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1 Introduction

The statistics of directional data in which the observations are unit vectors,
independently and identically distributed with various probability distribu-
tions (von Mises, Fisher, Scheidegger–Watson, etc.) has been extensively
discussed see e.g. Mardia (1972), Watson (1983). There is also a literature
on joint distributions of two unit vectors (see e.g. Jupp & Mardia (1980).
Saw (1983), Rivest (1982, 1983)) and discussions of definitions of correla-
tion between two vectors. In particular, Jupp & Mardia give a general joint
density between unit vectors x and y which is proportional to

exp(κ1x
tµ+ xty + κ2y

tν) (1)

They also point out that natural definitions of the correlation between unit
vectors will flow, like canonical correlations, from the covariance matrix(

Σxx Σxy

Σyx Σyy

)
(2)

But for unit vectors there is no analogue of the stationary time series liter-
ature except for a brief note by Wehrly & Johnson (1979) giving a Markov
process for the circular case. We show here a variety of simple models which
lead to stationary Markov processes for directions with marginal distribu-
tions of the familiar types or generalizations or variations of them. These
processes are easy to simulate if one can simulate the marginal g(x), and
conditional f(xj+1|xj), probability densities. To calculate serial correlations,
i.e. correlations between X1 and Xn we would need to calculate the covari-
ance matrices of X1 and Xn with themselves and each other as in (2). The
likelihoods of data from these processes can be written down simply so sta-
tistical inference can be done straightforwardly. Only passing remarks will
however be made here on statistical problems.

While the method of construction given below arose when considering
interacting quantum systems by using quantum Markov Chains, (see Accardi
and Watson (1986)), the device as needed here is formally trivial. Let Ω be
some space with measure ω(·) and f : Ω × Ω → R+. Suppose f(x1, x2) =
f(x2, x1) and that

c−1 =

∫
Ω×Ω

f(x1, x2)ω(dx1)ω(dx2) exists.
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Let

g(x) =

∫
Ω

cf(x1, x2)ω(dx2)

Then g(x) is the invariant density of a stationary Markov Chain and the
conditional density of Xj, given Xj−1 = xj−1, is given by

f(xj|xj−1) = cf(xj−1, xj)/g(xj−1)

In this paper Ω will be

Ωq = {x : ‖x‖ = 1, xεRq} and ω = ωq

the invariant density on Ωq whose integral is the usual total measure of Ωq

e.g. 4π where q = 3. Useful forms for ωq(dx) can be found by using exterior
differential forms. Here will only need the simplest result: for x, νεΩq, set
x = ν(ν · x) + {1− (ν · x)2}1/2y,

‖y‖ = 1, y · ν where ν · x = νtx = r , ‖y‖2 = y · y

Then
ωq(dx) = (1− r2)(q−3)/2drωq−1(dy)

The various models were derived by choosing the exponential part of f
(thinking of this as an interaction between neighbouring vectors) as a function
of various scalar products, the remaining parts of f coming from normaliza-
tion considerations. Only these latter parts vary with the dimension q. So
rather than giving the models for arbitrary q, we will give the results for
q = 3 (the sphere) in § 2 and in § 3 for q = 2 (the circle), the practical cases,
to facilitate referencing them in a future statistical paper. In § 4, we show
some realizations for q = 3 models and discuss some of their properties. In §
5, one illustration is given of a generalization beyond the nearest neighbour
interactions used in the rest of the paper.

The method used in this paper is not of course the only method for
building models for dependent unit vectors on the integers but leads to a
wide class of models from which we have given useful examples. It seems
much more difficult to make models for dependent vectors on the integer
lattice in the plane, a case of some interest.
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2 Stationary Markov motions on the sphere

We use the notation of § 1.
Model (2.1)

g(x) = (4π)−1 (1)

f(xj+1|xj) = {λ/(4π sinhλ} expλxj · xj+1 λ > 0 (2)

Thus the marginal distribution is uniform and the conditional density of
Xj+1, given Xj = xj, is Fisher with modal vector xj and concentration
parameter λ which is also the interaction parameter i.e. when λ = 0 the
successive Xj are independent. The joint distribution of two successive vec-
tors is a special case (1). The joint density function (j.d.f) of Xi, . . . , Xn for
n ≥ 2 is given by

(4π)−n(λ/ sinhλ)n−1 expλ(x1 · x2 + · · ·+ xn−1 · xn) (3)

so that statistical inference will be particularly simple. For example the test
of λ = 0 will be based on x1 · x2 + · · · + xn−1 · xn Beran & Watson (1967)
studied the permutation distribution of this statistic.

Model (2.2)

g(x) = 4πc3(λ)(λx · ν)−1 sinhλx · ν, λ ≥ 0 (4)

f(xj+1|xj) = (λxj · ν)(4π sinhλxj · ν)−1 exp{λ(xj · ν)(xj+1 · ν)} (5)

The marginal distribution is novel, with mode at x = ν, and λ, the interac-
tion parameter, controls the concentration of the distribution of X which is
rotationally symmetric about ν. But this distribution is a marginal of (1).
It is also antipodally symmetric i.e. g(x) = g(−x). The conditional den-
sity of Xj+1, given Xj = xj is Fisher about ν, with concentration parameter
λ(xj · ν). The normalization function c3(λ) is given by

(4π)2c3(λ) = λ/ shi λ, shi z =

∫ z

0

y−1 sinh ydy (6)

The j.d. f of X1, . . . , Xn is given for n ≥ 3

c3(λ)Πn−2
2 (λxj · ν)(4π sinhλxj · ν)−1 exp{λΣn−1

1 (xj · ν)(xj+1 · ν)} (7)

Model 2.3
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For κ, λ ≥ 0, and a normalizing function d3(κ, λ),

g(x) = d3(κ, λ) exp(κx · ν){κ(λx · y + 1)}−14π sinhκ(λx · ν + 1) (8)

f(xj+1|xj) = (9)

{κ(λxj · ν + 1)}{sinhκ(λxj · ν + 1)}−1 expκ(λxj · ν + 1)xj+1 · ν)

The marginal distribution is novel but reduces to the Fisher distribution
(x, κ) when the interaction parameter λ = 0. Its mode is at ν for all λ. The
conditional density is however Fisher about ν with concentration κ(λxj ·ν+1).
For n ≥ 3, the j.d.f. of X1, . . . , Xn is given by

d3(κ, λ)Πn−1
2 {κ(λxj · ν + 1)/ sinhκ(λxj · ν + 1)}×

exp{κΣn−1
2 (xj · ν + λxj · νxj+1 · ν + xj+1 · ν)} (10)

From (10) we see that model (2) is a special case of model (3) and further
that the joint density of two successive obervations is a special form (1) —
µ = ν = ν, A = λκννt, κ1 = κ2 = κ. The joint density in Model 2.1 can be
obtained by setting κ1 = κ2 = 0 and A = λ I. Indeed, we could have made
a Markov process from (1) by taking µ = ν, κ1 = κ2 and by choosing A to
be any symmetric matrix but for general A the normalization is difficult so
the simulation of the process will be more difficult again. We will see in the
next section that the special cases behave differently so it is best to list them
separately.

Model (2.1)
g(x) = (4π)−1 (11)

f(xj+1|xj) = {M(λ)}−1 expλ(xj · xj+1)2 (12)

where

M(λ) = (2π)

∫ 1

−1

expλy2dy (13)

The conditional density if Xj+1, given Xj = xj, is Scheidegger–Watson (S −
W ) about xj with concentration λ. It is antipodally symmetric. The j.d.f.
of X1 . . . Xn is for n ≥ 3

(4π)−1(M(λ))−(n−1) expλΣ(xj · xj+1)2 (14)

Model (2.5)
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With the normalization function b3(κ, λ)

g(x) = b3(κ, λ) expκ(x · ν)2M [κ{λ(x · ν)2 + 1}] (15)

f(xj+1|xj) = [M{κ(λ(xj · ν)2 + 1)}]

exp{κ(λ(xj · ν)2 + 1)(xj+1 · ν)2} (16)

The marginal distribution is novel and reduces to the S − W distribution
when the interaction parameter λ = 0. The j.d.f. of X1, . . . , Xn is for n ≥ 3

b3(κ, λ) expκ(x, ·ν)2Π[M{κ(λ(xj · ν)2 + 1)}]−1×

expκΣ{(xj · ν)2 + λ(xj · ν)2(xj · ν)2 + (xj+1 · ν)2} (17)

In conclusion, models 2.2, 2.4, 2.5 will be applicable to axial data (undi-
rected lines), while 2.1 and 2.3 are suitable only when the marginal distribu-
tion is uniform the remaining models are obtained. Model 2.3 has a marginal
density that approximates the Fisher distribution — nome have this marginal
exactly.

3 Markov motions on a circle

Here we use unit vectors in R2 and need the integral∫ 2π

0

expλ cos θdθ = 2πI0(λ) (1)

Model (3.1)
g(x) = (2π)−1

f(xj+1|xj) = {2πI0(λ)}−1 expλxj+1 · xj (2)

so the conditional density is a von Mises density about xj with concentration
parameter λ. This process was constructed differently by Wehrly & Johnson
(1979).

Model 3.2
With a normalizing factor c2(λ),

g(x) = 2πc2(λ)I0(λx · ν) (3)

f(xj+1|xj) = {2πI0(λxj · ν)}−1 exp{λ(xj · ν)(xj+1 · ν)} (4)
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The marginal density has not to our knowledge been exploited but the con-
ditional density is von Mises about ν with concentration λxj · ν.

Model 3.3
With a normalizing function d2(κ, λ)

g(x) = d2(κ, λ) exp(κx · ν)2πI0{κ(λx · ν + 1)} (5)

f(xj+1|xj) = [2πI0{κ(λxj · ν + 1)}]+1 exp{κ(λxj · ν + 1)(xj+1 · ν)} (6)

The marginal density is again and reduces to the von Mises when λ = 0. The
conditional density is von Mises.

Model 3.4
g(x) = (2π)−1 (7)

f(xj+1|xj) = {N(λ)}−1 expλ(xj · xj+1)2 (8)

where

N(λ) =

∫ 2π

0

expλ cos2 θdθ

Model 3.5

g(x) = b2(κ, λ) expκ(x · ν)2N [κ{λ(x · ν)2 + 1}] (9)

f(xj+1|xj) = [N{κ(λ(xj · ν)2 + 1)}]−1 expκ(λ(xj · ν)2 + 1)(xj+1 · ν)2 (10)

The marginal density is novel but reduces to a known form when λ = 0.
Since these models parallel those in the last section, we only have to say

what antipodal symmetry here means. Since

(x · ν)2 = cos2 θ = (1 + cos 2θ)/2

we may sometimes simplify the formulae and analysis.

4 Properties of the models

For new models of stationary processes of real random variables one would
naturally work out serial correlations and spectra. It is not so clear what
should be worked out here. There is no theory for spectra and no universally
agreed definition of correlation. One could try to work out the correlation
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definitions given in Jupp & Mardia but we have only worked out the co-
variance matrix of X1 and Xn for models 2.1 and 2.4, the easy cases. Such
formal calculations may not show features of interest (see e.g. the discussion
of model 2.2) so we have examined sample paths.

The simulation programs for the models of Section 3 were written in
MACPASCAL and are available from GSW & or JC. In each case the pro-
gram generates a vector from the invariant distribution to start the sequence.
One may plot the vectors as points on equal area projections of the north
and south hemispheres and/or join the successive points with straight lines
— the figures show the rules when neighbouring points are in different hemi-
spheres. For the models with a unit vector parameter it has been set at the
north pole, that is at the center of te northern hemsphere.

Model 2.1 is a symmetric random walk on the sphere because (2) shows
that the distribution of Xj+1 is rotationally symmetric about xj. As λ in-
creases, the step size decreases and so the paths look more and more like
a the paths of a continuous Brownian motion on the sphere. Roberts &
Ursell (1960) have studied these motions. Figure 1 shows a path with 3597
steps which began at a random point in the northern hemisphere and was
generated by λ = 77.

To compute the covariance matrix of Xn and X1, we first observe that
EXn = 0 because of the uniform marginal. As the conditional density of Xn

is Fisher xn−1, λ, it is easy to show that

E(Xn|Xn−1 = xn−1) = xn−1L(λ)

where L is the Langevin function cothλ− λ−1 which is known to lie in [0, 1]
attaining the ends of this interval only when λ is zero or infinity. It is also
known that

EXnX
t
n = I3/3

Hence
EXnX0 = L(λ)nI3/3

and so any definition of correlation will decrease geometrically as n tends to
infinity.

Model 2.2 exhibits a very interesting behaviour as is seen in Figure 2. This
path, using λ = 10, started at a random point in the southern hemisphere
and at N = 1395 moved to th northern hemisphere — the transition may
be seen in the figure — and remained there for the rest of the run. The
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antipodal symmetry of the invariant density guarantees that the point will
endlessly switch hemispheres — let’s call these switches “reversals”. Now
this behaviour reminds us of the earth’s magnetic polarity. It is known that
magnetic north wanders around in the region of its current position but
occasionally switches to the region of the current south pole — these are
called reversals in geo–magnetism.

Of course the dispersion about the usual positions is much smaller than
is seen in this run. This dispersion is reduced by increasing λ which also
increases the times between reversals e.g. none were seen in a 3 hour run
with λ = 30.

Thus an open problem is to calculate the distribution of the reversal time
for this model . One might guess that an approximation to the mean value
would be the inverse of the probability the Xj+1 ·ν > 0 given that Xj ·ν < 0,
a formula for which is easy to find.

The marginal distribution (4) is novel. Its density falls off slower, as
one moves away from either of the two modes, than the Scheidegger–Watson
density (proportional to expλ(x · ν)2 appearing in Models 2.4 and 2.5. From
(7) we see that, for large n, inference will be simple. The maximum likelihood
estimator of ν is the eigen–vector of (Σxjx

t
j+1 + Σxj+1x

t
j)/2 associated with

its largest eigenvalue.
Model 2.3 gives paths centered on the vector ν, the north pole in Figure 3,

in a rotationally symmetric way since the density depends on scalar products.
On comparing (7) and (10), we see that when λ is very large, this model
should behave somewhat like Model 2.2, as is seen in Figure 3. That is, when
a vector appears in one hemisphere the path should stay there for a while,
although the hemispheres are not here quite symmetric (that containing ν is
favoured). The combined effect of κ & λ is to tighten up the distribution, κ
having the larger effect.

Model 2.4 has no orientation and must produce paths the cover the sphere
uniformly. It is a random walk for axes just as model 2.1 is for vectors λ
controls the step length, as may be seen from Figures 4a,b. The sufficient
statistics is Σ(xj · xj+1)2. To show how the serial correlations must behave
for this model, we observe that EXn = 0 and that

E(Xn|Xn−1 = xn−1) = xn−1{t expλt2dt/M(λ)}

where the factor in braces lies in [0, 1]. Thus as in Model 2.1 all definitions
of correlations of Xn and X0 must tend geometrically to zero as n increases.
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Model 2.5 is the axial version of model 2.3. The step length is mainly
controlled by κ. Figure 5 shows a path with κ = 0.5, λ = 10. A path with
κ = 2.5, λ = 10 stayed within 40 degrees of ν for 1000 steps.

The models in section 3 behave similarly but one cannot illustrate their
behaviour in any neat way.

5 Extension

Returning to the general construction of Section 1, suppose that f (x1, x2, x3)
is a density on Ω×Ω×Ω such that the marginal density of X1 and X2 has the
same functional form as that of X2 and X3. Call it h(. . . ). If g(xj, xj+1) is the
invariant density of two successive random variables, the joint distribution
of X2, . . . , Xn would be

g(x1, x2){f(x1, x2, x3)/h(x1, x2)} . . . {f(xn−2, xn−1, xn)}

Thus it is clear that g = h and that we have a way of generating stationary
sequences with 2 step dependence.

Consider the example for unit vectors in 3 dimensions. Let

f = c exp{κ(x1 · ν + x2 · ν + x3 · ν) + λ(x1 · x2 + x2 · x3)}

Then

h = c exp{κ(x1 · ν + x2 · ν) + λx1 · x2} exp{κx3 · ν + λx2 · x3}ω(dx3)

= c exp{κ(x1 · ν + x2 · ν) + λx1 · x2}[4π sin |κν + λx2|/|κν + λx2|]

One gets the same function on integrating out x3 so h = g. The marginal
density of the process is found by integrating out x1 from h and its

c{4π sinh |κν + λx2|/|κx2|}2 expκν · x2

An xample of a process for axes may be found by starting out with

f = c exp{κΣ(x1 · ν)2 + λ(x1 · x2 + x2 · x3)}

but integrating out is here a problem. The construction could in principe,
provide examples with any range dependence.
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A very different way of constructing processes on the sphere is as follows.
Let {tn} be an arbitrary stationary process where −1 < tn < 1. Let {ζ} be
a sequence of independent unit vectors, orthogonal to the unit vector ν and
uniformly distributed. Define

Xn = νtn + (1− t2n)1/2ζn

Then the sequence {Xn} is a stationary sequence of unit vectors — the
dimension is arbitrary. Models 2.2, 2.3, 2.5 all have this form.
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Summary

Some simple parametric models are given for stationary sequences of unit vec-
tors. Their behaviour is mainly shown by simulations. One process is reminescent
of the changing polarity of the earth’s magnetic field. Some extensions are sug-
gested.

Riassunto

Dei semplici modelli parametrici vengono dati per serie stazionarie di vettori

unitari. Il loro comportamento viene illustrato attraverso delle simulazioni. Uno

dei processi può rappresentare le variazioni nella polarità del campo magnetico

terrestre. Vengono suggerite alcune estensioni.
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