ON THE SPACE OF SQUARE ROOTS OF MEASURES

L. AKKARDI

- ared by "square roors" of real bounded measures on a given measurable space. It turns out that the natural space for this problem is the complex Hilbert space generinfinite product measures was formulared by J. von Neumann in [1], Introduction, §6. -Hilbert spaces. obtained in terms of certain incomplete components of an infinite tensor product of of measurable spaces. In particular, a classification of infinite product measures is products of Hilbert spaces and the theory of measures on products of infinite families l. In this note we establish a connection between the theory of infinite direct The assertion about the possibility of the application of the theory of
- composition $\{E^+, E^-\}$ continuous with respect to y. The "Jordan decomposition of Ω " is the measurable de space of bounded real countably additive measures on (Ω, \mathfrak{B}) . If $x, y \in \mathfrak{M}_{\mathbb{R}}(\Omega, \mathfrak{B})$, then we will write $x \perp y$ if x is orthogonal to y (see [7]), we set $|x| = x^+ + x^-$, where $x = x^+ + x^ -x^{-}$ is the Jordan decomposition of x, and we will write $x \prec y$ if x is absolutely Let $(\Omega,\, \mathfrak{B})$ be a measurable space. We denote by $\mathfrak{M}_{R}(\Omega,\, \mathfrak{B})$ the real Banach $^-$ }, of Ω such that $x^+(E^+) = x^+(\Omega)$, $x^-(E^-) = x^-(\Omega)$.

 $\mathfrak{N}^+_{\mathsf{R}}(\Omega,\,\mathfrak{B})$, then there exists a unique positive measure defined by the expression We denote by $\mathfrak{M}^+_R(\Omega,\, \mathfrak{B})$ the cone of positive measures in $\mathfrak{M}_R(\Omega,\, \mathfrak{B})$. If $m,\, n\in$

$$A \in \mathfrak{B} \to \int_A \sqrt{\frac{dm}{dq}} \frac{dn}{dq} dq,$$

where q is any measure such that m < q, n < q. The above integral does not depend

 $\mathfrak{M}_{\mathbb{R}}(\Omega,\,\mathfrak{B}),$ with the following relations among the generators: on the choice of q; therefore we may denote the measure defined by it by \sqrt{mn} . Let $\mathcal{H}(\Omega, \mathcal{B})$ be the complex vector space generated by the symbols [x], $x \in \mathbb{R}$

[r1]. [x + x'] - [x] - [x'] = 0, if $x \perp x'$;

$$\begin{bmatrix} r^2 \end{bmatrix} \quad \begin{bmatrix} \varepsilon \cdot x \end{bmatrix} = \mathcal{V} \varepsilon \cdot \begin{bmatrix} x \end{bmatrix} = 0 \quad \vdots \quad \varepsilon \in \mathbb{R} \quad (\cdot = -1)$$

$$[x^2], [\xi \cdot x] - \gamma \xi \cdot [x] = 0, \xi \in \mathbb{R}, i_2 = -1;$$

[r3].
$$[m]+[n]-[m+n+2\sqrt{mn}]=0$$
, $m, n\in \mathfrak{M}_{\mathbf{R}}^+(\Omega,\mathfrak{B})$;

[r2],
$$[\xi \cdot x] - \gamma \xi \cdot [x] = 0$$
, $\xi \in \mathbb{R}$, $i_z = -1$;
[r3], $[m] + [n] - [m + n + 2\gamma \overline{mn}] = 0$, $m, n \in \mathfrak{M}_{\mathbf{R}^+}(\Omega, \mathfrak{B})$;
[r4], $[m] - [n] - [\chi_+ \cdot (m + n - 2\gamma \overline{mn})] + [\chi_- \cdot (m + n - 2\gamma \overline{mn})] = 0$,

where $m, n \in \mathbb{M}^+_{\mathbb{R}}(\Omega, \mathcal{B})$, and χ_+, χ_- are the characteristic functions of the Jordan decomposition of Ω corresponding to the measure m-n.

 E_0 its subspace generated by the expressions [r1], ..., [r4]. We denote by E the free complex vector space generated by the elements [x], and

AMS (MOS) subject classifications (1970). Primary 28A35, 46G99; Secondary 82A15, 81A17. Copyright @ 1975, American Mathematical Society

 $\mathfrak{M}_{\mathbb{R}}(\Omega,\, \mathcal{B}) \ such \ that \ e = [x^+] - [x^-] + i([y^+] - [y^-]) \ (\mathsf{mod} \ E_0).$ Lemma 1. Each element $e \in E$ determines in a unique way two measures $x, y \in$

We define a sesquilinear form on E imes E by extending the equation

$$\beta([x], [y]) = \rho(x^+, y^+) - i\rho(x^+, y^-) + i\rho(x^-, y^+) + \rho(x^-, y^-), \tag{1}$$

defined by the equation $\rho(m, n) = \sqrt{mn}(\Omega)$. where $x, y \in \mathfrak{M}_{\mathbb{R}}(\Omega, \mathcal{B})$, and $\rho(m, n)$ denotes the Hellinger integral of $m, n \in \mathfrak{M}_{\mathbb{R}}^+(\Omega, \mathcal{B})$,

 $\mathbb{H}(\Omega, \mathbb{B}) = E/E_0$. This scalar product defines on $\mathbb{H}(\Omega, \mathbb{B})$ the structure of a complex Hilbert space. Theorem 1. The sesquilinear form β induces a scalar product in the space

uses the following assertion. The proof of this theorem is based on the fact that $E_0=\{c\in E\colon \beta(c,\ c)=0\}$ and

 $\{(x, y): ||x|| + ||y|| - 2[\rho(x^+, y^+) + \rho(x^-, y^-)] \le \epsilon\}.$ Lemma 2. For every $\epsilon > 0$ we define in $\mathfrak{M}_{\mathbb{R}}(\Omega, \mathcal{B}) \times \mathfrak{M}_{\mathbb{R}}(\Omega, \mathcal{B})$ the subset $V(\epsilon) = 0$

set of $\mathfrak{M}_{\mathbb{R}}(\Omega, \mathfrak{B})$ that is bounded in norm. structure which is isomorphic to the uniform structure induced by the norm on each sub-Then the sets $V(\epsilon)$ represent neighborhoods of the diagonal in a base of a uniform

Let $\pi\colon E \to E/E_0=\mathbb{H}(\Omega,\,\mathbb{B})$ be the canonical projection. We define the mapping

$$\kappa: x \in \mathfrak{M}_{\mathbb{R}}(\Omega, \mathfrak{B}) \to \pi[x] \in \mathcal{H}(\Omega, \mathfrak{B}).$$
(2)

it has the following properties: Theorem 2. The mapping κ is a homeomorphism of $\mathfrak{M}_{\mathbb{R}}(\Omega, \mathfrak{B})$ onto its image, and

 $t^2 = -1$;

[i1].
$$\kappa(x) = \kappa(x^+) + i\kappa(x^-)$$
, $i^2 = -$
[i2]. $\kappa(\xi \cdot x) = \sqrt{\xi} \cdot \kappa(x)$, $\xi \in \mathbb{R}$;

[i3].
$$\| \varkappa(x) \|_{\mathcal{H}(\Omega,\mathfrak{B})}^2 = \| x \|_{\mathfrak{M}_{\mathbf{R}}(\Omega,\mathfrak{B})};$$

[i4].
$$\kappa(m) + \kappa(n) = \kappa(m+n+2\sqrt{mn}), m, n \in \mathfrak{M}_{\mathbb{R}}^+(\Omega, \mathfrak{B});$$

[i5].
$$\kappa(m) - \kappa(n) = \kappa \left[\chi_{+} \cdot (m+n-2\sqrt{mn}) \right] - \kappa \left[\chi_{-} \cdot (m+n-2\sqrt{mn}) \right],$$

composition corresponding to the measure m - n. where $m, n \in \mathfrak{M}^+_{\mathbb{R}}(\Omega, \mathfrak{B})$, and χ_+, χ_- are the characteristic functions of the Jordan de-

quently use the notation $\kappa(x)=\sqrt{x}$ in what follows. Any vector in $H(\Omega,\,\mathbb{B})$ has the $\kappa(x)$ as the "square root" of the measure $x\in \mathfrak{M}_{\mathbb{R}}(\Omega,\,\mathfrak{B})$. For this reason we will fre-An enumeration of the above properties justifies an interpretation of the element

$$h = (\sqrt{x^+} - \sqrt{x^-}) + i(\sqrt{y^+} - \sqrt{y^-}).$$

the cone $\kappa \{ \mathfrak{M}_{R}^+(\Omega,\,\mathfrak{B}) \}$. We denote this space by $\mathfrak{H}_{\rho}(\Omega,\,\mathfrak{B})$. Consequently, we may define on $\mathcal{H}(\Omega, \mathfrak{B})$ a canonical involution $J(b) = \sqrt{x^*} - \sqrt{x^*}$ $-\sqrt{y^{-}}$), and the subspace of fixed elements for J is the real space generated by

Theorem 3. There exists a homeomorphism $\alpha: \mathfrak{M}_{\mathbb{R}}(\Omega, \mathcal{B}) \to \mathcal{H}_{r}(\Omega, \mathcal{B})$ which has the

properties [i3], [i4], [i5] stated in Theorem 2, and, in addition, $[i4']. \ \alpha(x) = \alpha(x^+) - \alpha(x^-);$ $[i2']. \ \alpha(\xi x) = \sqrt{\xi} \cdot \alpha(x), \quad \xi \in \mathbb{R}^+.$ These properties characterize the space $\mathbb{J}_{\tau}(\Omega, \mathcal{B})$ to within a unitary isomorphism.

properties characterize the space $\mathcal{H}_{r}(\Omega,\,\mathcal{B})$ to within unitary isomorphism. is isomorphic to the inductive limit of the family $L^2_{\mathbb{C}}(\Omega,\,\mathbb{B},\,x)$ for $x\in\mathbb{T}_{\mathbb{R}}(\Omega,\,\mathbb{B})$. These these properties to within a unitary isomorphism. It may be shown that the space $\mathcal{H}(\Omega,\,\mathcal{B})$ Since $\mathcal{H}(\Omega, \mathcal{B}) = \mathcal{H}_{r}(\Omega, \mathcal{B}) \oplus i\mathcal{H}_{r}(\Omega, \mathcal{B})$, the space $\mathcal{H}(\Omega, \mathcal{B})$ also is characterized by

Let $(\Omega_l, \mathcal{B}_l)_{l \in I}$ be a family of measurable spaces.

 $\Pi_{\iota \in I_-F^X_\iota}$ and $\Pi_{\iota \in I_-F^Y_\iota}$ are not orthogonal. equivalent if there exists a finite subset $F \in I$ such that the two product measures Definition 1. Two product measures $\prod_{i \in I} x_i$ and $\prod_{i \in I} y_i$ are called asymptotically

the set of product measures. Lemma 3. The relation of asymptotic equivalence is an equivalence relation on

the equivalence class \otimes under the mapping α defined in Theorem 3. We form the infinite direct product $\bigotimes_{\iota \in I} \mathbb{H}_{\tau}(\Omega_{\iota}, \mathcal{B}_{\iota})$. For each $\iota \in I$ let α_{ι} be the mapping defined in Theorem 3, and let $(\alpha_{\iota}(x_{\iota}))_{\iota \in I}$ be a C_0 -family (see [1], Definition 3.31). space $\mathcal{H}_r(\Pi_{\ell\in I}\Omega_\ell,\Pi_{\ell\in I}\mathcal{B}_\ell)$ which is generated by the images of the product measures in the equivalence class \mathfrak{G} under the mapping α defined in Theorem 3. We form the infilence classes. In this way, the set of all product measures is partitioned into asymptotic equivate classes. For each such class $\overline{\otimes}$ we define the closed subspace $K(\overline{\otimes})$ of the

the equivalence class @ of C_0 -families (in the sense of [1]) essentially positive if it contains only a positive C_0 -family. there exists a finite set Definition 2. We will say that the C_0 -family $(\alpha_{\epsilon}(x_{\epsilon}))_{\epsilon \in I}$ is essentially positive if $F \subset I$ such that x_i is positive for all $i \in I - F$. We will call

positive equivalence classes of C_0 -families and the asymptotic equivalence classes of product measures on $\Pi_{(e)}(\Omega_i, \mathcal{B}_i)$. If $\overline{\mathbb{G}}^+$ is the class of product measures corresponding to \mathbb{G}^+ , then there exists a unitary isomorphism \mathbb{G}_+ between the incomplete tensor \mathbb{G}_+ is the second product measures. product $\bigotimes_{\ell \in I}^+ \mathcal{H}_{\tau}(\Omega_{\ell}, \mathcal{B}_{\ell})$ and the space $\mathcal{H}(\overline{\mathbb{G}}^+)$, characterized by the property $U_{\mathbb{G}^+}((\alpha_{\ell}(x_{\ell}))) := \alpha(\Pi_{\ell \in I} x_{\ell})$ for every essentially positive C_0 -family $(\alpha_{\ell}(x_{\ell}))_{\ell \in I}$ in \mathbb{G}^+ . Theorem 4. There exists a one-to-one correspondence between the essentially

the following assertion. The proof of this theorem uses Kakutani's theorem [2], some results from [1], and

 $(\alpha_{\iota}(x_{\iota}^{\dagger}))_{\iota \in I}$ is a C_0 -family. Lemma 4. Let $(\alpha_{\epsilon}(x_{\epsilon}))_{\epsilon \in I}$ be a C_0 -family in $\bigotimes_{\epsilon \in I} \mathcal{H}_{\epsilon}(\Omega_{\epsilon}, \mathcal{B}_{\epsilon})$. Then $(\alpha_{\epsilon}(x_{\epsilon}))_{\epsilon \in I}$ is equivalent to an essentially positive C_0 -family if and only if $(C_0, C_0)_{\epsilon \in I}$ is a (C_0, C_0) -family. In this case $\sum_{\epsilon \in I} x_{\epsilon}^{-}(\Omega) < \infty$.

In the case when $(m_\ell)_{\ell \in I}$ is a family of positive measures, the identity $\bigotimes_{\ell \in I} \sqrt{m_\ell}$ $\sqrt{\Pi_{\ell \in I} m_\ell}$ follows from Theorem 4.

In this way, in the case of positive product measures, the equivalence relation

ly positive C_0 -family (they do not even contain a C_0 -family that is weakly equivalent a continuum of equivalence classes of C_0 -families, none of which contains an essentialintroduced by von Neumann in [1] and asymptotic equivalence induce one and the same From Lemma 3 it follows that if the set I is infinite, then there exists

(in the sense of Definition (6.1.1) of [1]) to such a C_0 -family). We denote by $\mathbb C$ the subspace of the space $\bigotimes_{\ell \in I} \mathbb H_{\varphi}(\Omega_{\ell}, \mathcal B_{\ell})$ generated by all incomplete tensor products corresponding to equivalence classes $\mathfrak G$ which do not contain an essentially positive C_0 -family. We denote by $\mathbb K^{\perp}$ the subspace of the space $\mathbb{H}_{r}(\Pi_{ce}\Omega_{l},\ \Pi_{cel}\mathcal{B}_{l})$ which is generated by the images of measures orthogonal to every product

Theorem 5. There exists an exact sequence

$$0 \to \mathcal{V} \overset{j}{\to} \otimes \mathcal{H}_r(\Omega_i, \mathfrak{B}_i) \overset{v}{\to} \mathcal{H}_r(\prod_{i \in I} \Omega_i; \prod_{i \in I} \mathfrak{B}_i) \overset{r}{\to} \mathcal{K}^{\perp} \to 0.$$

where J and P denote the natural injection and projection, respectively, and U is characterized by the fact that its restrictions to incomplete tensor products corresponding to essentially positive equivalence classes \mathfrak{G}^+ coincide with the mappings $U_{\mathfrak{G}^+}$ desined in Theorem 1.

In conclusion we consider the following example.

 $(x_{\nu})_{\nu \in l}$ such that $\Sigma_{\nu \in l} |x_{\nu}|^2 < \infty$), and $\mathring{H}_{\nu}(\Omega_{l})$ is easily seen to be $l_{\mathbb{R}}^{2}(\Omega_{l})$ (the space of real sequences $(y_{\nu})_{\nu \in l}$ such that $\Sigma_{\nu \in l} |y_{\nu}|^2 < \infty$). Every incomplete component of the tensor product $\bigotimes_{l \in l} H_{\nu}(\Omega_{l})$ is isomorphic to (real) Fock space (see [3], [4] and Lemma For each $\iota \in I$ (I countable) let $\Omega_{\rm c}$ be a countable set having the discrete measurable structure. Then $\mathfrak{M}_{\rm R}(\Omega_{\rm c})=I_{\rm R}^{\rm L}(\Omega_{\rm c})$ (the space of sequences of real numbers (4.1.2) of [1]); in addition, the space $\mathcal{H}_{m{r}}(\Pi_{m{r}\in m{r}}\Omega_{m{r}})$ represents a factorizable tensor product in the sense of Araki (see [5]).

Institute for Control Problems

Cybernetics Laboratory
National Research Council
Arco Fellici, Naples, Italy

Received 3/DEC/73

BIBLIOGRAPHY

- 1. J. von Neumann, On infinite direct products, Compositio Math. 6 (1938), 1-77; reprinted in Collected works. Vol. III, Pergamon Press, New York, 1961, pp. 323-399.
- 2. S. Kakurani, On equivalence of infinite product measures, Ann. of Math. (2) 49 (1948), MR 9, 340.
- 3. F. A. Berezin, Some remarks on the representations of commutation relations, Usephi Mat. Nauk 25 (1969), no. 4 (148), 65-88 = Russian Math. Surveys 25 (1969), no. 4, 65-88. M
- Pure and Appl. Phys., vol. 24, Academic Press, New York, 1966. MR 34 #2263, #8738. The method of second quantization, "Nauka", Moscow, 1965; English transl.,
- ucts, and central limit theorems of probability theory, Lecture Notes in Math., vol. 272, Springer-Verlag, Berlin and New York, 1972. 5. K. R. Parthasarathy and K. Schmidt, Positive definite kernels. Continuous tensor prod-

- 6. A. Guichardet, Symmetric Hilbert spaces and related topics. Infinitely divisible positive definite functions. Continuous products and tensor products, Gaussian and Poissonian stochastic processes, Lecture Notes in Math., vol. 261, Springer-Verlag, Berlin and New York, 1971.
 7. I. I. Gihman and A. V. Skorohod, Theory of stochastic processes. Vol. 1, "Nauka", Moscow, 1971; English transl., Die Grundlehren der math. Wissenschaften, Band 210, Springer-Verlag, Berlin and New York, 1974.

Translated by H. McFADEN