 7→

∑
cCcXCc is A(C) or,

equivalently, that for each a, b, c one has

CcAaBbCc = λCc (127)

for some λ ∈ κ. The identity (127) is verified by direct computation using
(124) (125). Necessity. Let (Cc) be a generic partition of the identity in

A, denote Eab = AaBb/uab and let

Cc =
n∑

a,b=1

Cc
abEab ; Cc

ab ∈ κ (128)

Then:
(AaCcBb) · (Aa′CcBb) = Cc

abC
c
a′buba′Eab (129)

and, by the maximal abelianity of (Cc):

CcBbAa′Cc = Γc,a′,bCc (130)

for some Γc,a′,b ∈ κ. Comparing (129) and (130), one deduces:

CcBbAa′Cc = Cc
a′buba′Cc (131)

But one has also:

CcBbAa′Cc =
n∑

a,b′′=1

Cc
abu(b, a′)Cc

a′b′′Eab′′ (132)

Thus, comparing (131) and (132) one obtains:

Cc
ab(C

c
a′b)
−1 = Cc

ab′(C
c
a′b′)

−1 (133)

independently of a, b, a′, b′. Hence, by the same arguments as in Theorem ??
there exist two κ -valued matrices (ρ(a, c)) (τo(c, b)), such that:

Cc
ab(C

c
a′b)
−1 =

ρ(a, c)

ρ(a′, c)
(134)
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Solving (133) for the combination Cc
ab(C

c
ab′)
−1 one finds:

Cc
ab(C

c
ab′)
−1 =

τo(c, b)

τo(c, b′)

In particular the quantity:

tc :=
Cc
ab

ρ(a, c) · τo(c, b)
is independent of a, b = 1, ..., n and denoting τ(c, b) := tcτo(c, b), one obtains

Cc
ab = ρ(a, c) · τ(c, b) (135)

and this proves (126). Moreover:

1 =
n∑
c=1

Cc =
n∑

a,b=1

[
n∑
c=1

ρ(a, c) · τ(c, b)

uab
]AaBb

and this implies (124). Finally using the notation (116) and (10) one sees
that the orthogonality relations CcCc′ = δc,c′Cc are equivalent to:

n∑
a′,b=1

Cc
abuba′C

c′

a′b′ = Cc
ab′ δc,c′ (136)

and this, due to (135) and the genericity assumption is equivalent to (125).
Keeping into account (135) and the definition of Eab, Equation (126) is just
a rewriting of (128). The theorem is proved.

Theorem 10 Let A be an Heisenberg algebra of dimensions n2 over its cen-
ter κ. For any triple (Aa), (Bb), (Cc) of maximal abelian generic partitions
of the identity in A there exist κ-valued matrices {U(X|Y ) = uab(X|Y ) :
X, Y = A,B,C} satisfying:

U(X|X) = 1 (137)

U(X|Y ) · U(Y |Z) = U(X|Z) (138)

and such that, if X 6= Y , then the matrix P (X|Y ) = (pab(X|Y )) defined by:

pab(X|Y ) = uab(X|Y )uba(Y |X) (139)

is the transition probability matrix canonically associated to the (Xa ·Yb)-basis
according to Proposition 2. Conversely, any set {U(X|Y ) : X, Y = A,B,C}
of κ-valued matrices satisfying (137), (138), (139) can be obtained in this
way.

41



Proof. Necessity. Because of Proposition ?? the matrices P (A|C), P (B|C), . . .
are characterized by the properties:

CcAaCc = pca(A|C)Cc ; AaCcAa = pac(C|A)Aa (140)

CcBbCc = pcb(B|C)Cc ; BbCcBb = pbc(C|B)|calBb (141)

Using (140) and (126) one obtains:

pac(C|A)Aa = AaCcAa =
n∑
b=1

ρ(a, c) · τ(c, b)
pab(A|B)

uab(A|B)
Aa

and this, due to (136) is equivalent to:

n∑
b=1

τ(c, b) · uba(B|A) =
pab(A|C)

ρ(a, c)
(142)

In a similar way, using (141), one shows that:

n∑
a=1

uba(B|A) · ρ(a, c) =
pcb(C|B)

τ(c, b)
(143)

Thus, defining the κ-valued matrices:

uac(A|C) = ρ(a, c) ; uca(C|A) = pac(A|C)/ρ(a, c) (144)

ucb(C|B) = τ(c, b) ; ubc(B|C) = pcb(C|B)/τ(c, b) (145)

(142) and (143) become respectively:

U(C|B) · U(B|A) = U(C|A) ; U(B|A) · U(A|C) = U(B|C) (146)

which, in view of (137) imply:

U(C|B) = U(C|A) · U(A|B) ; U(A|C) = U(A|B) · U(B|C) (147)

and this proves (138) for X 6= Z. Now for X, Y = A,B,C denote:

EX,Y
ab = XaYb/ucb(X|Y ) (148)

Using (126) and (146) one finds:

CcBb · Cc′Bb′ =
n∑

a,a′=1

uac(A|C)ucb(C|B)ua′c′(A|C)uc′b′(C|B)EAB
ab E

AB
a′b′
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=
n∑
a=1

uac(A | C)ucb(C | B)ubc′(B|C)ubc′uc′b′(C | B)EAB
ab′

or, equivalently, using again (126) in appropriate notations:

ECB
cb ECB

c′b′ = [
n∑

a′,b=1

ua′c(A|C)ucb(C|B)EAB
a′b ]Bb′ = ubc′(B|C)ECB

cb′

Therefore, from Lemma 118 we conclude that

uc′b(C|B)ucb′(C|B)

uc′b′(C|B)ucb(C|B)
pcb(C|B) = δc

′b′

cb

are the structure constants of A in the (CcBb)-basis and, in view of Remark
(53), this implies, in particular:

U(C|B) · U(B|C) = U(B|C)U(C|B) = 1

Similarly one shows that:

U(A|C) · U(C|A) = U(C|A) · U(A|C) = 1

Sufficiency. Let U(X|Y ), P (X|Y ) (X, Y,= A,B,C) be as in the formu-
lation of the theorem. Denote A the Heisenberg algebra generated over its
center κ by the partitions of the identity (Aa), (Bb) (a, b = 1, ..., n), whose
structure constants in the (AaBb)-basis are:

γa
′b′

ab =
uab′(A|B)ua′b(A|B)

ua′b′(A|B)uab(A|B)
pab(A|B)

Because of (138) (with X = Z) and (83) and of Theorem 51, these are
the structure constants of an Heisenberg algebra with center κ. Define, for
c = 1, ..., n:

Cc =
uac(A|C)ucb(C|B)

uab(A|B)
AaBb

Then, according to Theorem 9, (Cc) is a maximal abelian partition of the
identity in A and it is easy to convince oneself that the transition amplitude
and probability matrices, associated to the triple (Aa), (Bb), (Cc) according to
the first part of the theorem are the given ones.

The above results can be summarized as follows: let be given a family of
transition probability matrices {P (x, y) : x, y ∈ T} satisfying the conditions
listed at the beginning of the present Section.
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Theorem 11 Under the assumptions stated at the beginning of the present
Section, the following assertions are equivalent:

i) There exists an Heisenberg algebra {A, T, (A(x))x∈T} with center κ such
that for each x, y ∈ T , P (x, y) is the transition probability matrix canonically
associated to the pair A(x), A(y).

ii) For each x, y ∈ T there exists a κ-valued matrix U(x, y) such that for
each x, y, z ∈ T i, j, k = 1, ..., n.

n∑
i=1

(
pij(x, y)

uij(x, y)

)
· uik(x, y) = δjk (149)

n∑
j=1

(
pij(x, y)

uij(x, y)

)
· ukj(x, y) = δik (150)

U(x, x) = 1 (151)

U(x, y) · U(y, z) = U(x, z) (152)

Moreover, in this case, the Heisenberg algebra A can be identified with the
Algebra of all n× n matrices with coefficients in κ.

Even more completely:

Theorem 12 The following assertions are equivalent:
i1) There exist an Heisenberg algebra with centre κ satisfying conditions

(i), (ii) of Theorem 10.
i2) For each x, y ∈ T there exists a κ-valued transition amplitude matrix

U(x, y) for P (x, y) such that:

U(x, x) = 1 ; ∀x ∈ T (153)

U(x, y) · U(y, z) = U(x, z) ; x, y, z ∈ T (154)

i3) There exists a κ–module H and, for each x ∈ T , a κ–basis (aj(x)) (j =
1, ..., n) of H such that the operators Aj(x) defined by

Aj(x)ak(x) = δjkaj(x) (155)

satisfy
Aj(x)Ak(y)Aj(x) = pjk(x, y)Aj(x) (156)
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Proof. The implication (i1) ⇒ (i2) follows from Theorem 10. To prove
the implication (i2) ⇒ (i3), fix xo ∈ T arbitrarily and denote H the free
κ-module generated by the symbols a1(xo), ..., an(xo). Define, for every x ∈ T
and j = 1, .., n, the vector:

aj(x) := U(xo, x)aj(xo) :=
n∑
k=1

ukj(xo, x)ak(xo) ∈ H (157)

and the operator Aj(x) : H → H:

Aj(x)ak(xo) := ujk(x, xo)aj(x)

Since the matrix (ukj(xo, x)) is invertible, it follows that also a1(x), ..., an(x)
is a basis for H. Then it is easy to verify that for each x ∈ T (aj(x)) is a
κ-basis of H and (155) and (156) hold. Finally, if (i3) holds, then, because of
(??) and (156), for each x, y ∈ T and j, k = 1, ...n Aj(x)Ak(y) 6= 0, hence by
Lemma (1) the set {Aj(x)Ak(y)} (j, k = 1, ..., n) is a κ-basis of the Heisenberg
algebra of all κ-linear operators on H. But then, due to Proposition 17,
condition (156) implies the maximal abelianity of the κ-algebra generated by
Aj(x) : j = 1, ..., n. Thus (i3)⇒ (i1) and the theorem is proved.

Remark. Notice that the reversibility of the generalized evolution U(x, y),
implicit in equation (154), has a purely statistical origin, stemming from the
symmetric role that two maximal observables A(x) and A(y) play in their
mutual conditioning.

In the notations of Theorem 122 above, we say that the family of transition
probability matrices {P (x, y) : x, y ∈ T} admits a κ-Hilbert space
model if in the κ-module H, defined in point (i3) of Theorem 13 one can
define a κ-valued scalar product < · · > for which all the κ-bases (aj(x))
are orthonormal bases. That is, if there is a map u, v ∈ H ×H 7→< u, v >,
such that ∀u, v′ ∈ H one has

< u, v + v′ >=< u, v > + < u, v′ > (158)

< u, λv >= λ < u, v > ; λ ∈ κ (159)

< u, v >=< v, u >∗ (160)

< u, u >≥ 0 (161)
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< aj(x), ak(x) >= δjk ; ∀x ∈ T (162)

If this is the case, by (162), the transition amplitude matrices U(x, y) are
defined by:

< aj(x), ak(y) >= ujk(x, y) (163)

Theorem 13 The following assertions are equivalent:
i1) The family of transition probability matrices {P (x, y) : x, y ∈ T}

admits a κ–Hilbert space model.
i2) The family {P (x, y) : x, y ∈ T} admits an Heisenberg algebra model

with centre κ and, if U(x, y) = (ujk(x, y)) is the κ–valued transition amplitude
associated to P (x, y) according to Theorem 13, then

ujk(x, y)∗ = ukj(y, x) ; ∀x, y ∈ T , ∀j, k = 1, ..., n (164)

Proof. It is sufficient to notice that, because of (157) and of the orthogonality
assumption, one has, for any x, y ∈ T

< U(x, y)aj(x)U(x, y)ak(x) >=
∑
h

u∗hjuhk

so, by the uniqueness of the inverse matrix, (164) follows. Conversely, if
(164) is satisfied, then condition (154) implies that U(x, y) is unitary in the
usual Hilbert space sense.

Remark. Notice that, if a κ–Hilbert space model exists, then one has

pij(x, y) = |Uij(x, y)|2 (165)

The usual quantum model is recovered when κ = C.

Remark. Equations (153), (154) are a generalization of Schrödinger’s
evolution, which is recovered when T = R, interpreted as time. In our
theory this equations appear as compatibility conditions for a set of transition
probability matrices {P (x, y)} to admit an Heisenberg algebra model. If the
index set T is acted upon by a group G so that probabilities are preserved
(i.e. (P (x, y) = P (gx, gy))), one might study the corresponding generalized
unitary representation of G on H. If moreover one has that the amplitudes
themselves are G–invariant, i.e.

U(x, y) = U(gx, gy) (166)

46



then one can fix a xo ∈ T and define

Ug := U(xo, gxo)

Correspondingly one has Ue = 1, where e is the identity in G and 1 the
identity operator on the κ–Hilbert space H. Moreover equation (154) implies
that

U−1g Uh := U(gxo, xo)U(xo, hxo) = U(gxo, hxo) = Ug−1h (167)

Thus, under the invariance condition (166), equation (154) is also a general-
ization of the notion of unitary representation. Finally, if G acts transitively
on T , then equation (167) plus the condition Ue = 1, becomes equivalent to
the pair of equations (153), (154).

8 Geometric extensions of the quantum prob-

abilistic formalism: gauge theories

We keep the notations of sections (3) and (4). To fix the ideas our consid-
erations will be restricted to complex Hilbert space models (i.e. κ = C-the
complex numbers, and we assume that the set of transition probability ma-
trices {P (x, y) : x, y ∈ T} admits a complex Hilbert space model, i.e. -
cf. Theorem ?? - that there exists a complex Hilbert space H and for each
x ∈ T - an orthonormal basis {aj(x) : = 1, ..., n} of H, for any x, y ∈ T - a
unitary operator U(x, y) with complex coefficients satisfying:

U(x, y) : H 7→ H (168)

U(x, x) = 1 (169)

U(x, y) · U(y, z) = U(x, z) ; x, y, z ∈ T (170)

| < ak(y), U(x, y)aj(x) > |2 = pjk(x, y) ; j, k = 1, ..., n (171)

If T is a manifold, it is natural to introduce a path dependent generalization of
the evolution equation (3) along the following lines: one considers a complex
Hilbert bundle, i.e. a fibre bundle H(T ) with base T and fiber H(x) (x ∈ T )
isomorphic to a complex Hilbert space H. Introducing the space Ω(T ) of
all piecewise smooth paths [0, 1] → T , for each pair of points x, y ∈ T , we
denote γxy an element of Ω(T ) such that

γxy(0) = x γxy(1) = y
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With these notations the notion of Heisenberg algebra model for a set of
transition probability matrices {P (x, y)} can be generalized as follows:

Definition 14 Let T be a manifold and n be an integer or +∞. A family
of n × n transition probability matrices {P (γxy) : γxy ∈ Ω(T ) x, y ∈ T} is
said to admit a Hilbert bundle model if there exist:

i) A Hilbert bundle H(T ) with base T
ii) A unitary parallel transport on H(T ), i.e. a map

U : γxy ∈ Ω(T )→ U(γxy) ∈ { Unitaries H(x)→ H(y)} = Un(Hx, Hy)

such that denoting γ−1(t) = γ(1− t) and γ ◦ γ′(t) = γ(2t) if 0 ≤ t < 1/2 and
γ ◦ γ′(t) = γ′(2t− 1), if 1/2 ≤ t < 1 one has

U(γxy) · U(γyz) = U(γxy ◦ γyz) ; x, y, z ∈ T (172)

U(γ−1) = U(γ)−1 (173)

Remark. Notice that we are not requiring that

U(γ) = U(γ′) (174)

if γ′ is a riparametrization of γ.
iii) For any x ∈ T an orthonormal basis aj(x) : j = 1, ..., n of H(x) such

that, for any γxy ∈ Ω(T ) (x, y ∈ T )

| < ak(y), U(γxy)aj(x) > |2 = pjk(γxy) (175)

Definition 15 Two Hilbert bundle models {H(T ), U( ·)} {H ′(T ), U ′( ·)} are
called isomorphic if there exists a vector bundle isomorphism V : H(T )→
H ′(T ) which intertwines the parallel transports.

It is not clear at the moment to what extent the transition probabilities
pjk(γxy) fix the isomorphic type of the bundle. However, for a trivial bundle,
the triviality of the holonomy group of the connection U( · ) is easily seen
to be a necessary and sufficient condition for an Hilbert bundle model to be
isomorphic to a usual quantum (i.e. complex Hilbert space) model. This sug-
gests the conjecture that also in the general case the statistical invariants of
the transition probabilities pjk(γxy), or part of them, should be expressible in
terms of the topological and geometrical invariants of the pair {H(T ), U( ·)}.

48



Finally, let us remark that point (iii) in Definition 12 means that we are
fixing a cross section into the frame bundle F (H(T )), i.e. the bundle of
orthonormal frames of H(T ), and consequently an identification of F (H(T )
with the principal bundle P (T, U(n; C)) where U(n; C) denotes the unitary
group with coefficients in C. Once the cross section a : T → F (H(T )) is
fixed, the assignment of a connection U( ·) on H(T ) becomes equivalent to
the assignment of a connection V ( ·) on F (H(T )) or, through the formula

V (γ) = P exp
∫
γ Aa ; γ ∈ Ω(T )

(where P exp means path-ordered exponential), to the assignment of a matrix
valued 1-form Aa - the connection matrix of the connection V ( ·) in the
frame field a (or simply the ”potential”). The curvature form associated
to A (i.e. F = dA + (1/2)A ∧ A) is called a gauge field. Thus as the
Heisenberg models deduced in Theorem ?? extend the usual quantum model,
the corresponding bundle models, obtained with an obvious modification of
Definition 12, generalize, in the same direction, the gauge field theories.

49



References

[1] Accardi L.: Some trends and problems in quantum probability, In: Quan-
tum probability and applications to the quantum theory of irreversible
processes, ed. L.Accardi et al., Springer 1055 (1984) 1-19.

[2] Accardi L.: The probabilistic roots of the quantum mechanical paradoxes,
In : The wave-particle dualismm ed.S.Diner et al:, Reidel (1984) 297-
330.

[3] Accardi L.: Foundations of Quantum Mechanics : a quantum probabilis-
tic approach, in The Nature of Quantum Paradoxes ; eds. G.Tarozzi, A.
van der Merwe Reidel (1988)257-323

[4] L. Accardi: Einstein-Bohr: one all, Acta Enciclopedica, Istituto dell’
Enciclopedia Italiana (1994) Volterra preprint N. 174 (1993)

[5] Accardi L.: On the axioms of probability, Proceedings Conference on
Foundations of Quantum Mechanics, Lecce 1993, Volterra Preprint N.
194, November 1994

[6] Feynmann R.P., Leighton R.P., Sands M.: Lectures on Physics, vol. III,
Addison–Wesley (1966)

[7] Schwinger J.: Quantum kinematics and dynamics, Academic Press 1970

50


