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We introduce, for each a ∈ R+, the Brownian motion associated to the distribution
derivative of order a of white noise. We prove that the generator of this Markov process
is the exotic Laplacian of order 2a, given by the Cesàro mean of order 2a of the sec-
ond derivatives along the elements of an orthonormal basis of a suitable Hilbert space
(the Cesàro space of order 2a). In particular, for a = 1/2 one finds the usual Lévy
Laplacian, but also in this case the connection with the 1/2-derivative of white noise is
new. The main technical tool, used to achieve these goals, is a generalization of a result
due to Accardi and Smolyanov5 extending the well-known Cesàro theorem to higher
order arithmetic means. These and other estimates allow to prove existence of the heat
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semi-group associated to any exotic Laplacian of order ≥ 1/2 and to give its explicit
expression in terms of infinite dimensional Fourier transform.
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1. Introduction

Essentially infinite dimensional Laplacians are Laplacians which are identically zero
on all functions depending only on a finite number of variables (cylindric functions).
The first example of such an operator was the Lévy Laplacian, defined by Lévy,21

as the Cesàro mean of the second derivatives, along a sequence of orthogonal vec-
tors in a Hilbert space, while the usual Volterra Laplacian is defined by the series
of these derivatives. An infinite hierarchy of operators with this property (more
precisely, with the property that elements of higher rank are identically zero on the
domain of elements of lower rank) was introduced by Accardi and Smolyanov3 in
terms of higher order Cesàro means and called exotic Laplacians. However, while in
Ref. 3, an explicit construction of the heat semi-group associated to the usual Levy
Laplacian was obtained using ergodic theory techniques, these techniques could not
be applied to generic exotic Laplacians and for them, the problem remained open
until recently (see discussion below). In Refs. 1 and 16, it was proved that the Lévy
Laplacian can be considered as a particular Volterra–Gross Laplacian. In Ref. 6,
it was proved that all the exotic Laplacians can also be considered as particular
Volterra–Gross Laplacians and generate infinite dimensional Brownian motions. A
similarity transform relating any two Laplacians of the exotic hierarchy was given
in Ref. 7 and it allowed to identify the exotic Laplacians of order 2p + 1 (p ∈ N)
with the generators of the (infinite dimensional) Brownian motion corresponding
to the pth distribution derivative of the standard Brownian motion.

The main purpose of this paper is to remove this restriction to odd integers. This
goal is achieved through the proof of an improvement of the Accardi–Smolyanov
theorem generalizing Cesàro theorem on arithmetic means of converging sequences
(see Sec. 5, Ref. 5). We prove that the white noise generated by the exotic Laplacian
of order 2a (a ∈ R+) is precisely the ath distribution derivative of the standard
white noise and that the Lévy Laplacian corresponds to the derivative of order 1/2
(see Sec. 3 for definitions). The paper is organized as follows.

In Sec. 2 we recall some basic notions and results of white noise analysis in a
language that prepares the ground for the applications in the following section.

In Sec. 3 we prove that the second quantization of any positive power of the
adjoint of the derivative operator, defined through the spectral theorem, gives an
isomorphism from the space of white noise distributions onto itself. These isomor-
phisms map white noise functionals into functionals of higher order derivatives of
white noise.

In Sec. 4, we study the higher order Cesàro mean and then prove the above
mentioned generalization of the Accardi–Smolyanov result.5
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In Sec. 5 we introduce exotic Laplacians and study their mutual relationships.
In Sec. 6 we construct the Cesàro spaces and prove their connections with deriva-

tives of white noise. These results are used to show how the isomorphisms, given
by second quantization of powers of the derivative operator, intertwine the actions
of exotic Laplacians on a suitable domain of white noise distributions.

In Secs. 7 and 8, we extend the construction of Gel’fand triples to higher deriva-
tives of white noise and introduce an embedding of test functionals for these triples
into the space of test functionals for standard white noise distributions, which
induces an embedding of the corresponding Cesàro spaces into the space of stan-
dard white noise distributions.

This embedding plays a crucial role in the construction of the Brownian motions
generated by exotic Laplacians and associated heat semi-groups accomplished in
the last Sec. 9, where we also prove the identification between the ath derivative
of the Brownian motion generated by the Lévy Laplacian obtained in Ref. 16 with
the Brownian motion associated with the exotic Laplacian of order 2a.

2. Preliminaries

2.1. Test function spaces

Let H be a separable complex Hilbert space with inner product (·, ·)H and with a
conjugation operator J :H → H (antilinear, J2 = id, (Jξ, Jη)H = (η, ξ)H). Unless
otherwise specified, “operator” means “linear operator”. Thus

(J ·, ·)H =: 〈·, ·〉 (2.1)

is a complex bilinear form on H ×H and the inner product (·, ·)H on H is given by
(·, ·)H =: 〈J ·, ·〉. The fixed point space of J , which is a real vector sub-space of H ,
is denoted HR and one can prove that any orthonormal basis of HR as a R-vector
space is an orthonormal basis of H as a C-vector space.

Let A be a densely defined self-adjoint operator on H with pure point simple
spectrum such that

|A| > 1, (2.2)

AJ = JA, (2.3)

Tr(A−2p) < +∞; ∀ p ≥ 1, (2.4)

where, for any p ∈ R, the powers Ap are defined by the spectral theorem.

Lemma 2.1. If A satisfies (2.3) and

A :=
∞∑

k=1

�keke∗k; eke∗k(ξ) := 〈ek, ξ〉ek; ξ ∈ H (2.5)

is its spectral decomposition, then up to multiplication of each ek by a complex
number of modulus 1, one can suppose that

Jek = ek; ∀ k ∈ N∗. (2.6)
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Proof. Since J commutes with A and the eigenvalues of A are real then, ∀ k ∈
N, Jek is an eigenvector of A belonging to the same eigenvalue of ek. Since the
spectrum of A is simple, Jek must be a multiple of ek, i.e.,

Jek = ukek.

Since J is an isometry, one must have |uk| = 1. Moreover, ∀ k ∈ N∗

J(1 + uk)ek = Jek + Jukek = ukek + ūkJek = ukek + |uk|2ek = (1 + uk)ek.

Therefore the vectors

fk :=
1 + uk

|1 + uk|1/2
ek (2.7)

form an orthonormal basis and one has

Jf k = fk.

Since replacing each ek by fk with |uk| = 1 does not change the spectral decompo-
sition of A, the thesis follows.

Remark 2.1. The numeration of the basis e ≡ (ek) of eigenvectors of A can always
be chosen so that

1 < |�1| < |�2| < |�3| < · · ·
and condition (2.3) becomes

∞∑
k=1

�−2p
k < ∞; ∀ p ≥ 1.

Given p ∈ R, if p > 0, then Ap is densely defined because its domain contains
the dense sub-space of H :

E(0) := algebraic linear span of {ek : k ∈ N∗}. (2.8)

If p ≤ 0, then Ap is a contraction on H . Moreover, for any p ∈ R, E(0) is an invariant
sub-space for A hence for all its powers. In particular for any p ∈ R, the restriction
of Ap on E(0) is an invertible operator with inverse given by the restriction of A−p

on E(0). For p ∈ R the scalar product

(ξ, η)p := (Apξ, Apη)0 := (Apξ, Apη)H (2.9)

is well defined for ξ and η in the domain of Ap, nondegenerate and the associated
p-norm

|ξ|2p := |Apξ|20 =
∞∑

k=1

�2p
k |αk|2; ξ = {αk}∞k=1 =

∞∑
k=1

αkek ∈ H,
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where | · |0 is the norm of H , is increasing as a function of p in the sense that

p, q ∈ R, p ≤ q ⇒ |ξ|p ≤ |ξ|q; ∀ ξ ∈ H. (2.10)

One can prove that, for p ≥ 0 the subspace of H

Ep := {ξ ∈ H : |ξ|p < ∞}
is closed under the norm | · |p, i.e., it is a Hilbert space for the scalar product (2.9).

For p ≥ 0 we denote E−p the completion of H with respect to the norm | · |−p.

Lemma 2.2. (i) For all p > 0 the map

Vp : (Ep, (·, ·)p) � ξ �→ Apξ ∈ H (2.11)

is a partial isometry whose range is considered as a sub-space of H.
(ii) For all p > 0 the map

V−p : H � ξ �→ Apξ ∈ (E−p, (·, ·)−p) (2.12)

is a partial isometry with dense range.
(iii) Defining V0 : H → H to be the identity map, for any p ∈ R the restriction of

V ∗
p on the range of Vp coincides with A−p.

Proof. If p > 0, then the map (2.11) satisfies

(Apξ, Apη)H = (ξ, η)p

hence it is a partial isometry. Let V ∗
p : H → (Ep.(·, ·)p) denote its adjoint. If ξH ∈

VpEp (range of Vp), then there exists ξp ∈ Ep such that ξH = Apξp. For this ξp and
for any ηp ∈ Ep one has

(V ∗
p ξH , ηp)p = (ξH , Vpηp)H = (ξH , Apηp)H = (Apξp, A

pηp)H = (ξp, ηp)p.

Thus

V ∗
p ξH = V ∗

p (Apξp) = ξp = A−pξH

or equivalently

V ∗
p |Range Vp = A−p.

If ξH is orthogonal to the range of Vp, then V ∗
p ξH = 0. If p > 0, then by construction

V−p : H → E−p

is a partial isometry with dense range. To calculate its adjoint, let ξ−p ∈ Range V−p.
Then there exists ξH ∈ H such that V−pξH = ξ−p. Therefore, for any ηH ∈ H

one has

(V ∗
−pξ−p, ηH)H = (ξ−p, V−pηH)−p = (V−pξH , V−pηH)−p

= (ApξH , ApηH)−p = (ξH , ηH)H .

Therefore

V ∗
−pξ−p = ξH = A−pApξH = A−pV−pξH = A−pξ−p.
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In this case the orthogonal of the range of V−p is zero because this range is
dense.

The family of Hilbert spaces

{(Ep, (·, ·)p) : p ∈ R}

depending on the triple (H, {ek}, {�k}), (or equivalently on the pair (H, A)) is
decreasing by inclusion and defines a pair of topological vector spaces through
the relations:

E := proj lim
p→+∞

Ep ⊂ E0 = H ⊂ E∗ := ind lim
p→+∞ E−p.

Notice that for the orthonormal basis e = {ek} of H , defining A, A−pe = {A−pek}
is also an orthogonal basis of (Ep, (·, ·)p) for any p ∈ R. In particular E(0) is a dense
sub-space of each Ep (p ∈ R).

The elements of E are those elements of H that are in the domain of Ap for each
p ∈ R. Continuity of a linear operator B in the projective topology on E means
that for any p ∈ R there exists some q ≥ 0 and a constant Cp,q ≥ 0 such that for
all p ∈ R there exists a constant CB,p such that

|Bξ|p ≤ Cp,q|ξ|p+q, ξ ∈ E.

Notice that, because of assumption (2.3), J commutes with A therefore it induces
a conjugation on all the Hilbert spaces Ep with p > 0 and can be extended to a
conjugation on all Ep with p < 0. All these extensions will still be denoted by J .
Thus it is a conjugation on all Hilbert spaces (Ep, (·, ·)p) (p ∈ R). In particular it
is a continuous conjugation on E and E∗ in the sense of topological vector spaces
(antilinear and J2 = id).

The fixed point subspaces of J in E (resp. E∗) will be denoted by ER (resp.
E∗

R
). They define the real triple:

ER ⊂ HR ⊂ E∗
R
.

By constructing the space E(0) defined by (2.8), it is contained in E and the restric-
tions on H × E of the natural duality 〈E∗, E〉 and of the C-bilinear form (2.1)
coincide. When no confusion is possible, the natural duality 〈E∗, E〉 will also be
denoted 〈·, ·〉.

Lemma 2.3. For any α ∈ R+, the operator Aα maps the space E onto itself and
its restriction on E induces a topological vector space automorphism of E with the
projective limit topology. For α ≤ 0, Aα is a contraction with respect to any p-norm.

Proof. The elements of E are those elements of H that are in the domain of Ap for
each p ∈ R. Therefore, for each α ∈ R, both Aα and A−α are everywhere defined
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on E. Aα is surjective because, for each ξ ∈ E, Aα(A−αξ) = ξ. From the explicit
form (2.5) of A it follows that Aα is injective on E and that its inverse is given by

A−αξ =
∞∑

k=1

�−α
k αkek; ξ =

∞∑
k=1

αkek ∈ E (2.13)

from this, the bijectivity of Ap on E follows. Thus Aα is a vector space automor-
phism of E for any α ∈ R. Moreover, by inspection of (2.13), it follows that, if
α ≥ 0, the A−α is everywhere defined on H and and 0 < A−α < 1. To prove that it
is also a topological automorphism in the projective limit topology on E we prove
continuity of Aα for each α ∈ R. This follows from the fact that for any p ∈ R and
any ξ ∈ E, ξ is in the domain of Aα and one has

|Aαξ|2p = |Ap+αξ|20 = |ξ|2p+α ≤ |ξ|2p+(α+β); ∀β ≥ 0, (2.14)

where the last inequality is due to the fact that the p-norms are increasing in p.
Thus if α > 0 then for any β ≥ α one has

|Aαξ|2p = |ξ|2p+α ≤ |ξ|2p+β ; ∀ ξ ∈ E.

Hence Aα is continuous with respect to the projective topology. Finally if α ≤ 0,
then Aα is a contraction for any p-norm because 0 < Aα < 1 on H and Aα commutes
with Ap for any p ∈ R.

Lemma 2.4. For any α ∈ R, the operator Aα maps the space E∗ onto itself and
induces on it a topological vector space automorphism of E∗ with the inductive limit
topology.

Proof. The operator A is invertible on H hence on all the spaces Ep ⊂ H for
p > 0. If p ≤ 0, then for any ξ ∈ Ep one has

|Aξ|2p = |Ap+1ξ|20 = |ξ|2p+1 ≥ |ξ|2p.

Therefore if ξ ∈ Ep is such that Aξ = 0, then also |ξ|p = 0 i.e., ξ = 0. Therefore
A is injective on E∗. Since A−1 is a contraction of the space Ep into itself for all
p-norms, then for any ξ ∈ E∗ one has A(A−1ξ) = ξ hence A is surjective and is a
vector space automorphism of E∗. Therefore the same is true for all its powers.

To prove that it is also a topological automorphism in the inductive limit topol-
ogy on E∗ we prove continuity of Aα for each α ∈ R. We already know that, for
α ≤ 0, Aα is a contraction of the space Ep for all p-norms. Therefore we only have
to consider the case α > 0. In this case one has, for any p ≥ β ≥ α

|Aαξ|2−p = |Aα−pξ|20 = |ξ|2−p+α ≤ |ξ|2−(p−β)

and this proves the continuity of Aα.
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2.2. Second quantization

For each p ∈ R, let Γ(Ep) be the (Boson) Fock space over the Hilbert space Ep i.e.,

Γ(Ep) =

{
φ = (fn)∞n=0 : fn ∈ E

b⊗n
p , ‖φ‖2

p =
∞∑

n=0

n!|fn|2p < ∞
}

(2.15)

where ⊗̂n is the n-fold symmetric tensor product. Then, identifying Γ(H) with its
dual space, we have the chain of Fock spaces:

· · · ⊂ Γ(Ep) ⊂ Γ(E0) = Γ(H) ⊂ Γ(E−p) ⊂ · · ·
and a new triple

(E) = proj lim
p→∞

Γ(Ep) ⊂ Γ(H) ⊂ (E)∗ = ind lim
p→∞ Γ(E−p),

where both projective and inductive limits are meant in the sense of topological
vector spaces. The canonical C-bilinear form on (E)∗ × (E), denoted by 〈〈·, ·〉〉, has
the form:

〈〈Φ, φ〉〉 =
∞∑

n=0

n!〈Fn, fn〉; Φ = (Fn) ∈ (E)∗; φ = (fn) ∈ (E),

where, for each n ∈ N, 〈Fn, fn〉n denotes the natural extension to E∗⊗̂n × E⊗̂n

of the the canonical C-bilinear form on E∗ × E and the suffix n is omitted when
no confusion is possible by writing simply an 〈Fn, fn〉. In the notation (2.15), the
exponential vector associated with ξ ∈ H is defined by

φξ :=
(

1, ξ,
ξ⊗2

2!
, . . . ,

ξ⊗n

n!
, . . .

)
, (2.16)

which can be extended to the vector ξ ∈ E∗. If ξ, η ∈ E, then for any p ≥ 0, one has

〈〈φξ, φη〉〉 = exp〈ξ, η〉
therefore φξ ∈ (E) for any ξ ∈ E. This implies that, for any element Φ ∈ (E)∗,
the map

SΦ(·) : E � ξ �→ SΦ(ξ) := 〈〈Φ, φξ〉〉 ∈ C

called the S-transform of the function Φ, is well defined. A complex-valued function
F on E is called a U -functional if F is Gâteaux entire and there exist constants
C, K ≥ 0 and p ≥ 0 such that

|F (ξ)| ≤ C exp(K|ξ|2p), ξ ∈ E. (2.17)

They are characterized by the following result.

Theorem 2.1.25 A complex-valued function F on E is the S-transform of an
element Φ ∈ (E)∗ if and only if F is a U -functional. In this case Φ ∈ (E)∗ is
uniquely determined.
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Remark 2.2. The uniqueness result in Theorem 2.5 implies the invertibility of the
S-transform from (E)∗ into U -functionals: a result frequently used in the following.

Remark 2.3. The continuity of the map ξ ∈ ER �→ exp(−〈ξ, ξ〉/2) and the
Bochner–Minlos Theorem implies the existence of a probability measure µ on E∗

R

such that ∫
E∗

R

ei〈x,ξ〉dµ(x) = e−
1
2 〈ξ,ξ〉, ξ ∈ ER.

The Wiener–Itô–Segal isomorphism between Γ(H) and L2(E∗, µ) is the unitary
isomorphism uniquely determined by the correspondence:

φξ =
(

1, ξ,
ξ⊗2

2!
, . . . ,

ξ⊗n

n!
, . . .

)
↔ φξ(x) = e〈x,ξ〉−〈ξ,ξ〉/2; ξ ∈ E.

We extend the identification of Γ(H) with L2(E∗, µ), provided by the Wiener–Itô–
Segal isomorphism, to the space (E) of test functionals and to the space (E)∗ of
white noise distributions (also called generalized white noise functionals), keeping
the same notation for both when no confusion is possible. This gives the triple

(E) ⊂ L2(E∗, µ) ⊂ (E)∗,

which is called the Hida–Kubo–Takenaka space.17

For any two topological vector spaces X and Y, we denote

L(X, Y) := the space of all continuous linear operators from X into Y. (2.18)

With this notation the second quantization Γ(T ) of an operator T ∈ L(E, E∗) is
defined on the exponential vectors by

Γ(T )φξ = φTξ; ξ ∈ E. (2.19)

It is known (see Ref. 24) that

Γ(T ) ∈
{L((E)∗, (E)∗), if T ∈ L(E∗, E∗),

L((E), (E)), if T ∈ L(E, E).
(2.20)

Theorem 2.2. (i) For any α ∈ R, the operator Γ(Aα) maps the space (E) onto
itself and its restriction on (E) induces a topological vector space automorphism
of (E) with the projective limit topology. For α ≤ 0, Γ(Aα) is a contraction with
respect to any p-norm.

(ii) For any α ∈ R, the operator Γ(Aα) maps the space (E)∗ onto itself and induces
on it a topological vector space automorphism of (E)∗ with the projective limit
topology.

Proof. The statements follow from Lemmata (2.3), (2.4) and the properties (2.20)
combined with the functorial properties of Γ, in particular

Γ((Aα)∗) = (Γ(Aα))∗;

Γ((Aα)−1) = (Γ(Aα))−1.

1350020-9
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3. Derivatives of White Noise

3.1. The choice of the space H ⊂ L2([0, 1])

In the following, we fix H to be the orthogonal complement of the constant functions
in L2([0, 1]) with the conjugation operator Jξ = ξ̄ defined by pointwise complex
conjugation. For each t ∈ R, let Ut be the linear operator on L2([0, 1]) defined as
the right translation by t modulo 1:

(Utf)(s) := f(s + t (mod 1)); f ∈ L2(0, 1), s ∈ (0, 1). (3.1)

The set of functions e ≡ {en}∞n=1

e2k−1(t) := e2πikt ; e2k(t) := e−2πikt ; k ∈ N∗ := N\{0}, t ∈ R (3.2)

is an orthonormal basis of H and on it Ut acts as

(Ute
±i2πn(·))(s) := e±i2πn(t+s) = e±i2πnt(e±i2πn(·))(s). (3.3)

In particular the elements of the orthonormal basis (3.2) of H are eigenvectors of
the operator Ut corresponding to the eigenvalues ei2πnt (n ∈ Z). From this, one
easily checks that (Ut)t∈R is a strongly continuous 1-parameter unitary group on
L2([0, 1]).

The constant function 1 ∈ L2([0, 1]) is invariant under the action of (Ut), there-
fore the same is true for its orthogonal complement i.e., H . Thus the restriction of
(Ut) on H gives a 1-parameter unitary group still denoted (Ut). By Stone’s theorem,
the generator of (Ut) is the form iA where A is a self-adjoint operator. From (3.1)
it follows that, on the subspace of H made of (classes of) differentiable functions,
the operator A coincides with the momentum operator

p =
1
i
∂,

where ∂ is the partial derivative in the variable t. We will use the same symbol ∂

to denote the derivation operator and its restriction on H . The self-adjointness of
A implies that

p∗ = −1
i
∂∗ = p =

1
i
∂,

i.e., on the domain of p:

∂∗ = −∂, (3.4)

where all adjoints are meant on H . This can also be checked directly because the
invariance of H under p implies that, if f ∈H is in the domain of p, then f(0)= f(1).

3.2. The standard triple associated to H

We have seen that the elements of the orthonormal basis (3.2) of H are eigenvectors
of the operator ∂ or equivalently of p:

pe2k−1(t) = 2πke2k−1(t); pe2k(t) = −2πke2k(t); k ∈ N∗. (3.5)
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Therefore the operator p on H satisfies conditions (2.2), (2.3), (2.4) and in this case
the �n(∈ N∗) are given by

�n := (−1)n+12[(n + 1)/2]π. (3.6)

By the spectral theorem, for any α ∈ R+, pα is well defined taking the principal
value on the negative part of the spectrum and its action on the linear span of the
basis e, defining E(0) (see (2.8)), is explicitly given by

pαen = �α
nen; n ∈ N∗. (3.7)

Therefore all the results obtained in Sec. 2 are applicable to the operator p. In
particular Lemma 2.3 becomes in this case:

Lemma 3.1. For any α ∈ R+, the operator pα is a topological vector space auto-
morphism of the space E with the projective limit topology. For α ≤ 0, pα is a
contraction with respect to any p-norm.

Similarly Lemma 2.4 becomes:

Lemma 3.2. For any α ∈ R, the operator pα is a topological vector space auto-
morphism of the space E∗ with the inductive limit topology.

Remark 3.1. Since the operator p differs from ∂ only by multiplication for the
imaginary unit, the conclusions of both Lemmas 3.1 and 3.2 continue to take place,
on the same domains, also for ∂ and for ∂∗ = −∂.

Finally Theorem 2.2 becomes in this case:

Theorem 3.1. (i) For any α ∈ R, the operator Γ(pα) maps the space (E) onto itself
and its restriction on (E) induces a topological vector space automorphism of
(E) with the projective limit topology. For α ≤ 0, Γ(pα) is a contraction with
respect to any p-norm.

(ii) For any α ∈ R, the operator Γ(pα) maps the space (E)∗ onto itself and induces
on it a topological vector space automorphism of (E)∗ with the projective limit
topology.

(iii) Properties (i) and (ii) continue to hold if the operator Γ(pα) is replaced by
Γ(∂α).

Proof. We only have to prove (iii) because (i) and (ii) are particular cases of
Theorem 2.2. Notice that the functorial properties of Γ which imply that

Γ(pα) = Γ(i−α)Γ(∂α),

where i−α is defined by taking (when necessary) the principal part of the logarithm.
Equivalently

Γ(∂α) = Γ(iα)Γ(pα) = Γ((ip)α).

The thesis then follows because Γ(iα) is unitary on all the Γ(Ep) spaces and a
topological automorphism on both (E) and (E)∗ and a composition of topological
automorphisms is a topological automorphism.
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4. Higher Order Cesàro Mean

Accardi and Smolyanov in Ref. 5 proved the following generalization, to higher
order means, of Cesàro’s theorem on arithmetic means.

Theorem 4.1. Let p > 0 and let a = (an)∞n=1 be a sequence in C∞ such that the
limit

lim
N→∞

1
Np

N∑
n=1

an =: Ap(a)

exists. Then

lim
N→∞

1
Np+1

N∑
n=1

nan =
p

p + 1
Ap(a).

For the purposes of the present paper, the following generalization of
Theorem 4.1 is needed.

Theorem 4.2. Let the sequence a = (an)∞n=1 ∈ C∞ be such that, for some p > 0
the limit

lim
N→∞

1
Np

N∑
n=1

an =: Ap(a)

exists. Then for each α ∈ R+, one has

lim
N→∞

1
Np+α

N∑
n=1

nαan =
p

p + α
Ap(a) (4.1)

in the sense that the limit on the left-hand side exists and the equality holds.

Proof. The Abel identity implies that, for arbitrary sequences (an), (bn) in C∞

and any natural number N ≥ 2, one has:

∑
k≤N

akbk =

∑
k≤N

ak

 bN −
∑

k≤N−1

(bk+1 − bk)

∑
r≤k

ar

. (4.2)

Using this with bk = kα we see that

1
Np+α

N∑
n=1

nαan =
1

Np+α

[(
N∑

n=1

an

)
Nα −

N−1∑
n=1

{(n + 1)α − nα}
n∑

k=1

ak

]

=
1

Np

N∑
n=1

an − α

Np+α

N−1∑
n=1

∫ n+1

n

xα−1dx
n∑

k=1

ak

=
1

Np

N∑
n=1

an − α

Np+α

N−1∑
n=1

∫ n+1

n

xp+α−1

(
1
xp

n∑
k=1

ak

)
dx . (4.3)
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Therefore we have

1
Np+α

N∑
n=1

nαan = I1(p, α, N) + I2(p, α, N) + I3(p, α, N),

where

I1(p, α, N) =
1

Np

N∑
n=1

an,

I2(p, α, N) = − α

Np+α

N−1∑
n=1

∫ n+1

n

xp+α−1dxAp(a),

I3(p, α, N) = − α

Np+α

N−1∑
n=1

∫ n+1

n

xp+α−1

(
1
xp

n∑
k=1

ak − Ap(a)

)
dx .

Since

I2(p, α, N) = − α

p + α

Np+α − 1
Np+α

Ap(a),

we have

lim
N→∞

I2(p, α, N) =
α

p + α
Ap(a).

Since

|I3(p, α, N)| ≤ α

Np+α

N−1∑
n=1

∫ n+1

n

xp+α−1

∣∣∣∣∣ 1
xp

n∑
k=1

ak − Ap(a)

∣∣∣∣∣ dx
with

lim
n→∞ max

n≤x≤n+1

∣∣∣∣∣ 1
xp

n∑
k=1

ak − Ap(a)

∣∣∣∣∣ = 0

by assumption, for any ε > 0 one can find Nε ∈ N and a constant C > 0 such that

|I3(p, α, N)| ≤ C
α

Np+α

Nε−1∑
n=1

∫ n+1

n

xp+α−1dx + ε
α

Np+α

N−1∑
n=Nε

∫ n+1

n

xp+α−1dx

= C
α

p + α

Np+α
ε − 1
Np+α

+ ε
α

p + α

Np+α − Np+α
ε

Np+α

≤ C
α

p + α

Np+α
ε − 1
Np+α

+
εα

p + α
.

For N → ∞ this remains ≤ 2ε. Since ε is arbitrary, we conclude that

lim
N→∞

I3(p, α, N) = 0.
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Therefore

lim
N→∞

1
Np+α

N∑
n=1

nαan = lim
N→∞

3∑
i=1

Ii(p, α, N)

= Ap(a) − α

p + α
Ap(a) =

p

p + α
Ap(a),

where the limit on the left-hand side exists because the limit on the right-hand side
exists by assumption. This proves the statement.

By taking bk = 2[(k + 1)/2]α, k = 1, 2, . . . in the proof of Theorem 4.2, we have
the following:

Corollary 4.1. Let a = (an)∞n=1 ∈ C∞ be such that, for some p > 0 the limit

lim
N→∞

1
Np

N∑
n=1

an =: Ap(a)

exists. Then for each α ∈ R+, one has

lim
N→∞

1
Np+α

N∑
n=1

(2[(n + 1)/2])αan =
p

p + α
Ap(a). (4.4)

The following theorem gives the converse of Theorem 4.2.

Theorem 4.3. Let p > 0, α ≥ 0 and let a = (an)∞n=1 be a sequence in C∞ such
that the limit

lim
N→∞

1
Np+α

N∑
n=1

an =: Ap+α(a)

exists. Then

lim
N→∞

1
Np

N∑
n=1

n−αan =
p + α

p
Ap+α(a). (4.5)

Proof. If α = 0, then the statement is obvious. By applying (4.2) and the mean
value theorem, we obtain that for any N ≥ 2 and 1 ≤ n ≤ N, there exists xn ∈
[n, n + 1] such that

1
Np

N∑
n=1

n−αan =
1

Np

(
1

Nα

N∑
n=1

an −
N−1∑
n=1

((n + 1)−α − n−α)

(
n∑

k=1

ak

))

=
1

Np+α

N∑
n=1

an + α
1

Np

N−1∑
n=1

(∫ n+1

n

x−(α+1)dx
)( n∑

k=1

ak

)

=
1

Np+α

N∑
n=1

an + α
1

Np

N−1∑
n=1

np+αx−(α+1)
n

(
1

np+α

n∑
k=1

ak

)
.
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Therefore, we have

1
Np

N∑
n=1

n−αan = I1(p, α, N) + I2(p, α, N) + I3(p, α, N), (4.6)

where

I1(p, α, N) =
1

Np+α

N∑
n=1

an,

I2(p, α, N) = α
1

Np

N−1∑
n=1

np+αx−(α+1)
n Ap+α(a),

I3(p, α, N) = α
1

Np

N−1∑
n=1

np+αx−(α+1)
n

(
1

np+α

n∑
k=1

ak − Ap+α(a)

)
.

Then by assumption, limN→∞ I1(p, α, N) = Ap+α(a). On the other hand, we have

I2(p, α, N) = α

N−1∑
n=1

( n

N

)p−1
(

1
N

)(
n

xn

)α+1

Ap+α(a)

= α

N−1∑
n=1

( n

N

)p−1
(

1
N

)
Ap+α(a)

+ α
1
N

N−1∑
n=1

( n

N

)p−1
[(

n

xn

)α+1

− 1

]
Ap+α(a),

of which the first and second terms converge to αAp+α(a)/p and 0 respectively as
N → ∞. Therefore, limN→∞ I2(p, α, N) = αAp+α(a)/p. By similar arguments, we
can easily see that limN→∞ I3(p, α, N) = 0. Hence by (4.6), we see that

lim
N→∞

1
Np

N∑
n=1

n−αan = lim
N→∞

3∑
i=1

Ii(p, α, N) = Ap+α(a) +
α

p
Ap+α(a),

which proves (4.5).

5. Exotic Laplacians and Their Mutual Relationships

A function F : E → C is said to be of class C2 if it is twice (continuously) Fréchet
differentiable, i.e., there exist two continuous maps

ξ �→ F ′(ξ) ∈ E∗, ξ �→ F ′′(ξ) ∈ L(E, E∗), ξ ∈ E

such that for any η ∈ E

F (ξ + η) = F (ξ) + 〈F ′(ξ), η〉 +
1
2
〈F ′′(ξ)η, η〉 + ε(η),
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where the error term ε(η) satisfies

lim
t→0

ε(tη)
t2

= 0, η ∈ E.

We denote D̃η the Gateaux differentiation in the direction η, i.e.,

D̃ηF (ξ) = lim
t→0

1
t
[F (ξ + tη) − F (ξ)] =

d

dt
F (ξ + tη)

∣∣∣∣
t=0

.

It is known (see Ref. 14) that, under general regularity conditions on F , one has

D̃ηF (ξ) = 〈F ′(ξ), η〉

in the sense that, the existence of either side of the identity implies the existence of
the other one and the equality. The kernel theorem identifies L(E, E∗) with E∗⊗E∗

(see Ref. 10 or 24). Using this identification we will use indifferently the notations:

〈F ′′(ξ)η, η〉 = 〈F ′′(ξ), η ⊗ η〉 = F ′′(ξ)(η, η) = D̃2
ηF (ξ).

For α ∈ R+, let Dom(∆c,α) denote the set of all Φ ∈ (E)∗ such that the limit

∆̃c,αSΦ(ξ) := lim
N→∞

1
Nα

N∑
k=1

〈(SΦ)′′(ξ), ek ⊗ ek〉

exists for each ξ ∈ E and is a U -functional. The exotic Laplacian of order α ∈ R+,
denoted by ∆c,α, is defined on Dom(∆c,α) by

∆c,αΦ := S−1(∆̃c,αSΦ), Φ ∈ Dom(∆c,α).

Since the S-transform is the white noise analogue of the Fourier transform, one can
say that ∆̃c,α is the exotic Laplacian of order α in momentum representation. The
operator ∆c,1 is called the Lévy Laplacian and is denoted by ∆L.

Using the bijectivity of Γ(∂∗
α), we introduce the Lévy Laplacian ∆L,α of order

α, defined on the domain Γ(∂∗
α)(Dom(∆L)) of the derivatives of order α of white

noise functionals, by

∆L,αΦ = Γ(∂∗
α)∆LΓ(∂∗

α)−1Φ; Φ ∈ Γ(∂∗
α)(Dom(∆L)) ⊆ (E)∗.

Theorem 5.1. Let K ∈ R+ and Φ ∈ Dom(∆c,2K+1). Then for any α ∈ R+,

Γ(pα)Φ ∈ Dom(∆c,2(α+K)+1)

and the identity:

∆c,2(α+K)+1Γ(pα)Φ =
π2α(2K + 1)
2(α + K) + 1

Γ(pα)∆c,2K+1Φ

holds.
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Proof. Let Φ be a functional in Dom(∆c,2K+1). Then applying Theorem 4.2, we
obtain that for any ξ ∈ E

S(∆c,2(α+K)+1Γ(pα)Φ)(ξ) = lim
N→∞

1
N2(α+K)+1

N∑
n=1

SΦ′′(ξ(α))(pαen, pαen)

= lim
N→∞

1
N2(α+K)+1

N∑
n=1

�n
2αSΦ′′(ξ(α))(en, en)

=
π2α(2K + 1)
2(α + K) + 1

· lim
N→∞

1
N2K+1

N∑
n=1

SΦ′′(ξ(α))(en, en)

=
π2α(2K + 1)
2(α + K) + 1

·S[∆c,2K+1Φ](ξ(α)).

The assertion follows because (see Theorem 3.3 of Ref. 7)

S[∆c,2K+1Φ](ξ(α)) = S[Γ(pα)∆c,2K+1Φ](ξ).

Corollary 5.1. Let Φ ∈ Dom(∆L). Then for any α ∈ R+, Γ(pα)Φ ∈ Dom(∆c,2α+1)
and the identity:

∆c,2α+1Γ(pα)Φ =
π2α

2α + 1
Γ(pα)∆LΦ =

π2α

2α + 1
∆L,αΓ(pα)Φ

holds.

Proof. The proof is immediate from Theorem 5.1 by taking K = 0.

6. Exotic Traces and Exotic Triples

The Cesàro semi-norm of order α of x ∈ E∗ is defined by

|x|2c,α := lim
N→∞

1
Nα

N∑
n=1

〈x, en〉〈x, en〉

in the sense that, when the limit exists, the semi-norm is defined by the above limit.

Remark 6.1. Since ē2k = e2k−1, ē2k−1 = e2k, k = 1, 2, 3, . . . , we have

|x|2c,α = lim
N→∞

1
Nα

N∑
n=1

〈x, ēn〉〈x, ēn〉

for x, y ∈ E∗.

The Cesàro C-bilinear form of order α between x, y ∈ E∗ is defined, in the same
sense, by

〈x, y〉c,α := lim
N→∞

1
Nα

N∑
n=1

〈x, en〉〈y, en〉.
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For all α ≥ 1 and λ ∈ R, define

xλ,α :=
∞∑

n=1

e2πiλ[(n+1)/2]e((α−1)/2)
n =

∞∑
k=1

e2πiλke
((α−1)/2)
2k +

∞∑
k=1

e−2πiλke
((α−1)/2)
2k−1

based on the expansion of the (α−1)
2 th derivative of delta function δλ. By (3.7) we

have the following.

Lemma 6.1. (cf. Ref. 6) For all α ≥ 1 and λ ∈ R, xλ,α ∈ E∗.

Lemma 6.2. (cf. Ref. 6) For all α ≥ 1 and λ, µ ∈ R\Q, we have

〈J(xλ,α), xµ,α〉c,α =
(2π)α−1

α
δλ,µ (Kronecker’s delta).

Let C be a countable set in R\Q. Then, from Lemma 6.2 we know that, for each
α ≥ 1, the set

{eα,λ := xλ,α

√
α/(2π)α−1 : λ ∈ C}

is orthonormal for the scalar product 〈J ·, ·〉c,α. Therefore, the space

H◦
c,α := linear span{eα,λ : λ ∈ C}

is a pre-Hilbert space with the inner product

〈Jξ, η〉c,α = lim
N→∞

1
Nα

N∑
n=1

〈ξ, en〉〈η, en〉; ξ, η ∈ H◦
c,α.

Let Hc,α be the completion of the pre-Hilbert space H◦
c,α with respect to the

norm induced by the inner product 〈J ·, ·〉c,α. In general, Hc,α will not be contained
in E∗. Then Hc,α becomes an infinite dimensional separable Hilbert space whose
inner product will still be denoted by 〈J ·, ·〉c,α when no confusion is possible and,
by construction, the set {eα,λ}λ∈C is an orthonormal basis of Hc,α. Relabeling the
orthonormal basis {eα,λ}λ∈C of Hc,α we use the notation {eα,k}∞k=1.

For λ ∈ [0, 1] define δλ ∈ E∗ by δλ(ξ) = ξ(λ), ξ ∈ E. Take a countable set C in
[0, 1]\Q and let

E := linear span{∂−1
1/2δλ : λ ∈ C}.

Then E is in E∗ and since

∂−1
1/2δλ =

∞∑
k=1

{(2πik)−1/2e−2πiλke2k + (−2πik)−1/2e2πiλke2k−1},

we have

lim
n→∞n|〈∂−1

1/2δλ, en〉|2 =
1
π

.
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For α ∈ R and N ∈ N we define the pre-scalar product 〈·, ·〉α on E∗ by

〈∂α/2ξ, ∂α/2η〉α,N :=
N∑

n=1

〈∂α/2ξ, en〉〈∂α/2η, en〉,

〈∂α/2ξ, ∂α/2η〉α := lim
N→∞

1
Nα

〈∂α/2ξ, ∂α/2η〉α,N

for ξ and η in E . Then it coincides with the Cesàro pre-scalar product
〈∂α/2ξ, ∂α/2η〉c,α. Let

Wα := {∂α/2ξ : ξ ∈ E}.
Then we have Wα ⊂ Hc,α since

〈∂α/2ξ, ∂α/2η〉α = lim
N→∞

1
Nα

N∑
k=1

(2π[(k + 1)/2])α−1〈ξ, ek〉〈η, ek〉

exists by Theorem 4.2, and eα,λ is given by the (α−1)
2 th derivative of the delta

function δλ for α ≥ 1 and λ ∈ [0, 1]. Thus we have the following:

Theorem 6.1. For α ≥ 1 the completion of Wα with respect to 〈·, ·〉α coincides
with Hc,α.

The construction in Sec. 2 can be applied to the space Hc,α replacing the
sequence {�k} by an arbitrary sequence {�c,k} satisfying

1 < �c,1 ≤ �c,2 ≤ �c,3 ≤ · · · and
∞∑

k=1

�−2
c,k < ∞

and introducing the densely defined selfadjoint operator on (Hc,α, {eα,k})

Aα :=
∞∑

k=1

�c,kdkeα,k, ξ =
∞∑

k=1

dkea,k ∈ Hc,a.

We also assume that for any α > 0 there exists β > 0 such that

(2[(k + 1)/2]π)α ≤ �β
c,k; ∀ k ≥ 1.

Then A−1
α is Hilbert–Schmidt, inf Spec(Aα) > 1 and the p-norms are defined by

|ξ|2c,α,p = |Ap
αξ|2c,α =

∞∑
k=1

�2p
c,k|〈ξ, J(eα,k)〉c,α|2, ξ ∈ Hc,α.

For p ≥ 0 one defines

Nc,α,p = {ξ ∈ Hc,α : |ξ|c,α,p < ∞}
and Nc,α,−p to be the completion of Hc,α with respect to the norm | · |c,α,−p. Thus
we obtain a chain of Hilbert spaces {Nc,α,p : p ∈ R} and the corresponding triple:

Nc,α := proj lim
p→∞

Nc,α,p ⊂ Hc,α ⊂ N ∗
c,α := ind lim

p→∞ Nc,α,−p

which now depends on the triple (Hc,α, {eα,k}, {�c,k}).
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Using the duality 〈N ∗
c,α,Nc,α〉 the usual trace τα on Hc,α is characterized by

strong continuity and

〈τα, z ⊗ w〉 = 〈z, w〉
can be considered as an element in the dual of Nc,α ⊗Nc,α and in fact identified to

τα =
∞∑

k=1

eα,k ⊗ eα,k.

More precisely one has the estimate.

Theorem 6.2. The trace τα belongs to Nc,α,−1/2 ⊗Nc,α,−1/2.

Proof. By definition we have

|τα|2c,α,−1/2 =
∞∑

k=1

�−2
c,k|eα,k ⊗ eα,k|2c,α = ‖A−1

α ‖2
HS < ∞

which implies the assertion.

Remark 6.2. Let α ∈ N. For N ∈ N, let pN be the operator on N ∗
c,α given by

pNf =
N∑

k=1

〈f, J(eα,k)〉c,αeα,k for f ∈ N ∗
c,α.

Then, for any f ∈ Nc,α, we have pNf ∈ E∗. For any f ∈ Nc,α ∩ E∗, there exists
some p > 1 such that the p-norm |f |−p is estimated as follows:

|f |2−p =
∞∑

ν=1

�−2p
ν |〈f, ēν〉|2

≤ α

(2π)α−1

∞∑
ν=1

(
2π

[
ν + 1

2

])α−1

�−2p
ν

( ∞∑
k=1

|〈f, J(eα,k)〉c,α|
)2

≤ α

(2π)α−1

∞∑
ν=1

�−2(p−q)
ν

∞∑
k=1

�2
c,k|〈f, J(eα,k)〉c,α|2

∞∑
k=1

�−2
c,k

=
α

(2π)α−1

∞∑
ν=1

�−2(p−q)
ν |f |2c,α,1

∞∑
k=1

�−2
c,k < ∞

for some q > 0 such that (2π[(ν + 1)/2])α−1 ≤ �2q
ν for all ν ≥ 1. By this estimation

we see that for any f ∈ Nc,α the sequence (pNf)∞N=1 converges to f̃ in E∗.

Let Ñc,α = {f̃ : f ∈ Nc,α} with induced topology from Nc,α. Define the norm
|f̃ |c,α,p on Ñc,α by |f̃ |c,α,p = |f |c,α,p for any f ∈ Nc,α. Then Nc,α is isomorphic to
Ñc,α in E∗ by norms | · |c,α,p, p ∈ R. This kind of embedding is discussed in detail
in Ref. 11 by Harada.
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7. Exotic HKT Spaces

For each α ∈ N and p ∈ R let Γ(Nc,α,p) be the Fock space over the Hilbert space
Nc,α,p, i.e.,

Γ(Nc,α,p) :=

{
φ = (fn)∞n=0 : fn ∈ N b⊗n

c,α,p, ‖φ‖2
c,α,p =

∞∑
n=0

n!|fn|2c,α,p < ∞
}

.

Then by identifying Γ(Hc,α) with its dual space, we have a rigging of Fock spaces:

(Nc,α) = proj lim
p→∞

Γ(Nc,α,p) ⊂ · · · ⊂ Γ(Nc,α,p) ⊂ · · ·

⊂ Γ(Nc,α,0) = Γ(Hc,α) ⊂ Γ(Nc,α,−p) ⊂ · · ·
⊂ (Nc,α)∗ = ind lim

p→∞ Γ(Nc,α,−p). (7.1)

The canonical C-bilinear form on (Nc,α)∗ × (Nc,α) is defined, for any Φ = (Fn) ∈
(Nc,α)∗ and φ = (fn) ∈ (Nc,α), by

〈〈Φ, φ〉〉c,α =
∞∑

n=0

n!〈Fn, fn〉c,α.

The exponential vectors φξ are defined as in (2.16). The Sc,α-transform of an
element Φ ∈ (Nc,α)∗ is defined by

Sc,αΦ(ξ) = 〈〈Φ, φξ〉〉c,α, ξ ∈ Nc,α.

Then since (Nc,α) is a nuclear space, as a similar result to Theorem 2.1 we prove
that a C-valued function F on Nc,α is the Sc,α-transform of an element in (Nc,α)∗

if and only if F is Gâteaux entire, and there exist constants C, K ≥ 0 and p ≥ 0
such that

|F (ξ)| ≤ C exp(K|ξ|2c,α,p), ξ ∈ Nc,α.

Using similar methods in Lemmas 3.1 and 3.2, we have the following:

Lemma 7.1. For any α ∈ N, the operator ∂α is an isomorphism from Nc,2α+1

onto itself.

Lemma 7.2. For any α ∈ N, the operator ∂α is an isomorphism from N ∗
c,2α+1

onto itself.

Remark 7.1. The Bochner–Minlos Theorem implies the existence of a probability
measure µc,α on N ∗

c,α,R such that∫
N∗

c,α,R

ei〈x,ξ〉c,αdµc,α(x) = e−
1
2 〈ξ,ξ〉c,α ; ξ ∈ Nc,α,R.

The standard triple consisting of white noise distributions obtained from (7.1)
through the Wiener–Itô–Segal isomorphism is denoted also by

(Nc,α) ⊂ Γ(Hc,α) ∼= L2(N ∗
c,α,R, µc,α) ⊂ (Nc,α)∗.

We call (Nc,α)∗ the exotic Hida–Kubo–Takenaka (HKT ) space of order α.

1350020-21



3rd Reading

September 16, 2013 10:33 WSPC/S0219-0257 102-IDAQPRT 1350020

L. Accardi, U. C. Ji & K. Saitô

8. Exotic Laplacians on Exotic HKT Spaces

From Remark 6.2, we introduce an isomorphism iα from (Nc,α) onto (Ñc,α) given by

iα((fn)) = (f̃n)

for (fn) ∈ (Nc,α), Then we have the following.

Theorem 8.1. Any element ϕ ∈ (Nc,α) is in Dom(∆c,α). Moreover, if ϕ =
(fn)∞n=0, then we have

∆c,αiαϕ =
(

(n + 2)(n + 1)
˜

τα⊗̂2
fn+2

)
.

Proof. For the proof, we refer to Ref. 16.

By Theorem 8.1, we define an operator ∆c,α on (Nc,α) by ∆c,α = i−1
α ∆c,αiα.

Then this operator is a continuous linear operator from (Nc,α) into itself. For each
t ∈ R there exists a unique operator Gt ∈ L((Nc,α), (Nc,α)) such that

〈〈Gtφξ, φη〉〉c,α = e
t
2 〈τα,ξ⊗ξ〉c,α+〈ξ,η〉c,α , ξ, η ∈ Nc,α.

In fact, for any φ = (fn) ∈ (Nc,α), Gtφ is given by

Gtφ =

( ∞∑
m=0

(n + 2m)!
n!m!

(
t

2

)m

(τ⊗m
α ⊗̂2mfn+2m)

)
.

Theorem 8.2. {Gt : t ∈ R} becomes a regular one-parameter group of operators
acting on (Nc,α) with infinitesimal generator 1

2∆c,α.

The proof is a simple modification of the proof of Theorem 4.3 in Ref. 16.

Remark 8.1. By Theorem 8.2 and Corollary 5.1 we have

Gt = i−1
α Γ(pα)e

t
2∆LΓ(pα)−1iα on (Nc,α).

9. Stochastic Processes Generated by Exotic Laplacians

In this section, we study infinite dimensional stochastic processes generated by the
exotic Laplacians.

Let {Xt : t ≥ 0} be a (Nc,α)-valued stochastic process. Then we can write the
process in the form Xt = (Xt,n). The expectation E[Xt] of Xt, if it exists in (Nc,α),
is given by

E[Xt] = (E[Xt,n]).

For η ∈ Nc,α let Tη be the translation operator defined on (Nc,α)∗ by

TηΦ =
∞∑

k=0

1
k!

Dk
ηΦ; Φ ∈ (Nc,α)∗
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where Dη is defined by DηΦ = S−1
c,α(D̃ηSc,αΦ). Then we have

DηΦ = ((n + 1)〈Fn+1, η〉c,α); Φ = (Fn) ∈ (Nc,α)∗

and

TηΦ =

( ∞∑
k=0

(n + k)!
n!k!

〈Fn+k, η⊗k〉c,α

)
. (9.1)

Therefore, for given z ∈ N ∗
c,α and Φ ∈ (Nc,α)∗, it is natural to define TzΦ by

(9.1) whenever the right-hand side of (9.1) is well defined as an element in (Nc,α)∗.

Proposition 9.1. For all z ∈ N ∗
c,α, the operator Tz is in L((Nc,α), (Nc,α)).

Furthermore, for any p ≥ 0, q > 0 with |z|c,α,−(p+q) < ∞, it holds that

‖Tzφ‖c,α,p ≤ ‖φ‖c,α,p+q

(1 − �−2q
c,1 )

exp

( |z|2c,α,−(p+q)

2(1 − �−2q
c,1 )

)
, φ ∈ (Nc,α).

Proof. The proof is a simple modification of the proof of Theorem 4.2.3 in Ref. 24.

Let {{Bk(t) : t ≥ 0}}∞k=1 be an infinite sequence of independent one-dimensional
Brownian motions and {Bα(t) : t ≥ 0} the infinite dimensional stochastic process
defined by

Bα(t) =
∞∑

k=1

Bk(t)eα,k; t ≥ 0. (9.2)

Lemma 9.1. For all t ≥ 0 we have Bα(t) ∈ N ∗
c,α (a.e.)

Proof. By definition, we can check that, for any t ≥ 0 and p ≥ 1 one has

E[|Bα(t)|2c,α,−p] = E

[ ∞∑
k=1

�−2p
c,k |〈Bα(t), J(eα,k)〉c,α|2

]

=
∞∑

k=1

�−2p
c,k E[|Bk(t)|2]

= t

∞∑
k=1

�−2p
c,k < ∞,

which implies the assertion.

Theorem 9.1. Let φ ∈ (Nc,α). Then the equality

Gtφ = E[TBα(t)φ]

holds for t ≥ 0.
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Proof. Let φ = (fn) ∈ (Nc,α). Then by (9.1) we have

TBα(t)φ =

( ∞∑
k=0

(n + k)!
n!k!

〈fn+k,Bα(t)⊗k〉c,α

)

and by (9.2) we have

〈fn+k,Bα(t)⊗k〉c,α =
∞∑


1,...,
k=1

 k∏
j=1

B
j (t)

〈fn+k,

k⊗
j=1

eα,
j

〉
c,α

.

Therefore, we have

Sc,α[E[TBα(t)φ]](ξ)

=
∞∑

m=0

tm

2mm!

∞∑
n=0

m∑
j=1

(n + 2m)!
j!

〈
fn+2m

∑

1,...,
j

all different

(
j∑

ν=1

e⊗2
α,
ν

)⊗m

⊗̂ξ⊗n

〉
c,α

=
∞∑

n=0

∞∑
m=0

(n + 2m)!
m!

(
t

2

)m
〈

fn+2m,

( ∞∑

=1

e⊗2
α,


)⊗m

⊗̂ξ⊗n

〉
c,α

=
∞∑

n=0

∞∑
m=0

(n + 2m)!
m!

(
t

2

)m

〈τ⊗m
α ⊗̂2mfn+2m, ξ⊗n〉c,α.

This implies

E[TBα(t)φ] =

( ∞∑
m=0

(n + 2m)!
n!m!

(
t

2

)m

(τ⊗m
α ⊗̂2mfn+2m)

)
= Gtφ,

which gives the proof.

By Theorem 9.1, we can consider {Bα(t)}t≥0 as a stochastic process generated
by the extended exotic Laplacian 1

2∆c,α.

Theorem 9.2. For α ≥ 0 the N ∗
c,2α+1-valued stochastic process

B1(t)(α) =
∞∑

n=1

Bn(t)e(α)
1,n

is generated by γ
2∆c,2α+1, γ = (2π)2α

2α+1 , acting on (Nc,2α+1), where B1(t)(α) is the
αth derivative of the N ∗

c,1-valued stochastic process B1(t).
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6. L. Accardi, U. C. Ji and K. Saitô, Exotic Laplacians and associated stochastic pro-
cesses, Infin. Dimen. Anal. Quantum Probab. Rel. Top. 12(1) (2009) 1–19.

7. L. Accardi, U. C. Ji and K. Saitô, Exotic Laplacians and derivatives of white noise,
Infin. Dimen. Anal. Quantum Probab. Rel. Top. 14(1) (2011) 1–14.
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