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1. INTRODUCTION 

Conditional expectations play an important role in classical probability 
theory. In the general context of von Neumann algebras they were impliciteiy 
used by von Neumann [41, Chap. II] and by Dixmier [14]. Nakamura and 
Turumaru [27] and Umegaki [36-391 introduced an axiomatic definition of 
the concept of conditional expectation in the framework of von Neumann (or 
C*-) algebras and established many properties of these objects especially in 
the context of von Neumann algebras with a finite trace. Their starting point 
was the characterization, given by Moy [26], of the classical conditional 
expectations as operators on spaces of measurable functions. Tomiyama 
showed [33 ] that conditional expectations, in the sense of the above 
mentioned authors, can be characterized as norm one projection in C*- 
algebras. The importance of norm one projection in the classification 
problem of von Neumann algebras was recognized by Hakeda and 
Tomiyama [23] and subsequent research on this argument confirmed the 
usefulness of these objects. This line of thought culminated in the 
fundamental work of Connes [ 121 in which approximately finite von 
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Neumann algebras acting on a (separable) Hilbert space A? are charac- 
terized as those von Neumann algebras which are the range of a norm one 
projection from 90 (= all bounded linear operators on R). Thus the 
norm one projections are nowadays a very important tool in the theory of 
C*- and W*-algebras. 

However, in spite of the striking algebraic similarity, there is a difference 
between classical conditional expectations and norm one projections which 
challanges the candidature of the latter ones as the appropriate 
generalization of the former. In fact, if @ is a von Neumann algebra, v, a 
normal faithful state on Q? and 9 a von Neumann sub-algebra of G?, in the 
classical case (i.e., when @ is abelian) there is a unique normal faithful 
conditional expectation E from @ onto 9 satisfying q = v, . E, while if 6Y is 
a generic von Neumann algebra a normal faithful norm one projection with 
these properties rarely exists. More precisely, a theorem of Takesaki [3 I] 
(independently proved also by Golodez [20]) asserts that such a norm one 
projection exists if and only if the sub-algebra 9 is left globally invariant by 
the action of the modular automorphisms group of 6? associated to q. 

The inadequacy of norm one projections as analogues of classical 
conditional expectations was also pointed out in connection with some 
problems arising in physics, for example, in the theory of the quantum 
measurement process [ 131 and in the quantum theory of coarse-graining 
(211, and in mathematics, namely, in the theory of quantum stochastic (more 
specifically, quantum Markov) processes; it motivated various attempts to 
introduce generalizations of the concept of contitional expectations which 
went beyond the frmework of norm one projections. In particular, some 
heuristic computations on matrix algebras suggested a natural candidate for 
this generalization [ 11. 

The main result of the present work consists in giving an alternative 
characterization (with respect to the Doob-Moy characterization mentioned 
above) of the classical conditional expectation E associated to a given 
normal faithful state p from a (commutative) von Neumann algebra @ onto 
a sub-algebra 9, in proving that the properties which characterize E in the 
classical case uniquely define, in the case of arbitrary von Neumann algebras 
@ 2 59 and faithful normal state v, on 67, a completely positive identity 
preserving faithful normal map E: (PI 4.59 such that p-E==, in the 
derivation of the explicit form of this map (cf. Theorem (3.5)). 

The idea at the basis of our characterization of the classical o-conditional 
expectation E is very simple: E is a completely positive identity preserving 
faithful normal map from a to 5 such that ~1 . E = p, and any such a map 
defines a unique map E’ from the commutant of 9 to the commutant of cpl 
with the analogous properties (cf. Sect. 2, for the notations, and 
Proposition 3.1). We call E’ the v-dual of E. In the classical case E induces 
a partial isometry, with the cyclic space of 9 as final space, on the GNS 
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space of {@, 9}; we show, in the general case, that E has this property if and 
only if E’ is an embedding (cf. Proposition 3.3). But the Tomita conjugate 
isomorphisms j, : Q + GZ’, j, : 9 + 9’ set up a one to one correspondence 
between embeddings E’: 9’ 4 Q!’ and embeddings E” = j;‘E’j,: 9 4 6!‘. 
If E’ is the 9-dual of E we will call E” the 9-bidual of E (and E the 9-bidual 
of E”). The classical 9-conditional expectations is characterized, among all 
the 9-biduals of embeddings 9 4 @ by the property: 

E is the 9-bidual of the identity embedding I: 9 4 (;pI. FE) 

It is therefore natural to take condition (CE) as the definition of the 9- 
conditional expectation also in the case in which O! 3 .?8 are arbitrary von 
Neumann algebras and 9 a faithful normal state on G! (for the generalization 
to weights cf. Sect. 7). In Section 5 we show that the fixed point algebra of E 
is the largest sub-algebra of 3 which satisfies the above mentioned condition 
of Takesaki. Thus if 9 itself satisfies this condition the 9-conditional expec- 
tation defined by (CE) and the one defined by Takesaki’s theorem coincide. 
In the case of matrix algebras, the expression we find for E coincides with 
the one suggested in [I] and, in the semifinite case, it gives a meaning to the 
natural heuristic extrapolation of this expression (cf. equality (3.28)). The 
considerations above confirm the intuition, coming from classical probability 
theory, according to which the 9-condition expectation is a tool for 
controlling the “statistical location” of a von Neumann algebra cizp inside a 
larger von Neumann algebra GZ with respect to a given faithful normal state 
9 on a. This is to be distinguished from the algebraic location of 9 in (PI 
which is independent of any state 9 on 0. 

2. NOTATIONS 

The notations established below will be used, unless expiicitely stated, 
throughout the paper (with the exception of Sect. 7). @ and .L?? will denote 
two von Neumann algebras such that 9 5 91. We assume that both LJ’ and 
.B act on a complex Hilbert space A? with scalar product (., .) and that 
Qi ER is a cyclic and separating (unit) vector for LX. The faithful state on (r 
defined by @ will be denoted 9 (i.e., 9(a) = (@, a@)) and its restriction to 
A? - 9,,. For any sub-set Q c GY, I@? . @] denotes the closed Hilbert space 
generated by the set Q . @ = (4: c E g}, and the orthogonal projection 
onto [@ . @] will be denoted PIo.rp,. The space [~8 . @] will be sometimes 
denoted A?” and the orthogonal projection onto (9 . @j will be simply 
denoted P (if no confusion is possible). @’ denotes the commutant of 6Y in 
.p and ~8’ the cornmutant of .A%’ in jzr = [.% . @I. The state induced by Q, 
on (pd’ (resp. 9’) will be denoted 9’ (resp. 9;). When no confusion is 
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possible we will not distinguish between the actions of 9 on Z’ and on 
[9 . @] (i.e., we will use the same symbol, say, 6, for an element of 9 
considered as an operator on c?’ and for the same element considered as an 
operator in [9 e @I). If H is an operator acting on R its domain is denoted 
g(H) and its adjoint Ht , while the adjoint of elements a E GPI or a’ E a’,..., 
are denoted a*, a’*,... . The closure of the operator a@ I+ a*@ (a E @) will 
be denoted Sa and its adjoint Fo. FG is the closure of a’@ M a’*@ 
(a’ E @‘), and one has the polar decompositions 

S,= J,A$‘= A,“‘J,; F, = Ja A$12 = A;‘J,. 

A, is a positive invertible operator, called the modular operator associated to 
o, and JGT is a anti-unitary involution-the Tomita involution associated to o. 
The fundamental results of the Tomita-Takesaki theory are that 

The one-parameter automorphisms group of 0’ defined by A%.) Ani’ is 
called the modular automorphisms group and denoted ok (for the properties 
of A,, J,, ok we refer to [30], or to the more succint exposition [32,40]). 
The analogous objects S,, A,, Js, u> ,... for 9 are defined with respect to 
the Hilbert space [9 . $1. 

A linear map a: 0’ -P 9 will be called p-compatible if 9 = v, . 01. By a 
completely positive identity preseving map between two von Neumann 
algebras we mean a linear completely positive map which transforms the 
identity of one algebra into the identity of the other. The symbol 1 will 
denote the identity of the algebra we are speaking about; when some 
confusions might arise we write l,, l,,... to mean the identity in @, 9,... . 

The term embedding will be used to mean a normal, injective *- 
homomorphism. 

3. CONDITIONAL EXPECTATIONS AS BIDUALS OF EMBEDDINGS 

In the following we shall frequently use some essentially known facts 
(cf. [4]) which we sume up in: 

PROPOSITION 3.1. Let -M and Jtr be W*-algebras acting repectively on 
the complex Hilbert spaces 3, .X with cyclic and separating vectors @ and 
Y. Let F: M -+.N be a positive map such that 

v.F=a) (3.1) 
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(where y(n) = (Y, nyl), q(m) = (c?, m@), n E ,A ; m E.H). Then there exists 
a positive linear map I;‘:, 4” -+. I’ uniquely defined by 

(n’Y, F(m)!?) = (F’(n’)@, m@), m E.k, n’ E. 4”. (3.2) 

F’ is normal and, ij’F is completely positive such is F’. Moreover if F( 1) = 1 
then F’(1) = 1 and F’ is faithful. 

Remark. Using (3.2) one easily shows that any F satisfying (3.1) is 
normal. 

Proof. For each n’ E.&-i the linear map m E Ht-+ x(m) = 
(n’ Y, F(m)Y) satisfies x(m) < (] n’ ]] cp(m), for each m E A+ . Hence [ 14, 
p. 481 there exists an element F’(n’) EL/\ which satisfies (3.2) for every 
m E d. The map n’ I-+ F’(n’) can be extended by linearity on the whole of 
. 1 “, an relation (3.2) is clearly preserved. 

By construction F’ is positive. Let (nh) be a net in JV; with sup nh = n’, 
then if sup F’(n;) = rnb one has for each m EM, 

sup (F’(nh)@, m@) = (m/, @, m@) 
a 

and, using (3.2), 

sup (F’(n&)@, m@) = (F’(n’)@, m@). 
a 

Since @ is cyclic and separating this implies that F’(n’) = rnh and F’ is 
normal. 

If k E N; n; ,..., n; E. P“‘; m, ,..., mk E. X, then: 

= c (mrm, Y, F’(n;*nj)Y) 
U 

= x (F(mTmi) n,l Y, nj Y> 
ij 

and since both @ and Y are cyclic and separating this is sufficient to 
establish the equivalence between the complete positivity of F and of F’. 

F(1) = 1 implies F’(1) = 1 because of (3.1) and the fact that @ is cyclic 
and separating. Finally from (3.2) and the fact that Y is separating follows 
that if F( 1) = 1 then F’ is faithful. 
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Remark. Denoting w’, rp’ respectively the states induced by the vectors 
Y, 9 on M’, X’, one has 

p’ . F’ = y/’ (3.3) 

which establishes a complete duality between F and F’. 
The map F’: .H’ -rM’ defined by (3.2) will be called the (p, t,u)-dual map 

of F (often, if no confusion can arise, we shall simply call it the dual map of 
F). Remark that F’ is the (o, v)-dual of F if and only if F is the (w’, @)-dual 
of F’. The following remark is essentially due to Evans [ 17,181. 

LEMMA 3.2. In the notations of Proposition 3.1 let F be completely 
positive identity preserving and let Y: Z’+ X be the unique contraction 
sa tis.y ing 

Vm@ = F(m)Y/, mEA. 

Then the linear map D: M + B(X) defined by 

D(m) = F(m) - Vm V+ ; m EM 

is completely positive. 

ProoJ As in the proof of Proposition 3.1 it will be sufficient to show that 
for each k E N; ni ,..., n: EN’; m, ,..., mk E J, 

i (n; Y, D(m:m,) nj ‘Y 2 0 
i,j= 1 

and this follows from the equalities 

(n; Y, D(m:mj) nj Y) 

= (n,‘Y, F(m:mj) njl !P) - (F’(n;)@, mfmjF’(nj)@) 

= (F’(nj *n;)@, mPmj @)-(ml @, F’(n;) *F’(nj’) mj @) 

= (mi @, [F’(n; *nj) - F’(n;)*F(nj)] mj @) 

and the fact that, F’ being completely positive, the quadratic form 

(cl,..., &) EA@ t-+ *$, (C, [F’(n;*nj) -FW*F’(n;)l6> 

is positive. 
Now, in the notations introduced in Section 2, let F: GY --) 9 be a 
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completely positive, identity preserving, q-compatible map, and let us 
introduce the notation 

v+ a@ = F(a)@; a E (7, (3.4) 

then I/+ extends to a contraction [a@] + [A?@,] which will be still denoted 
Vt. In the classical case (i.e., if cpl and 9 are maximal abelian on the 
corresponding spaces) the conditional expectation F: .d -+ 9 associated to cp 
satisfies, in particular, 

CP~(W,) J’W = dh U b,, b, E 9 

and this is equivalent to saying that V= (V’)’ is a partial isometry with 
initial projection [9 . @I. In the general case we have (cf. [13a] for a 
similar result): 

PROPOSITION (3.3). For an F as above the following are equivalent: 

(i) V is a partial isometry with initial projection [9 . @]. 

(ii) The dual map of F is an embedding. 

(iii) F(u) = V+aV; a E (pl. (3.5) 
(iv) For any b E .B there exists a sequence (a,) in 67 such that: 

II Q, @II < lIb@II, for each n E N, (3.6) 

lim F(a,)@ = b@. n (3.7) 

Proof. (i) o (iii). In the notations of Lemma 3.2, condition (i) is 
equivalent to D(l,)=F(l,)- VtlaV= l,- V+V=O. Since D(a) 
completely positive, this is equivalent to D E 0, which is (iii). 

(iii) o (ii). Condition (iii) is equivalent to: 

(b; c?, F(a) b; @) = (b; @, Vf aVb; Q2) 

for any b, , b, E .9, a E 0’; and since, by definition of dual map 

(b; @, F(a) 6; @) = (F’(b;*b;)@, a@), 

(b; @, V+aVb; @) = (F’(b;)*F’(b;)@, a@), 

this is equivalent to F’(b;*b;) = F’(bi*) F’(b;), which is (ii). The 
equivalence between (i) and (iv) is a consequence of the following lemma. 

LEMMA (3.4). For any contraction V: [a@] --) ].S@] the following are 
equivalent: 
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0’) vv+ = PI,,]. 
(jj) V@@ 5 [SW] andfor every b E 9 there exists a sequence (a,,) in 

(PI such that 

(3.8) 

(3.9) 

The implication (j) z- (jj) is clear since, for any b E 9, V+b@ E [a@] hence 
there is a sequence (a,) in @ such that lim a,, @ = V’b@ and there are no 
problems in choosing (a,) so that (3.8) is satisfied. Equation (3.9) follows 
then by continuity. To prove the converse implication, let b E 9 and let (a,,) 
be a sequence in Q! satisfying (3.8) and (3.9). Then we can assume, possibly 
substituting (a,) with a sub-sequence, that there is a < E [LZ + @] which is the 
weak limit of the sequence (a,@). From this and (3.9) we deduce: 

V< = w-lim Vu, @ = b@. 

Since V is a contraction 

and, since (a, @) converges weakly to & ]( <]I ,< lim inf ]((I, @I( ( (] b@ (1. From 
this we conclude that, for any b E A?, there exists a r E [@@I such that 

V’r = b@P; lltll = Ilb@ll. (3.10) 

Now for any &, E [9 . @] there is a sequence (b,) in 5!? such that (b, CD) 
converges to &,. Choose, for each n, a vector [,, E [G? . @] which satisfies 
conditions (3.10) for b,. The sequence (&J is bounded, hence we can assume 
that it has a weak limit t; E [@ . @] (by choosing, in case, a sub-sequence). 
In particular 

V< = w-lim V& = w-lim b, @ = &, 

and II Cll = II G,ll, since II 511 > II WI = II Co II and 

(] []I < lim-inf ]( [,I] = lim-inf ]] b, @(I = I( &, I(. 

Thus for any &, E [A? . @] there is a [E [a . @] such that 

VC=C,; IICII = ll6ll* (3.11) 

Because of our assumptions this implies that [A?. @] is the range of V. 
Now, the set 
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is clearly closed and closed under scalar multiplication. Moreover, since for 
6, C2 E K’ 

we have 

which, since K’ is closed under scalar multiplication, is equivalent to 

(% 3 R,) = (<I 3 C*); C, > Cz E K’. 

From this one easily deduces that K’ is a closed linear space. To prove that 
V is a partial isometry with final projection [,D . @pl (and initial projection 
K’) it will be sufficient to prove that V[ = 0 if < is orthogonal to K’. But, 
given a [, I’[ E [.S . @] = range of V, hence by (3.11) there is a [, E JY 
such that 

R, = n-i II fTll = II c-1 /I* (3.12) 

Hence, for any a > 0 

II v4 + CI)ll’ = (a + 1)’ II ml* (3.13) 

and, since [, E K’, 

II 4 + Cl II2 = a2 II rll* + II w (3.14) 

Since V is a contraction, (3.13) and (3.14) imply 

(1 + 2/a) II WI* < llCll* 

which can hold for arbitrary a > 0 only if V[ = 0. Therefore VV+ = P, ,@. @I, 
and this ends the proof. 

Remark. In Lemma 3.4 and Proposition 3.3 we used the assumption 
d c 0’ only to make clear our motivation to focus on partial isometries. 

One easily sees, by inspection of the proof, that these assertions hold in the 
more general assumptions of Proposition 3.1. 

Now, as remarked in the Introduction, the Tomita involutions set up a 
one-to-one correspondence between the rp’-compatible embeddings 
u’: 9’ C-, @’ and the (p-compatible embeddings U: A? 4 67, namely, 

24’ =j,uj;‘. (3.15) 
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If u’ is the p-dual of a map F: Q? --t 9 then U, defined by (3.15), will be 
called the q-bidual map of F (and F the p-bidual map of u). In the classical 
case @’ = (PI, ~8’9, and j, coincides with the algebraic involution, hence, 
when restricted on 9, with j,. Thus in (3.15), U’ = u and, from (3.2) we 
recognize that the classical conditional expectation associated to v, is charac- 
terized by the property of being the (unique) (p-bidual of the identity 
embedding I: 9 4 a. In the general case the p-bidual of the identity 
embedding I: A? 4 a is still defined as the @dual of the embedding: 

u’ = j, j,‘: .S’ 4 @‘. (3.16) 

Clearly 24’ is yl’-compatible, normal, faithful, identity preserving and 
completely positive. Therefore, according to Proposition 3.1, its dual map 
E: M + .S, characterized by 

(u’(b’)@, a@) = (b’9, E(a)@) (3.17) 

for all b’ E 9’, LI E @, is o-compatible and enjoys all these properties. Since 
U’ is an embedding then, according to Proposition 3.3‘ E has the form 

E(a) = U+aU, a E (pt, (3.18) 

where V:[a.@]-+[9.@] is the partial isometry with initial projection 
[A? . @] = [S’ . @I, characterized by 

Ub’@ = u(b’)@, b’E.9 (3.19) 

or, equivalently 

(cf. Sect. 2 for the notations). While if F: G! -+ LB is the (p-bidual of a generic 
o-compatible embedding v: ~8 4 GPI, one has 

F(u)= J9VO+JGlaJnVoJg= V+aV; a E @, (3.21) 

where V, is the partial isometry in Z with initial projection [9@] charac- 
terized by 

J’, b@ = v(b)@, bE9, (3.22) 

v’ = j,vj;’ and V= J,V,,J,. (3.23) 

In the following we will frequently use these notations. We sum up our 
discussion in the following 
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THEOREM 3.5. Let CPI be a von Neumann algebra and 9 a faithful 
normal state on a. For any sub-algebra 9 c @, there exists a map 
E: f?Y + .B characterized by the following properties: 

E is completely positive identity preserving, faithful, normal. (CEO) 

q,, . E = rp. (CEl) 

The map induced by E on the GNS space of (a, rp\ is a 
partial isometry with final projection [.%’ . @I. CC=) 

The q-bidual of E is the identity embedding I: 9 4 0Z. (CE3) 

The explicit form of E is given by (3.18), (3.20). 

Proof From the consideration above. 

Remark. As already remarked, condition (CE3) alone is sufficient to 
characterize the map E. 

In the classical case E coincides with the usual conditional expectation 
defined by rp; when the conditions of Takesaki’s theorem [ 3 1 ] are fulfilled, E 
coincides with the conditional expectation defined by that theorem (cf. 
Theorem 5.2); in the case of matrix algebras the explicit form of E coincides 
with the expression sugested in [ l] (cf. also [2]) on the ground of 
probabilistic considerations, and in the case of semi-finite algebras it gives a 
rigorous meaning to the heuristic extrapolation of this expression (cf. 
formulae (3.28), (3.29)). For these reasons we call E the rp-conditional expec- 
tation from U into 9. In the rest of the paper the symbols u’, E, U will 
denote the maps defined respectively by (3.16), (3.18), (3.20). The use of the 
term “pconditional expectation” to denote a map characterized by 
(CEOk(CE3) (which in general is not a projection) cannot create confusion 
with the term “conditional expectation” currently used in the literature to 
denote a norm one projection. In fact the former expression makes sense 
only when it refers to a given state cp and, as already remarked, when a norm 
one projection from Gl! into 9 satisfying (CEO)-(CE3) exists, it must 
coincide with the q-conditional expectation. 

Remark. In the notations (3.21~(3.23), we have, for a E @: 

F(a)=J,Y~J,aJ,V,J,= U+(V,aV,)U 

with V, = Jn VJ,. Thus formally F(a) = E( VTaV,), however, this is in 
general only a formal expression, since V:GpIV, in general is not in (;pI. More 
insight into the structure of the rp-conditional expectation is given by the 
following: 
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PROPOSITION 3.6. In the notations and the assumptions (3.21)-(3.23) 
the following equalities hold: 

A,“2V,tA~2=J9Vo+Jcn= V+, (3.24) 

A$2VOA;1’2P= J,V,,J,P= V (3.25) 

in the sense that the left hand sides are well defined in appropriate dense 
domains (speciJied in the proof) and on these domains the equalities hold. 

Proof. Let us first prove the (equivalent) equalities 

AgV+A;“‘= JsV+J,= V,+, (3.26) 

A-“‘VAgP= J,VJ,P= v,. a (3.27) 

Let a’ f Q’, then a’@ E @(A,“‘); and A,“‘a’@ = j&a’)*@ E G! . @. 
Hence 

V+A;“‘a’@ = V+j,(a’)*@ = F(j,(a’)*)@ E 9 . @ C_ @(AT), 

A~VtA;“2a’@ = J&j&a’))@ = J,V+J,V+J,a’@. 

Therefore A~VtA,“2 can be extended to a bounded operator on R 
(denoted with the same symbol) and (3.26) holds. Similarly, if b E 9, then 
A$‘b@ = j,(b*]@ E 9 . @, hence 

VAybQ, = v’(j(b*))@ E a’@ c GS(A~“~) 

A,“2VA~b~ = J,F,v’(j,(b))*@ = J,VJ,b@ 

and from this (3.27) follows. 
Since V = JO V,, J,P, (3.26) and (3.27) are equivalent respectively to 

A,“‘V,+A;‘J,= J9V,+, 

A”2V A-‘/2J 
a 0.9 9 

p = J V 
ol 0’ 

which are easily seen to be equivalent to (3.24), (3.25), respectively. 

Remark 1. In particular, for te o-conditional expectation one has 

A - ‘/2pA i/2 - u+ 
9 a- ’ on CZ. @; (3.28) 

A$2A,‘f2p = u, on 9’ . @. (3.29) 

Remark 2. A useful substitute for the projection property of the classical 
o-conditional expectations is the chain rule satisfied in the general case. 
Namely, if Q s 9 E a are three W*-algebras, rp is a faithful state on (Z and 
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E 7 EST%=, 47, are the p-conditional expectations defined for the couples 
$gCr, @ G ,9,‘5Y E OT, respectively, then 

E 9.B - E,,, = En,,. (3.30) 

More generally, if u@,~: $94 9 and u9,@: 9 4 G? are (o-compatible 
embeddings and FaT9, F9,Q their biduals one has for each a E @ 

Cm4z,,@P = Jg V&,J,!a . J,V&aJ,a@ 

= J* V&q9 K&J,a@ 

(here VW,s,... play the role of V, in Proposition 3.6). But V,,,V,,, is a 
partial isometry with initial projection [?Y . (P] and, for c E $? 

V 9.a V,,,c@ = %a,,~,,,(C)@ 

thus F9.Q * F@,, is the bidual map of u~,~u~.,~ and this, in particular, 
implies (3.34). 

Finally, let us remark that the consideration of bidual maps is a necessary 
step, in the sense that without it we cannot go much besides the conditions 
imposed by Takesaki’s theorem. In fact one has 

PROPOSITION (3.7). Let v: 9 G @ be a p-compatible embedding and let 
V be the partial isometry with initial projection [2’ . @] characterized by 

Vb@ = u(b)@; b E .9?. (3.3 1) 

The following are equivalent: 

(i) V+UV_C 29, 

(ii) there exists a faithful normal rp-compatible norm one projection F 
of 67 onto u(2). 

Proof. (i) 3 (ii). Since u is an embedding of 9 into U! one easily 
verifies that Vb = v(b)V (b E 9) or, equivalently 

bP = V+ u(b)V; bE.8. (3.32) 

Since v(9) G a, (3.32) and (i) imply that V+CZV = -9. Define F, : 0 -+ .id 
by F,(a) = V+aV. Then F, is normal, onto and, because of (3.32), 
F = vF, : Q’--) u(9) is a norm one normal projection onto u(9). Clearly F is 
yt-compatible hence faithful. (ii) * (i). Let F be as in (ii). Denoting 
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u -’ : u(9) --t 9 the left inverse of V, and G = u-‘F: Gsl+ 9, one has for 
eachaE@andbE.%‘: 

VG(a) b@ = u(G(a)) obrP = F(a) u(b)@ 

= F(au(b))@ = PIOtg,. et a Vb<p 

or, equivalently, 

G(a) b@ = V+aVb@, 

which implies (i). 

4. THE RANGE OF THE ~-CONDITIONAL EXPECTATION 

If F is the bidual of a q-compatible embedding u: 9 % a its range is 
nontrivial since F(a)@, being the image of @@ under a partial isometry with 
final projection [.9’ . @I, is dense in [A? . @I. More precisely, we have the 
following, which is a remnant of the property F(a . b) = F(a) . b 
(a E CX’, b E 9) characterizing the classical conditional expectations: 

PROPOSITION 4.1. Let F be as above and let V be the partial isometty 
with initial projection [AW] characterized by 

V’a@ = F(a)@; a E @. (4.1) 

Then : 

(i) For each b E 9 there is a sequence (a,) in @! such that for n + 00 

a,,@-, Vb@; F(a,)@ -+ b@; ll%@II G llb@ll (4.2) 

F(a + a,)@ *F(a) b@; a E CPI; (4.3) 

(ii) v, r 9 is uniquely determined by its restriction on F(Q). 

ProoJ Let b E 9. The existence of a sequence (a,) in CPI satisfying (4.2) 
has been established in the proof of the implication (j) * (jj) in Lemma 3.4. 
For such a sequence one has 

IlO . a,,)@ -J’(a) b@ II 

= (1 V+aa, CD - V+aVb@ I( 

~Il4l~Ila,@-~~@ll+O 

which proves (4.3). Taking a = 1 in (4.3) we see that o r 9 is uniquely 
determined by its restriction on F(a), and this proves (i) and (ii). 
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The results of Proposition 4.1 show that the range of the cp-conditional 
expectation or of any bidual of a (p-compatible embedding is large in 9 with 
respect to cp (we will say (p-dense). However, in general the o-conditional 
expectation is not surjectiue as the following example shows: assume that 
171# 9 and that @ is cyclic and separating in R for both G! and .%‘. Then in 
the notations (3.21)-(3.23), we have that F(U) = .JS if and only if 

F(//I) = JIB V,+ J&Y) JcA V, J,g = 3. (4.4) 

But in this case V, is unitary, therefore (4.4) is equivalent to V$OrV, = ~8’. 
Thus a: a E 0’ --+ a(a) = V,‘aV, E 9 is a cp-compatible endomorphism of (7 
hence it commutes with the modular automorphism group al, of 0 
associated with cp (cf. [7,29] and Proposition 6.1 in the present paper). 
Therefore it (4.4) holds: 

ag3) = of&a(a)) = ao’,(ct) = a(a) = 28 

hence, by Takesaki’s theorem (cf. [31] and Theorem 5.2 in the present paper) 
the o-conditional expectation is a norm one projection of fl onto .B thus 

against the assumption G’ # .8. Therefore, in our assumptions one must have 

(2 means strict inclusion). In particular, for the o-conditional expectation we 
can define for each n E Z 

fTn = (u+)“mJ”; ,Q$ = (u+)“.Bu”; U = J,J,, 

and denote oPn = CJJ r (;rn. From (4.5)---with F = E-one immediately deduces 
that 

and clearly @ is cyclic and separating in R for each couple {fl,, .?8n}. 
Now, denoting Jan, J9, the Tomita involutions associated to (P,,, I?‘,,, 

respectively, with respect to the state rp,, one has 

JR, = (U+)“J,U”; J,,” = (U+)“J,,U” 

therefore J,” . J9”= (U’)“(J,J,) U” = (U+)“U”+’ = U. Hence if a, E ff,, : 

Js,Jn,(%) J,,Jsm = U+a, U 
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thus if n > 0 we have that E, = E r GE?,, is the p,-conditional expectation from 
GPI, into 9”. The construction above provides an examples of a map, namely, 
E,:@sln-,@sln+,, identity preserving, p,,-invariant and surjective but which, 
for the arguments above, cannot be the bidual of a p,-compatible embedding 
of d”+, into CPI,. 

To formulate some algebraic properties of the range of the q-conditional 
expectation, let us recall some known facts about completely positive identity 
preserving maps F: C? --f 0l (cf., for example, [ 17, 181). Define: 

9(F) = {c E @: F(c* . c) = F(c)* . F(c)}, 

Y(F) = {c E c%‘: F(cc*) = F(c) + F(c)*}, 

(PI, = {c E Gl: F(c) = c}. 

It is known that c E .5%‘(F) (resp. Y(F) if and only if for each a E GY 

F(ac) = F(u) F(c) (resp. F(cu) = F(c) F(a)) 

and that S(F) and Y(F) are algebras, but in general not *-algebras, 
moreover 9(F) * = Y(F). 

If F is q-compatible one has 

fZ,z s S’(F) n Y(F) (4.7) 

in fact, if cE@, then from q$F(c* . c) - c* . c) = 0, and the 
Kadison-Schwarz inequality [24] we deduce 0 = F(c* . c) - c* . c = 
F(c* a c) - F(c)* . F(c) i.e., c E S(F), and similarly for Y(F). In particular, 
Q, is the C*-subalgebra (W*-if F is normal) of C?!: 

@, = {c E CT: F(uc) = F(a)c; F(cu) = cF(a); a E CPI}. (4.8) 

PROPOSITION 4.2. In the assumptions and the notations of 
Proposition 4.1 one has 

.53?(F) = {cE @: )I V+c@I( = Ilc@/}, (4.9) 

9(F)@ = @@n V[,9 . @] = @CD n [v’(2iP) . @I, (4.10) 

.5?(F) = {c E a: c[u’&%“)@] E [u’(S’)@] (4.11) 

(u’ = j,uj,). 

Proof. Let c E G!, then )( V+c@(l = Ilc@ll if and only if: 

O=((V+C~((~-~(IC~((=~([F(C)*~ F(c)-F(c*c)]) 

thus, since o is faithful, (4.9) follows from the Kadison-Schwarz inequality. 
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Because of (4.6) and the fact that @ is separating, we have for any a E 67’ 

c E 9(F) u F(ac)@ = F(a) F(c)@, 

u V+ac@ = V+aVV+c@. 

This is equivalent to saying that, for every b’ E 9” and a E 0: 

(a*v’(b’)@, c@) = (a*u’(b’)@, Qc@), (4.12) 

where Q = VI/+ is the final projection of K By cyclicity (4.12) is equivalent 
to 

and this proves (4.10). To prove (4.1 l), remark that 

V+acV= V+aQvVo c E .%?(F) 

and the left hand side equality is equivalent to 

@I’@, Vat@) = (!I’@, VaQc@). 

This equality can be written: 

(a*@, c . v’(b’*)@) = (a*@, Qcu’(b’*)@). 

Since a E 0 and b’ E .!!8’ are arbitrary, this is equivalent to: 

QcQ = cQ, 

which is (4.11). 

PROPOSITION 4.3. The q-conditional expectation E: 0 -+ 9 satisfies 

<W(E) = (c E @ : Pj,(c)@ = j,(c)@], (4.13) 

CR(E)@ = 6!!@ n [j&q@] = Gr@ n [j,(9)@], (4.14) 

.9(E) = {c E @: j,(c)[.SD] s 1.9 . @I}. (4.15) 

Proof: Using (4.3) we have that c E S(E) if and only if 

lIJ.pJ&ll = II W 0 llPj&@ll = Ilj&)@II 
and this proves (4.13). From (4.16) we deduce also that 

J,PJ,c@ = c@ u c@ E JnPJnZ= [j,(9)@] 

(4.16) 
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and this proves (4.14). As for (4.15), let us remark that, according to (4.111, 
c E 9(E) if and only if: 

5. FIXED POINTS OF THE ~-CONDITIONAL EXPECTATIONS 

THEOREM 5.1. For any b E 9 the following assertions are equivalent: 

(i) b E GTE (i.e., E(b) = b). 
(ii) a&(b) E 9: t E I?. 
(iii) u&(b) = o&(b); t E R. 

ProoJ (ii) =P (iii). Let fT g: C + II? be Q”-functions whose Fourier 
transform has compact support. The KMS condition for (~5 and the 
assumption (ii) on b imply (cf. [22,29]) that for each b, E 9 

. . 
! J f(s) s(t) cp(o;(b) 4@, 1) ds dt R2 

(5.1) . . 
= 

! j f(s) At - 0 &d&d 4dbN ds dt R* 

and, using the KMS conditions for ok we find 

!-I RI 
f(s - i) g(t - i) p@&(b) u$(b,)) ds dt 

. . 
= 

I J f(s) s(t) c44db) $57@l)) d&s dt- RI 

(5.2) 

By an argument due to Sirugue and Winnink (cf. [29, Appendix]) equality 
(5.2) for arbitrary A g, with the above quoted properties, implies 
qo(u$(b) ufs(b,)) depends only on t - s. Thus, in particular 

6o(h@) ddb, 1) = dbb, 1. (5.3) 

But condition (ii) implies that for each t E IF?, ~$&JJ E ]@D], therefore (5.3) 
is equivalent to the condition 

A,“(A$b@) = b9 o A$@ = A$ b@ 

(t E R), and this is equivalent to (iii). 

(5.4) 
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(iii) S= (i). As stated above, condition (iii) is equivalent to (5.4) which, 
by analytic continuation, yields 

ALfZb@ = A’f’b@ a .9 (5.5) 

since b@ E CZ(dg*) n CP(62’). Multiplying both sides of (5.5) by Js a P one 
finds: 

J,,PA$‘b@ = b*@ 

and since this is in @(S,) we can multiply both sides by S,, obtaining 

b@ = S,J,P A;‘b@ = A-$‘2P Ag2b@ = U+ b@, (5.6) 

where, in the last equality, we have used equality (3.28). And (5.6) is 
equivalent to (i) because @ is separating and U’b@ = E(b)@. 

(i) Z- (ii). By the L*-ergodic theorem on completely positive identity 
preserving maps on von Neumann algebras, which leave a faithful state 
invariant (cf., for example, [ 191, where the case of a semigroup rather than a 
single map is considered) there exists a normal faithful norm one projection 
F: 0’ + flE which is onto and o-compatible (i.e., rp . F = o). The orthogonal 
projection Q: P + [TPI, . @] is then characterized by 

Qa@ = F(a)@; a E (r. 

Therefore S,Q = QS, hence, being Q bounded (cf. [ 16, XII. 1.5, Lemma 6]), 
QFn = FnQ. Thus the unitary operator (1 - 2Q) commutes with S, and F,, 
hence also with ( Sd]* = Aa and with all its powers. In particular 
A% = Q A$, and therefore: 

that is: oi((w,) s .%‘. Thus (i) S- (ii) and this ends the proof. 
From the above result one can easily deduce the theorem of Takesaki 

mentioned in the Introduction, namely, 

THEOREM 5.2 (Takesaki [3 11). The following statements are equivalent: 

(i) .9 is globally invariant under the modular automolphis group ok- 
associated with rp. 

(ii) The cp-conditional expectation E is a norm one projection from (7 
onto .W. 
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ProojI The statement that E is a norm one projection (that is, (ii)) is 
equivalent to: aE = 3. And, because of Theorem 5.1, this is equivalent to 
us E 9. 

6. TRANSITION COCYCLES 

In the following we shall need a variant, due to Frigerio, of a known result 
(cf. [ 7, 25, 29 1): 

PROPOSITION 6.1. Let .A?, .X be von Neumann algebras acting respec- 
tively on the Hilbert spaces H, K with cyclic and separating CD, ly; let 
F: .A?-*./ be a completely positive, identity preserving normal map such 
that 

~=IJI.F; u/=(Y’ * Y); fp=(@‘. @). (6-l) 

Then the folio wing are equivalent: 

(i) Fuf,=a:F; tE I?. 

(ii) There exists a unique normal, completely positive, identity 
preserving map v: M -+ .A@ such that 

vW’(4) = cp(v(n)m); nEfl, mEM. (6.2) 

Proof: Denoting V: H + K the contraction defined by Vm@ = F(m)!C 
(m EM), it is known [25] that condition (6.2) is equivalent to 

vd;=d~v, aEC (6.3) 

in the sense that I%@,“) ~@(d,“) and (6.3) holds on g(d,“). Moreover, 
since F(m *) = F(m) * (m E A) one has also VS, = S, V in the same sense. 
Thus (i) is equivalent to 

v..,d@ ve v+d$=.q+. (6.4) 

Let now v: JY -+A be the bidual map of F, i.e. v = j; ‘~7~ and v’ is the 
dual map of F in the sense of Proposition 3.1. Then one has, for each n E JY 

v(n)@ =.I, V+J,n!P== V+JinY = V+n!P, 

which is equivalent to (6.2). That v is unique, normal, completely positive, 
identity preserving follows from the corresponding properties of dual maps 
(cf. Proposition 3.1). Thus (i) * (ii). To prove the converse implication 
remark that (6.2) is equivalent to 

v(n)@ = V+ n!?? nEM 
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which implies V+S, = S, V” and, since S,, S, are closed Sl V= VS,i. 
Thus VA,= VS;S,=SfVS,=SfS,V=A,V and, since 
Vg(A,) E g(A,), relation VA; = A:V follows from a variant of a result of 
Bratteli and Robinson [7]. 

PROPOSITION 6.2. In the notations of Sections 2 and 3, let E: (7 + d be 
the rp-conditional expectation. Then the following are equivalent: 

(i) t&E=Ec&; tE IR. 

(ii) There exists a cp-compatible embedding v’: 9’ C+ CPI’ such that 

u’(b’)@ = b’@; b’ E ,;/9’. 

(iii) ,?8: @ c fl; @. 
(iv) E is a norm one projection onto 9. 

Proof. Clearly (ii) * (iii). If (iii) holds, then 9’@ G @“@ and, since @ is 
separating for a’, there exists a map u’: 9’ c-1 a’ uniquely defined by 

v’(b’)@ = b’@; b’ E .zf”. 

Because of (iii), u’ is positive. Let F: G’ -+ .B be the dual map of v’, uniquely 
defined, according to Proposition 3.1, by 

(u’(b’)@, a@) = (b’@, F(a)@); b’ E 9, a E fl 

then by definition of u’ 

(v’(b’)@, a@) = (b/Q, a@) = (b’@, Pa@) 

therefore, by the cyclicity of 0 

F(a)@ = Pa@; aEfl 

and therefore (iv) follows from Takesaki’s theorem. The implication 
(iv) z- (i) is a simple consequence of Takesaki’s Theorem. Finally if (i) 
holds, then by Proposition 6.1 there is a unique completely positive map 
v:.8-+fl such that 

v(b)@ = UbQi; bE,B 

therefore, if b E 9, one has UbQi = J,j,(b)@ = u(b)@ c (;pI+ @ and this 
implies (iii) hence (iv). Therefore U = P and, from this (ii) easily follows. 

Remark 1. Condition (ii) in Proposition (6.2) is strictly stronger than 
d’@ G fl’@. In fact in the case of matrix algebras the latter condition is 
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always fulfilled for a faithful (o, while the former is not, since in general the 
canonical p-expectation is not a normal one projection. 

Remark 2. Proposition 6.2 shows that in general a&E # Eo& A 

measure of how much this equality fails is provided by the following I- 
cocycle (for the group &“(.)A&“) 

U, = UA-$U+ A;. (6.5) 

One easily verifies that U, is a I-cocycle for A;“(-) Ai and, denoting 

x;‘(a) = U,aU: ; a(SOZ (6.6) 

one has the formal identity 

o$EK;’ = Et& (6.7) 

Identity (6.7) is only formal, since in general K; ‘(a) is not contained in QJ. 
However, in some cases it is possible to give a rigorous meaning to the 
identity: 

a$E = E~J&K~, 

where K, = U:( ) U,. More precisely: 

(6.8) 

PROPOSITION 6.3. Assume that 

LP@ c a’@; (6.9) 

then for each t E ll? there exists a map K,: @ + @ characterized by the 
property 

q(a)@ = &+a@; a E ol. (6.10) 

Moreover, for each t E IR and a, a,, a, E CT 

49@(a)) = W%K,W), (6.11) 

WA = Kk4 * EW = E(aJ. (6.12) 

Proof: Let a E A, then: 

U:a@ = A~“UA!$J+a@ = A,itJmj,(u~E(a)))@. 

Thus because of assumption (6.9), 
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thus for each a E 02 there exists an (unique since @ is separating) element 
K,(U) E 0 satisfying (6.10). Moreover 

E(a&ct(u)))@ = U+ A$c,(u)@ = U+ A~A~“UA’$U+aQ, 

= A$U+u@ 

which is equivalent to (6.11). In a similar way one verifies that (6.12) is 
satisfied. 

Remark 1. The cocycle U, gives information on the relationship between 
the modular structures of a W*-algebra CZ and of a subalgebra 9. In some 
cases (especially when the fixed point algebra of E is rather large) decom- 
position (6.7) allows a simplified description of c&. For example, this 
happens for quantum Markov states on infinite tensor products of matrix 
algebras (cf. [3]). 

Remark 2. In the assumptions of Proposition 6.3 one can prove that, for 
a E @, the map z t-+ xl(u) is holomorphic for 0 < Re(z) < f and that: 

K-1,2(4 = E(u)* 

7. THE v)-EXPECTATION FOR WEIGHTS 

In this section A’, Jy will be von Neumann algebras and -431; 9 
denotes a faithful normal semi-finite weight on J+ whose restriction on Jv; , 
denoted 9,,, is also semi-finite. First of all let us recall some basic facts about 
weights and establish some notations [8, 11, 311. Denote: 

m,={xE:cp(x*x)<+co} (7.1) 

m,*= {xEA 9(xX*) < +co) (7.2) 

and let A(9) be the set of all linear combinations of elements of the form 
x*.ywithx,y~m,. J(9) is an hereditary self-adjoint sub-algebra of ./ 
whose positive part A+ (9) coincides with the set (x E A+ : 9(x) < +a, } and 
the restriction of 9 on A+(9) is extended uniquely to a linear functional on 
,/(9) which we, following the notations of [3 11, denote 9. The set 
G! = m, n rn9 is an achieved left Hilbert algebra with left von Neumann 
algebra L@(a) isomorphic to A and scalar product 

(a,, a,) = @(a:: * a&: * a,, a, E @. (7.3) 

More precisely, denoting de” the Hilbert space obtained as closure of C? with 
respect to the scalar product (7.3), 7~: C? CM-, S(R)-the left 
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multiplication (n(a) a, = Q s a, ; a, a, E a), L/(0’) the von Neumann algebra 
generated by n(a), one has that the map A can be extended to a W*- 
isomorphism ?:.A-+ Y(a). The involution in @ is the restriction of the 
involution m ti m* (m E A) in k, its closure will be S,= J, AZ2 and its 
adjoint F, = JR A;“*. 

By definition 

a’ = {{ E @(Fa): a E @ t-+ n(a)< is continuous} (7.4) 

n’(<)a = n(a)& uEL?PI; (-Em’. (7.5) 

That 91 is achieved means (a’)’ = @” = Q. In a similar way we introduce 
the corresponding structures associated to JV and qz n,, M(p), 
SJ=n”mnn,*, 9, U(9), (60, x, n, : 9 --t 9(X), 7r;, ii, : M--t 49(9), 
Ss = Jcr A$*, F9. Since A? E Cn we can suppose that X c Z’ and the scalar 
product on Z is the restriction of the one defined in A?’ by (7.3). 

With these notations let us define the partial isornetry U: Z +A? with 
initial projection .r such that 

LEMMA 7.1. In the above notations one has: 

u9 c a’; (7.7) 

Uz;(b’) = a’(Ub’)U, b’ E 9’; (7.8) 

Qlr’(Ub’) = n’(Ub’)Q, b’E.2’ (7.9) 

(where Q = UU’ is the final projection of U, 

II ~‘t~b’)ll = Il6Wll. (7.10) 

Proof. We know [30, p. 231 that JsS” = 9” = 9. Therefore 
Ja J&S &J& = a’; and this proves (7.7). Now let b’ E 9’. Then n’(Ub’) 
is well defined because of (7.7) and, if b; E 9” then: 

Uni(b’) bi = Ubib’ = Ja * Jg(bfb) = J&Jgb’)(Jsbi) 

= (JaJgbi)(JaJsb’) = f(Ub’) Ubi 

and this proves (7.8) since A?’ is dense in .A@, U has initial projection 3, 
and $,(b’) maps Z into itself. From (7.8) we deduce that 

U&(b’) U+ = Ir’(Ub’)Q; b’ E 29’. (7.11) 

In particular n’(Ub’) maps the final space of U into itself. To prove (7.9) we 
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show that also rr’(UP)+ has this property. Since rr’(Ub’)+ = n’(FaVb’) [30, 
p. 121 one has: 

.‘(ub’)+ = d(F&b’) = a’(F&gJ.gb’) 

= ?r’(JaSaJgb’) = n’(J($gJgb’) 

= 7r’(JaJgFgb’) = 7r’(ub’*) (7.12) 

but b’ * E .A?’ and therefore in (7.11) we can substitute b’ * for b’ and this, 
due to (7.12), implies our thesis. The equality (7.10) is an immediate conse- 
quence of the fact that 9 E CPI the scalar product on X is the restriction on 
X of the scalar product on .R, and that, for a E 0’ and b E 9, one has 
~‘(Jaa) = J&a) Ja; n’(Jgb) = Jgq,(b) Js. 

PROPOSITION 7.2. U+Gt ~9. 

Proof. Clearly U+GZ EX = final space of Ut . We will show that for 
eachaE@: 

u+a E CqS,), (7.13) 

6’ E 58’ t* $,(b’) U+a is continuous, (7.14) 

i.e., that U+a E (.a’) = .%‘. Let b’ E .9’ then: 

hence b’ E .k!? F+ (Fgb’, U+a) extends to a bounded linear functional on 
.fl, and this proves (7.13). Now, denoting P the orthogonal projection onto 
.X one has that P = U+ U and, using Lemma (7.1): 

IIn; U+aJI = )I U+Un;(b’) U+aJI 

= 11 U+n’(Ub’)al( < Iln’(Ub’)al( 

= II ~(a> gb’ II G II @>I . II b’ II 

and this proves (7.14) 

PROPOSITION 7.3. For each a E 91 and b’ E .8: 

u+ 7+)u r 27 = R,(~+u). (7.15) 
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ProojI Using Lemma 7.1 we have that for each b’ E 9’ 

U’z(a) Ub’ = U’a’(Ub’)a = U+Qn’(Ub’)a 

= U’n’(Ub’) UU+a = U’U@b’) U+a 

= P&(b’) U+a = nh(b’) U+a 

= q,(U+a) b’ 

and this proves (7.15) since 9’ is dense in X. 
From Proposition 7.3 we deduce that the map 

(7.16) 

is well defined. It is completely positive and weakly continuous, being 
composed of maps which enjoy these properties. Therefore it can be extended 
to a completely positive weakly continuous map E: A’+X. Clearly 
E(1) = 1. 

LEMMA 7.4. For each m E.AY+ such that p(m) < +a0 one has: 

9(m) = 90(W))* (7.17) 

Proof: Let m be as above and denote a = m’12; then a E @ and 
(p(m) = (la1)2. For b’ E A?‘, using (7.10), we find 

(f(m) Ub’, Ub’) = (1 a(a) Ub’ (I2 

= Ilx’(Ub’)all’< Ija’(Ub’)(l* - llal1* 

= II 4@‘>ll* - dW. 

Since, by definition of E and (7.16), ii,(E(m)) = U’ir(m)U, (7.18) implies 

904 Z sw{(il,(E(m)) b’, b’): Il~@‘)ll < 11 
= dE(m)). 

Thus E(m)“’ E 9. Now, let (b;) be a net in 9’ which converges strongly to 
the identity and such that 1) n;(b;)ll < 1. Then, since q,(J,b&) = JSn;(b;) J9, 
also the net (q,(J9b;)) has the same property and a similar argument plus 
the strong continuity of ic - c;’ show that also the net (n’(Ub;)) has this 
property. In particular z’(UbL)a E Z converges to a in norm, therefore: 
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= li? 1) n(a) Vb& (I= li? (7?&!?(m)) bh, bb) 

= li” 1) n@;) B(m)“2 (1’ 

= 1) -WV’ II* = 9,(E(m)) 

and this proves (7.17). 
Summing up our discussion we have: 

THEOREM 7.5. Let A, ./tr be von Neumann algebras with I 4‘5:.,4, and 
let 9 be a faithful normal semi-finite weight on ,Av, whose restriction 9O on 
I ; is semi-finite. Let @ 2 9 the achieved left Hilbert algebras associated to 
4, 9 and <H, Q,, respectively; Ja, J3 the corresponding Tomita involutions 
and P the orthogonal projection from 3, i.e., the closure of ~2 with respect to 
the scalar product induced by (p-onto .R--i.e., the closure of .S with respect 
to the same scalar product. Then the map 

a E ~2’ t+ n;‘(J,PJ,rt(a) J,J,,P) E ~8 

is well defined and extends to a faithful normal completely positive identity 
preserving map satisfying 

9(m) =9,(O)); 9(m) < a; mCS.Y+. (7.19) 

Moreover the closure of E(R) is .3. 

Proof: The existence of E follows from Proposition 7.3. Normality, 
complete positivity and E( 1) = 1 follow from the explicit form (7.16) of E. 
That E is o-compatible, i.e., (7.19), has been shown in Lemma (7.14) and the 
faithfulness of E is a consequence of this. Finally from (7.15) we see that 
E(R) is the image by the partial isometry U+ of a dense set in Z’ hence it is 
dense in X = closure of 9 = final space of U+. 

For a more detailed discussion of the properties of the o-expectation 
associated to a weight see [8]. 
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