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ON THE SPACE OF SQUARE ROOTS OF MEASURES
une 51
L. AKKARDI

1. In this note we establish a connection between the theory of infinire direct
preducts of Hilbert spaces and the theory of measures on products of infinite families
of measurable spaces. In particular, a classificarion of infinite product measures is
obtained in tems of certain incomplete components of an infinite tensor product of
Hilbert spaces. The assercion abour the possibilicy of the application of the theory of
infinite product measures was formulated by J. von Neumann in {1}, Introduction, $6.
[t turns out zhat the natural space for this problem is the complex Hilbert space gener-

ated by '‘square roots’’ of real bounded measures on a given measurable space.

2. Ler (0, B) be a measurable space. We denote by %mﬁb B} the real Banach

space of bounded real countably additive measures on {Q, B). If x, v\ e A@ $), then
we will write ¥ L y if x is orchogonal to y {see [7]), we set |x| = 7 4 x~, where x =
x" — %7 is the Jordan decomposition of x, and we will write x < ¥ if x is absolutely
continuous with respect to y. The *“Jordan decompositien of '’ is the measurable de-
composition {ET, E74, of @ such that x(E" = R+A@v T (E7) = x= ().

We denore by M7 Ab B) the cone of positive measures in % AD B) limne

e A@ B), then &mmm exists a unique positive measure defined _u< the expression

where ¢ is any measure such that m < g, n < 4. The above integral does not depend
on the choice of g; therefore we may denote the measure defined by it by \/mn.

Ler Hig}, B) be the complex vecror space generated by the symbols [x], x €
T o (Q, B), with the following relations among the generators:

eIl Dx o x'] = [x] - [x1 = 0, 1f x1x"

tez]. [g-a]-¥E-[21=0, =R, L=-1; -
[r3]. ?:TﬂmifT:+:+oﬁ£z_l: nr, nEMy (4, By,
[ed), [m]-—Tod =1y, (mtn—2¥mn} _+?;,Tx‘wximxwﬂmiicm

where m, n € quﬁ.? 2), and y,, ¥. are the characteristic functions of the Jordan de-
composition of {} corresponding to the measure m — n
We denote by £ the free complex vecror space generated by the elements [x], and

by E its subspace generated by the expressions {c1],..., [r4].
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Lemma 1. Hach element e € E determines in a unigue way two medsures x, y €

B0, B) such that e = 1«71 = (w714 Aly™] = [y™]) (mod E ).

We define a sesquilinear form on E x £ by extending the equation
B(lz], [wl)y=p(®, y*) —ip(=*, ym)+ip(z=, y) ol y7), (0
where x, v € mmmﬂ@_ $), and plm, n} denotes the Hellinger integral of w, n & ﬁm?@ B,

defined by the equation plm, n) = \/mn{Q).

Theorem 1. The sesquilinear form B induces a scalar product in the space
HiQ, By = E/E, This scalar product defines on H(E, B the structure of a complex
Hilbert space.

The proof of this theorem is based on the fact that mo =ic € E: mﬂﬁ c) =0} and

uses the fellowing assertion,

Lemma 2. For every ¢ >0 we define in %mmﬂw b x&wwﬁb, BY the subset Vi) =
e, )1 | = 2lpla™, ¥™ 4 ple™, v <l

Then the sets V{e) represent neighborhoods of the diagonal in q base of a uniform

structure which is isomorphic fo the uniform structure induced by the norm on cach sub-

set of émaq BY that is bounded in norm.

Let m £~ E/E, = HQ, ) be the canonical projection. We define the mapping
s xe=Me (@, B) —nlz]=s4(0,8). {2)

Theorem 2. The mapping « is a bomeomorphism of Mo (A B) onto its image, and

it has the following properties:
[i1]. xﬁavHanHv;Ixﬁauv, jre=—1;
[i2]. % (§-2)=VE-x(z), E=HK;

(3] [%(2) fem = |2 lngom
(i4]. w{m)+x (n) =« (m+n+2¥mn), m, neMa* (L2, D),
[i5]. %{m)—x(n) =nly.- (mtn—2Vmn) |—xiy.- (m+n—2Vmn)],
where m, n € %M%Q, By, and 31 X}_ are the characteristic [unctions of the [ordan de-

composition corresponding to the measure m — n.

An enumeration of the above properties justifies an inrerpretation of the element

‘square root’’ of she measure x € %mﬁb. B). For this reason we will fre-

®

x{x) as the
quently use the notation x{x)=+/x in what follows. Aay vector in H(Q. B) has the
form

he= Yzt —Ya) +i(Yy=—Vy~).
ﬁo:mmﬂcmni%_ﬂ«mamﬂammsmo: H{@, B) a cancnical involution J(b) = /ﬂiﬂ - <\_.ﬂ|h -

N.?\vllh - z@lsaf and the subspace of fized elements for | is the real space generated by

the cone «iM Wﬁ@, B We denote this space by .zwhb. B

Theorem 3. There exists @ homeomorphism & ﬁwhﬁq BY ..xqﬁﬁ, B which has the
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properties [13], 14}, {i5] stated in Theorem 2, and, in addition,
(] ale) =a(a®) —a{em);
[i2], a(Ez)=VE a(x), E=R*.
These properties characterize the space E%D“ B) to within a unitary isomorphism.
Since H(Q, B) = u:%b, B) & hmwau B), the space H{Q, B) also is characterized by
these properties to within a unitary isomorphism. It may be shown that the space K(Q, £)
is isomorphic to the inductive limit of the family hMA@‘ B, x) for x € mmmﬁp $). These

properties characterize the space m%b“ B) to within unitary isomorphism.

3. Ler (G, B) ., be a family of measurable spaces.
Definition 1. Two product measures U ¢, and Tl .y, are called asympiotically
equivalent if there exists a finite subset F [ such chat the two product measures

I ¢j_px, and Il ¢;_py, are not orthogonal.

Lemma 3. The relation of asymprotic equivalence is an equivalence relation on

the set of product measures.

In this way, the set of all product measures is partitioned into asymprotic equiva-
lence classes. For each such class @ we define the closed subspace K@) of the
space wﬁ%mnm__ﬁt mnlﬁ.\.v which is generated by the images of the product measures in
the equivalence class @ under the mapping @ defined in Theorem 3. We form the infi-
nire direct preduct ®H Qw,f.ﬁbi mwhv. For each ¢ €1 let @, be the mapping defined in
Theorem 3, and let Aa‘%kﬁd

Definition 2. We will say that the C,-family ﬁo‘%&h:

,ei be a Cyfamily {see [1], Definition 3.31).
(e 18 essentially positive if

there exists a finite ser F € such that %, is positive for all ¢ € { = F, We will call
the equivalence class @ of C -families {in the sense of (1]} essentially positive if it

contains only a positive T ~family.

' Theorem 4. There exisis a one-to-one correspondence between the essentially
ositive equivalence classes of C_-familics and the asymptotic equivalence clusses
0 Y
+ .
of product measures on 11 _(Q , B ). I/ 87 is 1he class of product measures corresbond-
[ b} 1

. + . . . . .
ing to &7, then there exists a unitary isomorphism U_, between the incompleie tensor

- @+
product .ﬁM_. i%bi me and the space H@™), characterized by the property

E@.k.QDﬂAHLS.H QQ__.‘QHL for every essentially positive C ~family Aﬂ%xnzﬁmw in @,

The proof of chis theorem uses Kakutani’s theorem [2], some resules from (1], and

the following asserdon.

Lemma 4. Let E%kn:h e e a & ~family in @Q.I%QZ HL.

Then AQ%RLWQ is equivalent to an essentially positive C-family if and only if
AD%RMZHQ is a Cy-family. In this case X x (8 < os.

In the case when Tshwhi is a family of positive measures, the idenrtity @ﬂism

= /1] follows from Theorem 4.

et
In this way, in the case of positive product measures, the equivalence relation
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introduced by von Neumann in [1] and asymptotic equivalence induce cne and the same
classificarion. From Lemma 3 it follows that if the set T is infinite, then there exists
a conuinvum of equivalence classes of ﬁo-mwaw:mmﬂ none of which comains an essential-
ly positive C-family {they do not even contain a Cy-family that is weakly equivalent
{n the sense of Definition (6.1.1) of {1} ro such a  -family}.

We cenote by Iy

the subspace of the space ®mﬂm%3h, mwb generared by all incom.-

plete tensor products corresponding to egquivalence classes @ which do nor cenrain an
. ¢ - . o4

essentially positive O, «family. We denote by K™ the subspace of the space

2 '

L

measure,

ilw_w\u which i penerated by the images of measures orthegonal (o every product

Pheorem 5. There exisrs an exact sequence

07 > © F6.(Q, D)~ #.(T1Q: TI8) > KL~ 0,

& (=9 LeE
where | and P denote the natural injection and profection, respectively, and U is
characterized by the fact that ifs restriciions to incomplete tensor products correspon-
ding to essentially positive equivalence classes ® coincide with the mappings Ugs

defined in Theorem 1,

In conclusion we consider the following example.

For each ¢ € { (I countable} let bﬁ be a countable set having the discrete mea-

surable structure, Then MEWA@L = __NWADL (the space of sequences of real numbers

, ﬁkvy\mm such thar = < e}, and wﬁ,ﬁbhv is easily seen to be \Wﬁ@whv (the space of

tm.;xL
real sequences (y ), ., such that th___.;};N < ). Every incomplete component of the
tensor product ®_Qr%bb is isomorphic to (real) Fock space (see [3], [4] and Lemma
(4.1.2) of [11}; in addition, the space wfz

uct in the sense of Araki (see [5]).

hm.bb represents a factorizable tensor prod-
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