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The basic ideas of the stochastic limit for a quantum system with discrete energy 
spectrum, coupled to a Bose reservoir are illustrated through a detailed analysis of 
a general linear interaction: under this limit we have quantum noise processes sub- 
stituting for the field. We prove that the usual Schrijdinger evolution in interaction 
representation converges to a limiting evolution unitary on the system and noise 
space which, when reduced to system’s degrees of freedom, provides the master 
and Langevin equations that are postulated on heuristic grounds by physicists. In 
addition, we give a concrete appiication of our results by deriving the evolution of an 
atomic system interacting with the electrodynamic field without recourse to either 
rotating wave or dipole approximations. 

1. Quantum theory of damping 

1.0. Introduction 

Irreversible quantum evolutions now play a fundamental role in many areas of physics, 
especially quantum optics. A large body of physical literature has been built up around 
the problem of describing in a stochastic model the effect of a source of quantum noise 
on a given quantum mechanical system, emphasizing the quantum stochastic properties 
of the source of the quantum noise. The approach to stochasticity discussed in this paper 
takes into account the essential quantum nature of the problem by following the weak 
coupling approach [l] to quantum damping. As will be explained later, the noise fields 
used to model physical noise sources are still quantum in nature, and, because they are 
arrived at from a well-defined physical scaling limit, do not require us to put in the 
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desired features of the noise by hand, but to deduce these properties from those of an 
underlying Hamiltonian model. 

The derivations of quantum master equations and quantum Langevin equations for 
open quantum systems which are present in the current physics literature are well mo- 
tivated from the physical point of view, cf. [2], however mathematically imprecise. The 
usual heuristic procedures to render the reservoir, to which the system is coupled, into 
a source of quantum noise via some marlcovian approximation and to approximate by 
fitting Quantum Brownian Motions (QBMs) (cf. [5, S]) are generally reliant on arbitrary 
and often mutually contradictory assumptions (cf. the appendix of the present paper). 

On the other hand, the weak and the singular coupling limit for an open quan- 
tum system gives a device for obtaining irreversible evolutions. Mathematically rigorous 
derivations of the master equations along these lines have been given for certain specific 
models by several authors: Pu16 [3], G orini et al., Davies [4], Kossakowski, Malishev,... 

According to the theory of stochastic limits of quantum fields, developed in a series 
of papers [l, 8-111 by Accardi, Frigerio and Lu, a quantum reservoir can be reduced to a 
quantum stochastic noise source via a scaling limit procedure. The theory is mathemat- 
ically rigorous - while at the same time - applicable to the wide range of phenomena 
considered by physicists and gives a precise description of the reservoir as a quantum 
noise source. The convergence of the reservoir fields can be intuitively interpreted in 
terms of quantum central limit theorems; that is, central limit theorems for quantum 
mechanical observables. Quantum Probability affords the necessary mathematical frame- 
work to interpret the limit processes in terms of the usual Fock space descriptions of 
Bose or Fermi reservoirs. 

Our objective in this paper is to review some results of the stochastic limit of quantum 
field theory and to extend them so as to deal with general interactions between an atomic 
system and a noise source encountered in physical theories. This we do and show that 
the energy shifts, linewidths, master equations and Langevin equations, arising for the 
system as a result of its coupling to the noise field, concur with those obtained by 
earlier researchers [2]. However, the present theory also gives, in addition, a quantum 
stochastic description of the reservoir noise fields themselves. In particular we have a 
full microscopic description of the parameters determining the dynamics of the so-called 
output fields. As a concrete application of our theory we consider the particular case, 
where a quantum electrodynamical field acts as reservoir, however we stress that this is 
only one of the many applications of the theory. 

We shall discuss only minimal coupling interacions, that is interactions linear in the 
creation/annihilation operators for the reservoir. In a forthcoming paper we discuss how 
to treat the situations where the interaction is of polynomial type. 

1.1. Open quantum systems 

We consider a system (S) coupled to a reservoir (R). The system (S) is to be quantum 
mechanical: its state space will be a separable Hilbert space Es. The reservoir, on the 
other hand, is comprised of one or several quantum fields, and so has infinitely many 
degrees of freedom. We shall consider a bosonic reservoir; the state space for (R) is the 
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bosonic Fock space 31~ over a separable Hilbert space ‘FI;, . in standard notation we write 
31~ = ~B(‘FI&). 7-1; is again to be a separable Hilbert space and may quite generally 
describe not only one but several individual species of particle in the reservoir. For 
instance, consider several species of particles Pr , P2, P3, . . . in the reservoir and suppose 
that ‘FI; = $ 3 P3, where ‘FI$ ‘H1 3 is the state space for particle type Pj; then 

RR = r&x;) = &(@$+) = @‘j&(3-Ibj). (1.1.1) 

The space tik is referred to as the (combined) one particle state space for the reservoir. 
The overall state space for the combined system and reservoir is 8~ 8 tiR. The vacuum 
vector of the reservoir space will be denoted throughout as @R. In the following we 
consider only bosonic species in the reservoir, however it is also possible to work with 
fermions [9]. The dynamics of the combined system and reservoir is governed by the 
formal Hamiltonian H(‘) which we may write as 

that is, as the sum 
coupling parameter. 

H@) = H(O) + AHI ) (1.1.2) 

of a free Hamiltonian H(O) and an interaction HI, with X a real 
H(O) is to be expressible as 

H(“)=Hs@lR+lS@HHR, (1.1.3) 

where Hs and HR are self-adjoint operators on the spaces ~-IS and ‘HR, respectively. For 

each X, we consider the unitary operator Vt (‘I on ~-IS @ tin defined by 

V(‘) = exp t (1.1.4) 

This gives the time evolution under H (‘1 . A standard device in pertubation theory is to 
transform to the interaction picture; this involves introducing the operator 

(1.1.5) 

(l&w is a unitary operator on US @ ‘~-LR called the wave operator at time t or, more 

frequently, the Schrtidinger evolution in interaction representation. We note that {U,‘“’ : 

t E IR} is a left ~vt(O) -cocycle, that is, it satisfies the relation 

(1.1.6) 

where for each X > 0 the time-evolute of any operator X E B(‘Hs) 8 B(ti~) is defined by 

?p’(X) = vpXV,(X) . 

We also introduce the evolution in interaction picture: 

?$‘(X) = U,(X)+X?$) . (1.1.7) 
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The Schrodinger equation for the time evolutions is 

and, in interaction representation, 

a (A) _ x $4 - ,wjO’(H&p. 

With these notations we deduce the associated Heisenberg equations 

and, in interaction representation, 

From (1.1.8) we obtain the integral equation 

u(X) ZI 1 + 4 s t 

t ds 7p (HI) u,cX) 
0 

(1.1.8) 

(1.1.9) 

(1.1.10) 

and, consequently, the iterated series 

@’ = I + e (a) n 1’ dtl .6” dt, ‘. . itn-’ dt, wt’;‘(HI). . . $~)(HI) . (1.1.11) 
n=l 

This may be symbolically described as 

IT(‘) = Iexp $ c .I t t 
0 

(1.1.12) 

where 7 denotes time ordering. 
Before we continue, we must say more about how to interpret the formal sum of H(O) 

and HI. Firstly, we assume that H(O) and HI are self-adjoint operators on 7-c~ @ 7-t~. 
We shall assume that, for sufficiently small X and bounded t, the iterated series (1.1.11) 
is weakly convergent on the domain ‘Hi@(‘H$, the algebraic tensor product a total 
subset 7-L; of ?fs and of a total subset of r(‘FIk), f or example the set of exponential or 
number vectors. From the cocycle relation (1.1.6) we have that if we define the unitary 

operator T/,(‘) by 

(1.1.13) 

whose generator iH(‘) is 

the Heisenberg picture is 

then {V,“’ : t E W} gives a strongly continuous unitary group 

formally given as H(‘) = H(O) + XHI. The time evolution in 
then given by 

$‘(X) = U$x’(Vt’O’(x)). (1.1.14) 
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1.2. The free evolution of the reservoir 

For 7-L; = .L2(R3) ( momentum space), we introduce the creation and annihilation 

densities afl(k) satisfying 

[n(k), u(k’)t] = S(k - k’) 3 [a(k)*, at( = 0 > [a(k), a(k’)] = 0. (1.2.1) 

The formal creation and annihilation densities are related to the corresponding fields on 

tiR by the relation 

A+(g) = 
J 

cl%g(k)at(k), 4s) = 
s 

~3K$+W (1.2.2) 

valid for any regular {e.g. in the Schwartz space of rapidly decreasing functions) test 

function g E 7$. 
From (1.2.2) we obtain the canonical commutation relations (CCR): [A(h), A+(f)] = 

(h, f), while [A(h), A(f)] = 0. We take HR to be the second quantization of an operator 
Hi on ?Lh given by 

(~~~)(~) = ~#(~)~(~) 3 (1.2.3) 

where w(k) is a positive (usually strictly positive) function whose form depends on the 

specific model. 
In terms of the creation and annihilation densities, the operator HE may then be 

expressed as 

HR = J dk &J(k) u~(~)u(~) . (1.24 

Note that ~~~)(1~~9Afl(g)) = l.s@Afi($g), w h ere we have introduced the unitary operator 

St on ‘Hk given by 

(1.2.5) 

that is, (S&(L) = ei”(“ltf(k). 

1.3. The standard approach to the quantum Langevin equation 

Consider an interaction of the type 

HI = iti{D @ A+(g) - D+ CXJ A(g)} > 

where D E a(%!~) h as a harmonic operator for the free-evolution; that is 

f/~, ~~1 =: -&L-J +, $HsDe--itHs = e--itWL) 

and we further assume that 
w > 0. 

Then we have 

I:” = ifi{D @ A+(S,Wg) - D+ 8 A(S,wg)), (1.3.2) 

(1.3.1) 

(1.3.la) 

(1.3.lb) 
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where 
SF = e-‘“‘t&. (1.3.3) 

that is, (S~~)(k) = ~~(~{k)-~~f,~(k). Now writ,e Xi = u{‘)(X 8 1~)~ for X E a(%,). then 

from (1.1.9) we have 

(1.34 

where A!(f) = uiX) (ls~%A~(,f)). Similarly, $ At(f) = X~~j~)(L))jg,S~j, so that A,(f) = 

xII’dsU,~(f.S~gj+lsOA(.f), 1’2 w UC 1, substituting back into (1.3.4) gives 

dXI -= 
ai; 

A” ~“(o:~~(s-t)[x.~l~-[x.nr:ic”(i-sjo,}+~~:;Ix,n]~-[x,~~]~~~~}, 
s 

(1.3.5) 

where 4d(t) = (g> S”‘,g) = s d3klg(k12)e--‘(“(k)-“)t am3 E”(t) = 1s @ A(S,“g). In stan- 
dard terminology q+(t) is called th,e memo~g ~[~n,~t~un and El the ~u~t~a,t~rl.q q?L~~tu~ 

force [2,17J or input field [US], albeit in the interaction picture. One notes that,, in the 
vacuum state, c$’ is gauss~aIl-distributed and all first and second moments vanish except 
the t,wo-point function 

The &andard approach made at this juncture is to introduce the so-called first Marleov 
a~~ro~~~,~,~~on. Here, for example, one takes ?-L& = L”(R). g = a (constant) and 
w(k) = k. Then 

There are, however, several important objections to be made to this approach. Firstly any 
physical details specific to the reservoir must be put in by hand. Secondly, the condition 
w(k) = jr, implies that the spectrum of IJi is unbounded below, this is necessary to 
produce the delta function correlation of white noise. From a physical point of view this 
is L~~la~cept,able as 22; must be bounded below for stabilit~~. Finally, the fact that the 
frequency spectrum w(h) = k: is llnbourl~led below precludes any possibility of dropping 
the rotating wave approxirl~ation. 

1.4. The stochastic limit 

We now describe the ideas behind the stochastic limit in the simplest situation, where 
we have taken a dipole and rotating wave approximation. From now on, unless explicitly 
stated, we shall take ‘,Yh = L2(IR”). All the results remain valid in L2(Rd) with d > 3. 
We define the following collective annihilation operator: 
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Calculating the two-point vacuum expectations gives 

(@R(O): B;“‘x) (g)B$“‘X’+(f)@R(o)) = x2 et dtl 0S dsr(S,“,g, S,w,f) 
/ .I 
X9 

=: - 
.I .I 

u/x= 
du ~r(S~g, S) . (1.42) 

0 u/x2-s 

where we have substituted u, = X2tl and r = tr - sr. This shows that the only way, in 
order to obtain a nontrivial two-point function in the limit X --+ 0 is to rescale time as 

t q t/X2. (1.4.3) 

This is knowu as the Friedrichs-van Houe or weak coupling limit in physics. One finds. 
under this scaling: 

lim (G?R, Bjy$)(g) $$$‘+(f) 9~) = min{t, s} 
x-o .Ix: 

d7. (S;g, f) . (1.4.4) 
--oo 

Physically, the limit X -t 0 with t L, t/X2 allows us to consider progressively weaker 
interactions which are allowed to run over increasingly larger periods of time and so we 
obtain the long term cumulative effect of the interaction on the system. Now the creation 
and annihilation operators are gaussian in the vacuum state and, as a result, so axe the 

operators @y$“. 

Furthermore, the limiting two-point function (1.4.4) is suggestive of the correlat,ion 
function of a Brownian motion. However, an interpretat,ion of the above in terms of 
classical Brownian motion is erroneous as it ignores the essentially quantum probabilistic 
nature of these processes. 

1.5. The interaction 

For technical reasons we work with a system Hamiltonian Hs which has discrete 
spectrum. Hi is taken to be bounded below as required from physics. The type of 
interaction HI which we wish to study is of the form 

where F is a discrete subset of R. For each w E F, we take Dy E B(7i-l~) to have harmonic 
free evolution with frequency w: 

f[Dy; Hs] = -iwDy , j=l.....lV(kJ). (1.5.2) 

Thus the superscript w labels harmonic frequency and j = 1, . ..! N(w) the degeneracy of 
that frequency. An interaction similar to (1.5.1) has been treated in [lo], however there 
the test functions gY were taken to be equal for each value of w. 
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Our reasons for studying (1.5.1) above are because it idlows us to treat the most gen- 
eral interactions encountered in physics. Typically, in quantum field theory one considers 
an interaction of the type 

Hr = ih 
.I 

d3k {B(k) @ a+(k) - e+(k) @ n(k)}, (1.5.3) 

where (B(k) : k E R3} is a family of operators on 7&. The operators B(k) are called 
the response terms: they contain local information about the interaction. In the dipole 
approximation of quantum field theory one makes the replacement 

o(k) L, #dipole (k) = gyro) > (1.5.4) 

where g(k) is some suitable test function. The physical argument is, cf. [2], that the 
response does not vary appreciably for values of the wavelength of the reservoir particles, 
which are large relative to the physical dimensions of the system, though this can hardly 
be true for large momenta. As a result, one obtains the approximate Hamiltonian 

Hr W EiTfiiP”re = ifi{@ @ A+(g) - 6+(O) ~3 A(g)}. (1.5.5) 

A further approximation often made by physicists is to replace 8(O) by an operator D 
having a harmonic free evolution with some frequency w E R. This approximation is just 
the rotating wave approximation. 

In order to avoid these appproximations we argue as follows: 
Let B be a complete basis of eigenstates of Hs, then 

HI = c MH1l4’)14)(4’l~ 
4,O’EB 

(1.5.6) 

However, we may write 

where we have introduced the test functions 

(1.53) 

Note that the order of C# and 4’ is reversed in the second term in (1.5.7) due to the 
conjugate linear nature of the creation field. 

This now means that the interaction can be expressed as 

where we have introduced the transition operators T$~I = I$)(#J’\. 

(1.59) 



ON THE STOCHASTIC LIMIT FOR QUANTUM THEORY 163 

We note that the transition operators Td,( are harmonic under the free evolution. In 
fact, we have 

k [T++J, H,s] = -iq+,~IT~~~ , (1.5.10) 

where 

W$J#’ = 
E&I - E+ 

7i ’ 
(1.5.11) 

SOF={W~~+,#EB} is now the set of Bohr frequencies. 
The expression (1.5.9) is now equivalent to the interaction (1.5.1) which we propose 

to study. Here we need only relabel the T44’ as Dy, where w = WQ~ and the j again 
labels degeneracy. The functions g$$g are relabelled accordingly. 

2. The quantum stochastic limit 

2.1. Quantum Brownian motions 

In this section, we first of all discuss the concept of quantum Brownian motion. As 
this is not yet widely known amongst physicists we give an exposition below: 

DEFINITION. A quantum Brownian motion (QBM) is a triple (X, @‘, (&)t), where E 
is a separable Hilbert space, Ip E ‘FI with (I@11 = 1, (B,), is a family of operators on ‘FI 
such that: 

(i) qt = Re& and pt = Im& are classical Brownian motions for the state @, 

(ii) [ps,9t1 = 2 min(s,t), where K E Ii& 

The basic example is the following: Let XC = ~B(L~(~W)) and @C be the vacuum 
state. Then define Bt to be 

Bt = Ac(x[o,tl) > (2.1.1) 

where AC is the annihilation operator on 31~. From the (CCR) we have 

[Bt , @I = (xp,t], x[o,~I) = min{t, 3); [B,,B,] = 0 = [B,t, B,t] . (2.1.2) 

So setting qt = %(Bt + Bf) and pt = &(B, - Bi) we have from the (CCR) that 

- [qt,P,l = [pt, qs] = & min(t, s> . (2.1.3) 

Now if we set for some t and dt > 0 

d& = &+a - Bt = Ac(xp,t+q) t (2.14 

we have that 

(@c, (dB!)2@c) = 0 

(piC, dB,dBf@$ = ;t . 

(@c, dB,tdB,&) = 0, 
(2.1.5) 
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Now dBt and dB/ are gaussian in the vacuum state, because the creation and annihilation 
fields are, therefore so are dq, and dpt. Furthermore, 

(Gc, (dqt)%) = ;(@c, (dBt + dB,i)“@,) = ;dt , (2.1.6) 

and similarly, (@c, (dpt)2@c) = idt. F inally, noting that at unequal times s and t 

(@c, dq&s@c) = 0 = (@c, &t&s@c) (2.1.7) 

whenever t < t + dt I s < s + ds or s < s + ds < t < t + dt, we conclude that (qt)t 

and (pt)t are each separate Brownian motions for expectations taken in the state @c. So 

{EC, @c, (Bt),} is a quantum Brownian motion. We can introduce formal creation and 
annihilation densities bfl (t) satisfying 

[b(t), b(s)] = 6 = [b+(t), b+(s)] , [b(t), b+(s)] = S(t - s) (2.1.8) 

such that 

AC(g) = 
.I- 

w ds g(sP(s) 3 A&(s) = 
.I 

IIg ds ds)~+b) . (2.1.9) 

From this we see 

J 
t 

Bj = ds b”(s) . (2.1.10) 
0 

We may write bn = @?L and consider these densities as ‘(quantum white noises”. 

More generally, le? K be a separable Hilbert space and let L2(lR, K) denote the set of 

square-integrable K-valued functions over R. Now h E L2(R; K) is a function h(t) E K 
with JR dt Ilh(t)ll$ < co. The inner product on L2(R, K) is given by 

(h, h’) = ~Mt): h’(t))dt (2.1.11) 

If {e,}, is a complete orthonormal basis for K then we can write h(t) = C, hn(t)en, 

where h,(t) = (e,, h(t))K; this gives a natural isomorphism 

_P(R,K)rK@L2@). (2.1.12) 

Now take ‘FIK = ~B(L~(IW, K)) and let @K d enote vacuum vector of XK. Then a quantum 
Brownian motion is given by (%K,@I(, (B,(g))t), for non-zero g E K, where 

Bt(g) = Ak-(9 @ ~lo,tl) 1 (2.1.13) 

where AK is the annihilation operator on ‘HK. The commutation relations are 

P,(g), B:(f)] = (9 @ x[o,t], f @ x[o,~I) = (9, f)K min{t, s> (2.1.14) 

with remaining commutators vanishing. So {%K = ~B(L~(R,K)), @K, (B,(g))t} is 
a quantum Brownian motion. Taking K = C and 1g12 = IF. leads back to the original 

example. 
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However, there is a more general possibility than that above. Let Q 2 1~ and set 

C = Q @ 1~2~~). (2.1.15) 

Then let yc be the state on the Weyl algebra W(‘Flh-) with covariance C. We can 

construct, {G~(?ffi. C), 7rgK, @SK}, the GNS triple over {W(~-IK), C}, and define on it 
the operator 

BQ(9,t) = &$%(.9). (2.1.16) 

Then{GB(~FIK~C).~~,,(BQ(g,t))t} is a quantum Brownian motion referred to as quan- 
tum Brownian motion over L2 (IR, K) with covariance C, or more loosely wit,h covariance 

Q. We have t,hat 

(@g,<> BQ(9.t) B&(f, s) @$,) = pc(&(g)@(f)) = min{t. s}({]. ?f)~ (2.1.17) 

and similarly 

2.2. Quantum stochastic calculus 

As is well known, a stochastic calculus can be built up around classical Brownian 
motion and that the resulting theory has widespread applications in the study of noisy 

syst,ems in physics and engineering. It is also possible to build up quantum stochastic 
calculus based on the QBMs we have just considered. This was originally done by Hudson 

and Parthasarathy [13,14]. The basic integrators are dt and, depending on the contJext. 

d@ or d@(g) or dB&(t,g). 
In the simplest case, for instance, we have for a partition --3c = tl < t2 < . < f,, < 

t rr+1 = m> 

L"(R) = &I L2([tm. &?+I]), 
m=l 

and consequently. 

r&(R)) = gg r&Vt,, tm+ll) . (2.2.1) 
m=l 

This gives the required time filtration in the quantum situation. We say that a family of 
operators (X,), on Tp,((L’(R))) is adapted if. for all t. 

Xf 5 x, &I 1 (2.2.2) 

011 Tu(L2((-co. t)) E3 rB(Ly[t, co))). 
The quantum Ito table reads as 

d&(g,t) .d@&f,t) - (g. yf)Kdt, 
Q-1 

dB&(f,t) . d&(g,t) = (g, Tf)Kdt. 
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(dt)2 = dt . dB;(g, t) = (dB$(g, t))2 s 0. 

Let (X,), be an adapted process of the form 

(2.2.3) 

Xt = J ‘(xsds + x$dB&(g, s) + z,dBQ(g, s)) (2.2.4) 
0 

and (Y,), a similar process. Then we have the quantum Ito formula 

d(Xt . yt) = dX, . yt + Xt . dx + dXt . dY, (2.2.5) 

with 

dXt = xtdt + x:dB&(g, t) + x+d&(g, t)) . (2.2.6) 

2.3. The weak coupling limit of quantum field theory 

The first results of Accardi, F’rigerio and Lu, which were concerned with the weak 
coupling limit for an interaction (1.5.8) which has undergone both a dipole and a rotating 
wave approximation, can be summarised as follows. 

Recall that 

Now define a sesquilinear form (. I.)“’ on 7f&, the one-particle reservoir space, by 

O” (9lf)” = J W%‘g> f). (2.3.1) 
-CC 

We consider a space of suitable test-functions T” c 'Hi, determined by the condition 

J O” dt lb %‘f)l < cc (2.3.2) 
-ix 

whenever f, g E T”. Note that technically T” does not depend on w, however we keep it 

in as a label. Then we construct K, the completion of TW with respect to (.I.)“. That is 
K” is the completion of TW factored out by its (.I.)“- norm null space. K” is a separable 

Hilbert space with inner product (.I.)“’ 

THEOREM 1. In the limit X -+ 0 the stochastic process on the resevoir space 

{~R>*R, (B,(;it)(f))t) 

for f E KU, converges wealcly in the sense of matrix elements to a quantum Brow- 

nian motion on L2(R, K,). We denote this quantum Brownian motion by (7-i” = 

&(L2(R,KW)),QW = @Ku, (Bj"(f))t). 
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In the next theorem we show that ULf12 converges to a stochastic process U, on 

‘Hs @ 7-P’ in a sense to be made explicit now. 

THEOREM 2. Let f(j), h(j’) E K”; T(j), ,S’(j’) > 0, for j = 1, . . . . n : j’ = 1, . . . . m and 
let c$, 4’ E 7-t~ then the limit as X 4 0 of the matrix element 

where LJt is a process on ‘Hs 8 ‘l-t” which is the solution to the quantum stochastic differ- 
ential equation 

dUt = {D @ dB,“+(g) - D+ @ dB,“(g) - (gig)“-D+D @ dt}& (2.3.5) 

with 

(glf)“- = 1’ dr(g, SC.0 . 
-lx 

(2.3.6) 

Note that d(U,Uj) E 0 E d(UJUt) by the quantum Ito formula and the Ito table. So 
U, is unita? on ?& @ I-P, however it describes an irreversible evolution when restricted 
to 7-t~. The unitarity condition corresponds to a fluctuation-dissipation law (cf. [22]). 

THEOREM 3. Let X E 23(7-t~), then in the notation of Theorem 2 the limit 

(2.3.7) 

exists and equals 

b@qf,, (f”‘) . B& (f’“‘)~“IU,t(X~l)U~I~‘~Br,:(ho) . ..B.&(h(“))@“). (2.3.8) 

Note that in these theorems we encounter vectors of the type Bg;iit (~)!PR which 

are l-particle vectors X J$yz2 dsS,W f with test functions X JOT”’ drS,” f: similarly any 
n-particle or exponential vector with test functions are called collective vectors in the 
terminology of [lo] and they are designed to extract the long time cumulative behaviour 
of the reservoir fields. 
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2.4. Non-zero temperature reservoir 

Next, for the non-vacuum case, we consider a density matrix pQ on 3-In which is 
invariant under the free evolution and gaussian with covariance Q > lx;. That is 

n{pQw(g)} = dgsQg). V’sE?-& (2.4.1) 

The invariance condition is equivalent to 

[&,Ql = 0, on Dam(Q) . (2.4.2) 

In particular, the choice of a heat bath at inverse temperature @ and fugacity z is given 

by 
&= 1+*e-OH; 

1 -zZe-i3H; ' 
(2.4.3) 

that is 

(Qf)(k) = cot+W9 - cl) f(k) > 

where p = i In z is the chemical potential. Now 

(2.4.4) 

and similarly 

= min{t, s} /a W?‘g, ( y)f) > (2.4.5) 
-cc 

‘““‘(f)B~~$‘(g)} = min{t, s} /m dT(S,“g, ( y)f) . 
-CX 

(2.4.6) 

Let Tc be the subset of Dam(Q) such that 

sx 
_-03 I(f) $‘h)l dt < x and 

Jx 
_-a I (.f> SYQh) I dt < 03 (2.4.7) 

whenever f, h E Tz. Let KG be the Hilbert space completion of T< with respect to the 
sesquilinear form (.I.); given by 

m (f Ih): = 
s 

(f, S,“h) dt (2.4.8) 
--m 

Note that in most cases TG is dense in Rk and that Kz is a Hilbert space equipped with 
inner product (.I.);. 

THEOREM 1~. The process (BiTI (f))t in the mixed state pQ converges weakly in the 

sense of matrix elements to a quantum Brownian motion over L2(iR, K$) with covariance 

Q. This is denoted as {Ftj$ = W(L2@V;LQ@ 11, @“Q, (B;(f,t))& 
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(2.413) 

exists and equals 

2.5. The quantum stochastic limit for the full interaction 

Now suppose that the interaction is of the form (1.5.1). The problem of dropping the 
rotSating wave approxinlation was first tackled by Accardi and Lu in [‘lo] for an interaction 
similar to (1.5.1), except that a11 the test functions were taken to be the same. The result: 
is that for each Bohr frequency w we obtain a separate independent quantum Brownian 
motion. 

First of all. note that ~~~~~~~ L2(R, K;)) = mwEF ~G(L~(R, Kz)). Then consider 

the Wyl algebra W($,,, L’(IR, K$)) = BUEP W(L2(R, K;)) with quasi-free state ‘pi 

a.nd covariance c = alwEF C, where C = Q @ 1 on a~;; 2 Kz @ L2(R). 

The GNS triple over {W(@jtiEr L2(R &$)), PC) is {ti; =I GB(@,~~ L2(R Kz)), 
C)). 7r&@$}. Now observe t,hat 

XB”=@JX& 7i; = @G @+ (@P;* (2.5.1) 
WEF MEF k‘$CF 
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For each f E KG we have 

K$(f, t) = %$A;(f @ xio,t]) > (2.52) 

where A”Q is an annihilation operator on L2(IR, I$>, so for t, > 0, fu E Kc, for each 
w E F, we have 

&$((I9 fkJ, (LA&F) = @ q$(fw L). (2.5.3) 

WEF dEF 

THEOREM 1~. For each w f F and f E KG the Iimit X -+ 0, ~~~~~~(~) taken in the 

state PQ converges in the sense of mat~x elements to a quuntum ~rowniun motion over 
L2(R, KG) with covariance Q and each of these limiting processes are independent for 
different values of w. 

THEOREM 2~. ~e~~~~'~~~" E K$;$, (“) SW > Oforeachw E F j = 1, . . ..n.;j” = 

1, . . . . 772,; and t 2 0; $I, #’ f ‘Hs then the hornet as X -+ 0 of the matrix element 

(2.5.4) 

exists and equals 

(4 @ r@ B;(fl!?, C?J .*.B~(~~w’,TSn,))]i~~iUtid’~[~B~(h~),s~)).-. 

WEF tiEF 

.I. ~~(~~~~), sp))]tqJ, (2.5.5) 

where U, is unitamJ on ?ls @ T-t: and satisfies quantum stochastic diflerential equation 

(2.5.7) 

(2.5.8) 
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A more expcplicit form of the coeficients in (2.5.7) is 

The idea of the proof of Theorem 2A is as follows; first of all we know that different 
w give rise to independent Q-quantum Brownian motions. This is done in [lo]. The 

next step is to consider the effect of the degeneracy which may arise for each w E F. In 

this case we must, therefore, generalize the results of (8,101 accordingly. This is done in 

Appendices B and C. 

THEOREM 3A. In the notations of Theorem 2A, for any X E B(?isj, the limit as 

X+Oof 

(2.5.10) 

exists and equals 

(2.5.11) 

where Ut is the solution to the quantum stochastic differential equation (2.5.6). 

2.6. The Langevin and master equations 

In each of the cases (2.3.5), (2.4.11) and (2.5.6) the right hand side of the expression 

for dUt contains a term of the form -(Y 8 1jdtUt. For instance, in (2.5.6) above we have 

~EF j,k=l 

The Langevin equation then reads as follows 

d[U,t(X ~3 l)Ut] 3 [d&1+(X @ l)Ut + U,t(X @ l)dUt + [d&1+(X KJ ljd& (2.6.2) 

N(w) N(w) 

= u,t[Lo(Xj@dt+ c c L,W,(X)@dB;+(gJ”,tj+ c c L,“_(X)@dB;(g,W, t)}Ut , 
WEF j,k=l ~EF j,k=l 
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where 

with 

L)(X) = -XY - Y+X + O(X) (2.6.3) 

O(X) = c c { “+ D, XD; [(s,“kJ;);; +m;+j + D;XD;+ [m;I 
LJEF j,k=l 

N(w) 

+(gkwig;);JQ--1 } = c c { D;+XD; (g;/g;)“Q+ + D;XD;+ (g,“lg;);_] } (2.6.4) 
~EF j,k=l 

and 
L,“,(X) = XD,w - D,wX, 

Note that unitarity follows from 

L;_(X) = D;+X - XDJ"' . (2.6.5) 

La(ls) = -(Y + Y+) + O(ls) = 0, L,w,(ls) = 0. (2.6.6) 

It is instructive to set Y = $r + ;HL where both r and Hi are self-adjoint; we then 

have that 

L,,(X) = -;(XT + TX) + O(X) + ;[X; Hi]. (2.6.7) 

The unitarity condition is then 2Re Y = r = O(ls); this is the fluctuation-dissipation 

relation of [22]. The presence of the imaginary term HA does not effect the unitarity. 
For ps a density matrix on 3ts we define the expectation (.)t by 

(2.6.8) 

where st denotes the effective density matrix on (S) and the second trace is a partial trace 

over the system space (the trace over the reservoir space assumed to be taken already). 
Now 

(2.6.9) 

so in terms of the effective density matrix st 

$r{stX} = ~{&l(X)} = W-Gj(st)X}, (2.6.10) 

where LG denotes the adjoint operation to Lo on the dual of B(3-t~). This gives the 
master equation 

- = L;(st)=-cNy{, dst 
dt 

D;D;+s, - Dk”+stDl;i](Sr;; 
WEF j,k=l 

+ [D;+D;st - D;stD;+](g;ig;);Zj; - [D;+stD; - stDk”D;+](g~Igk”)“Q- 

- [D,“s,D;+ - s,D;+D;]m”,f) . (2.6.11) 
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From the relation (1.5.2) we see that [Y,Hs] = 0. If we define the 

operator by 
v, = (ehHS C3 l)U* 

eflective evolution 

(2.6.12) 

which satisfies the quantum stochastic differential equation 

$HseAHs @dt Ut + (efHs 6x1 l)dUt . (2.6.13) 

ExplicMy, this gives 

r+;(Hs+H’s) dt Vi> 
11 

(2.6.14) 

This is, however, equivalent to the (complex) shift one calculates using second order per- 

turbation theory. For example, taking the zero temperature for simplicity, one calculates 

in second order shift [19] 

~@*s,,HI 
1 

H(O) - Em - iO+ 
HI $@pR (2.6.16) 

Here we have used the well known identity 

J 
0 

dt eixt = 1 
(x E R), 

-m i(32 - io+) 
(2.6.17) 

where 63 means that we take the principal part of the integral. Now D,“c#J is an eigenstate 
of Hs with eigenvalue E$ - hw, so the summation need only be considered over w = w’ 
in (2.6) above. Therefore, we have 

dr (4 @a PR, D;+ 8 A(g,“) ez(HR-hw)rlh DC @ At(gg) C$ @ PR) 
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UEF j,k 

do O+%, &,“)A+(SX)W . (2.6.18) 

Hence Yi21 = (d,Y$). The real and imaginary parts of Y are therefore the linewidth 
and energy shift as would normally be calculated using second order perturbation theory; 
this is true in the non-vacuum cases also. 

2.7. Transition probabilities 

Let Pt($]4) denote the probability that the sytem will be measured in state $ at time 
t if it initially was in state 4. Then 

Pt($l4) = (4 @ $1 K%W+l@ l)Ut 4 @ @$). (2.7.1) 

From Theorems 3 and 3A we have 

(2.7.2) 

Therefore, setting t = 0, 

$P,(W)lt=o = (ALo(l+)(54) 4). 

If II, = q+ we obtain the relation 

(2.7.3) 

(2.7.4) 

while if (c$$J) = 0 then (2.7.3) gives 

-&llrl4)lt=o = (4 @(lti)(lltl) 4) (2.7.5) 

= 
WEF j,k=l 

Using the relation s-“, dt ezzt = 29rS(z) we can rewrite this as 

(2.7.6) 

where Q(k) is the spectral function associated with Q, cf. (3.11). This is our formulation 
of the Fermi golden rule for transitions of the systems state and it corresponds to the 
usual expressions, cf. formulae (1.21.27a,b) of [2]. 
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3. The weak coupling limit in QED 

As an illustration of our theory we consider the case of quantum electrodynamics. We 
stress however, that the theory encompasses a wide range of physical phenomena. For 
instance, some qualitative new results concerning exciton models in solid state physics, 

such as phonon models or the Frolich [15,16] polaron model, were recently obtained on 
the basis of a natural generalization of the following treatment. The electromagnetic 

field acts as a reservoir for our system (S) which we take to consist of a single electron. 
The electromagnetic field can be derived from the potential A given by 

A(r) = c 1 & {2--& {aL(k)e-ik,r +a,(k)eik.‘} E”(&). 
0=1,2 

(3.1) 

Here we consider two transverse polarizations (u = 1,2) for each mode k. In our notation 

{a’, e2(k),k = ]k]-‘k} f orm a right-handed triad for each k. This ensures that we are 

working with the radiation gauge V . A = 0. The operators at(k) on the reservoir state 
space tin satisfy Bose commutation relations, 

[a,(k), a;,(k’)] = &,,d(k - k’) . (3.2j 

The total Hamiltonian for the system and reservoir is 

H = $-lp - eA12 + G(r) + HR = HS + HR + HI + HII, 

where the unperturbed system Hamiltonian (with potent,ial Q(r)) is 

(3.3) 

HS = &lpi2 + G(r), (3.4) 

HR = c 
s 

d3khclkl aL(k) 
u=1,2 

(3.5) 

HI = --i c /d3k {aL(k)e-“k.r + a,(k)e”k,r} G”(k).p, 
0=1,2 

with 

G”(k) = - 
(2& 

J 

li 
-E”(i() 
2wlkl 

and 

H’I = &]A12. 

If we rescale the electronic charge as e Q Xe, we find that 

H- H~+HR+XH~+X~H’ I. 

(3.6) 
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In the subsequent analysis we drop the term X2H’1 and consider only 

H(X)=~s+~R+~Wr, (3.7) 

It has been established rigorously that this does not affect the final result in the weak 
coupling limit. Now the interaction HI given by (3.6) has response terms described by 

the vectors &j(k) = E,-zk.rGy(&) . p. MI e assume, as usual, that the unpert,urbed 
system Hax~iltoniall Hs has a complete ort,honormal set of eigenstates B. In the case 
of the hydrogen atom, this means that we consider only the bound states and ignore 
the effect of the ionized states. In general, %S can be decor~lposed int,o complen~elltary 
subspa.ces generated by the discrete, the absolutely continuous and the singular parts of 
the spectrum of Hs. It is enough to prepare the systern in the discrete spectrum subspace 
to apply our results. It, is t,he standard approach in atomic physics to study only the 
behaviour of bound states anyway, so we are justified in this restriction. We introduce 
the test-functions 

g&,(k) = ~(~{e-~k.r~l#~)G~(~). 

The interaction HI can be expressed as 

(3.8) 

where g$$/ .= g&,, @g&, E L2(R3) 83 I?(@) = 7-f; and Au are the creation/annihilation 

operators on r~(‘Hk) = @~~(L2(IR)): 

Our choice of ‘,Yk above for one particle of the reservoir space is quite natural; namely, 
it consists of wave-functions in the momentum representation with two transverse polar- 
izations. The stat.e of the reservoir is in our case determined by the covariance operator 
Q which we shall now specify as that of a t,hermal field at inverse temperature ,/5’ > 0, 
that is 

Q : 3-1; c--t 3-1; : hl $ hz - i, ~3 h.2, with i,(k) = q(clkl)&(k) , 

where q(w) = coth F. With W++I = (.E$ - Eg),/Fi E F, we define 

(3.11) 
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with 
j-,(k) = ,d+~rm~)th,(k). 

(3.12) 

In this setup we have allowed for the most general coupling, that is, where all the fun- 

damental frequencies F = {w44! : q5,# E B} are to be considered. This set is always 
degenerate in general: however it is important to consider two classes of degeneracy aris- 

ing. The first is the secular class; these are the situations in which degeneracies always 

arise regardless of the spectrum {E, : 4 E B} of Hs; they are the pairs (4, 4’) and ($. $J’) 

which have w4df = wiyl due to one of the following reasons 

1. ($5 = f$’ = * 1 $J’ ) 

2. 4=$‘1 11)=$‘; (4#$), (3.13) 
3. 4 = 1cI, 4’ = $‘; (4 # 4’). 

Any solution to the equation ~~41 = WQ@I. or equivalently E, - E,I = E, - E*,, not of 
the secular type will be called an extraneous solution. The extraneous solutions are, of 

course, dependent on the spectrum of Hs. It is a standard procedure in physical literature 

to assume that such possibilities do not arise, however this is a requirement on Hs, which 
cannot be satisfied in many important examples. For a particle in a rectangular box, 
apart from the natural degeneracies arising if the ratios of the sides are rational, we also 

have to consider the fact that the contribution to the energy for the mode of vibration n, 

along the ith -axis is proportional to nz. This means solving the Diophantine equations 

for the harmonics 

4 
12 - rnp = n/f - m z . 

For the hydrogen atom we have to consider, apart from the spherical harmonica1 degen- 
eracies, the integer solutions to the Diophantine equations 

1 1 1 1 --_-_--- 
n2 m2 n” m 12 

for the principal atomic numbers. After simple manipulations this leads to the study of 

the intersection of the algebraic projective curve in R4; 

x:x;x; 
2 2 2 

- x2x3x4 - x~x;xj + x:x;x; = 0 

with the lattice of positive integers. 

In the weak coupling limit we obtain the quantum stochastic differential equation 

(“,@‘=to) 

dut = c c {T~L++, @ dB;+(gm4f, t) + T;@, @J dB;(g+c,v, t)} + Ydt lJ, > 
~EF sb,d’EB 1 

where 

y = c c (3.14) 
LJEF @,d’,v,@‘EB 



178 L. ACCARDI, J. GOUGH and Y. G. LU 

with Uo = 1. However, using the fact that TJd,T$$8 = (~,$I)T+,,+, etc., we may write Y 
as 

(W.=W,&#, =w$,lpi) 

Y = c c 
WEF hlji,@EB 

{(~~~~lg~/~)~~)- + (Wl!&&~} TC#li,. (3.15) 

In the summation we consider only 4 and 11, for which there exists a #’ so that ~441 = widl, 
however this is equivalent to demanding that w++ = 0 as we always have the identity 

w$$ = w+v - ~~~/. Therefore, Y is a linear combination of terms Td$ with w++ = 0 and 

this, in particular, implies that Y commutes with Hs. It is natural in light of this to 
write Y as 

where 

(3.16) 

(3.17) 

According to the general rule, the generator of the master equation associated with 
equation (3.14) is determined by the drift term of this equation according to the rule 

dst 
dt = -q&Q) = -(Yst + s,Yf) 

In order to find the general expression for I$$, we return to equation (3.19). Now 

yb+ = c s” 

@EB --OO 

dr { (TQ,~~, S?+ yy4te) + (.qr++v, S?“’ qg~+v)} 

= c J” dr c Jlt3k 

$‘EB --OO (r=1,2 

k t dctkt) - 1 +.q&,,(k)$&(k)eZCI 1 2 

(I But using g4$,(k) = -g$+(--k) we have 

YM = c lo d7 t: 1 d3k& 04$&$4x 
&EB --M a=1,2 

-iclklt q(44 + 1 
2 

+ eaclkjt d4kD - 1 
2 

&,iwg,$t 
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= & c s” dr c 1 d3rC c (die-‘k’rpjI~‘)(d’/eik.rpj/llCI)Gq(k)G::(k) x 
@GE -O” o=l,Z j,j’=1,2,3 

-iclkjt Cl(clkl) + 1 
2 

+ ei,lk,&lkb - 1 
2 

(.$W$‘& 

= & c J” dr c /d31; c {~le~E”e-“k.rpje~WSe’k’rpj,lIj,)G~(k)G,b,(k) 
l#J’EB --OO 0=1,2 j,j’=l,2,3 

x e 
{ 

-iclklt ‘d’dkl) + 1 
2 

+ eic,k,t ‘?(Clkl) - 1 

1 2 . 
(3.19) 

We remark that the effect of the response term is as follows; from the commutation 
relations of r and p we have that 

e-ik.re&Hs,ik.r = ,-ik.r exp 

that is, Hs is replacd by Hs + $$ + q. Now the k dependence in the above 
expression prevents us from using the well-known isotropic identity 

d’&Gg(k)G;,(k) = $+&$r!&. (3.21) 

to calculate g#+ as in the dipole approximation. Note that the Lamb shift and the 
damping coefficients are affected by inclusion of the response terms. 

The complex shift Y+4 = ir, + iE$, giving the linewidth I’, and energy shift E$ for 
a state C$ E B can the be written as 

where the denominators in the above expression are 

D*(k)=HS+- 
lik . p + fi2/ki2 

m 
2m i tLclk/ - E, . (3.23) 

This expression has been derived several times in the zero temperature case, cf. [20], but 
for the nonzero temperature case there seems not to be universal agreement, see e.g. [21]: 
the result coming from the present theory seems to be free from any ambiguity. 

Appendices 

A. The traditional derivation of the master equation 

For sake of comparison we give the standard arguments used in the derivation of 
the master equation. This section follows closely the development of Louise11 [2]. The 
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interaction is taken to be of the form 

231 = 

where D, and Fi act nontrivially on the system and reservoir spaces, respectively. We 

assume that L>; evolves llarrno~~ically in time under the free evolution with frequency wj . 

We assume that at time t = 0 the system and reservoir are uncoupled, that is the density 

operator p(t> at time zero factors as 

p(0) = pi;” @ P(R) * (A.21 

No subscript is required for pcR) as we assume that it is invariant under the free-evolution. 
In particular this is true for the choice of a thermal state ptn) = e-P(Nk--/L)/Tre-,~(H~-~). 
We define the reduced system state at time t in the interaction dynamics to be the density 

operator 

The iterated series expansion of .st, truncated to second order, is 

[d;‘(H,!, [z~~~‘(~~), So @d”‘l] t (A.41 

where we have set X = 1. S~lbstituting in for the potential HI we find 

t 

+ xJlt&I It’ dt2 e-i(wjtlfwkt2) { [DjDkso _ 

0 

- &oDi - soD~Dj](ul,0'(Fi.)~I:)(F3,,R> > 
where (.)B = T~E~[$~).]. Due to the invariance of the 
evolution we have that 

(~~O~(~))~ = (4)R 7 

reservoir fields under the free 
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The approximation procedure is based on the following four steps: 
Step I; One postulates that the contributions coming from the sum of all terms 

higher that second order in t,he iterated series are negligible. 
Step II: One postulates a finite autocorrelation time 7C such that 

{~~*~~~~)~~}~ = 0 = {~j~~~*~~~~))~ 

whenever 17-1 > rC. Thus for t > rC one may replace the upper limit, of the r-integral by 
+m. This gives 

Step IV. One postulates that the formulae deduced under the previous assumptions. 
when t is large with respect to r,, hold also in the limit t --3 0. This gives 

The ~surl~~ti~)~ls leading to the derivation of (A.7) have a decidedly a.d hoc nature. 
especially those introduced in steps III and IV. The replacement for I”, put in by hand. 
in step III is precisely what is needed to allow the limit, to be taken easily. 

It? is instructive to calculate_ explicitly the master equation (A.7) in a particular case. 
We consider as reservoir a free Bose gas at inverse temperatl~re lj and fugacity s = e3p. 
This can be described by t.he quasi-free state VQ, on L”fR”) for example, characterized 
by 
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where 

=coth;(H&p). 

We may take Hi to be for instance -A. 
We may write the interaction HI of (1.5.8) in the form (A.l) with the notations 

HI = ih, c{Dj @J A+(gj) - kc.} = ih c DC,,,) 8 J&I , (A.9) 
j (j>Q) 

where we have a summation also over an index a E (0, 1) with the notations 

D(j,o) = Dj, 

and consequently 

We then have 

Dtj,q = -D;, %,o) = A+(sj)> %,I) = Ah) (A.lO) 

“(j,O) = “j, W(j,l) = -Wj . (AX) 

J 

m 

w;o),(kr) = o d7-e- ‘““(w~“(At(gj))A(gk))R = Jm drPQ(A+(S>gj)A(gk)) 
0 

dr (S,wigj, 
Q-1 w 

ZZ --pk) = (sj19k)Q3:. (A.12a) 

Similarly, using the CCR, we find 

“(sJl),(kO) = o dr e 
II 

iWJT(21~o)(A(gj))A+(glc))R = (&k)T;, (A.12b) 

w&),(jr) = (sjlsk):: > (A.12~) 

W(jI),(~lJ) = MS&; . (A.12d) 

while w’ (jEJ,(j,C,I = 0 if E = E’ as we have (A(f)A(g))R = 0 = (A+(f)A+(g))B. We note 

that (Fc~,~))R = 0 in all cases. 
The master equation then reads 

ds 
(-l)"w3+(-l)a'w~=0 

zo = c 1 [Dj,aDk,a~so - Dk @‘SODj~~w&),(ka’) 

j,k;a,a’ 

- [Dj,asoDlc,a’ - SoDlc,~Y’D3,“]W~u,),o 
> 

wj--wk=o 

= - c 0 Dj&so - Dj$oD,]w&o),(kl) + [D,tDkso - DkSoD$‘&),(kO) 
j,k 

- [DjsoDk - soDkDJt]W(ko) (J1) 
t 

- [DjsoD: - sODkDjlw(l,,),(jO) (A.13) 
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or, writing in our notation (and employing the relabeling in terms of the frequency 
degeneracies as in (1.5.1)), 

But this is exactly %]e = L;i(se), where L;I is given by (2.6.11). 

B. The convergence of the collective processes to the noise processes 

The mathematical theory behind the weak coupling limit developed in [l] and subse- 
quent papers is the following. We estimate the behaviour as X -+ 0 of matrix elements 

of u$ with respect to collective number or coherent vectors, that is vectors of the 

form B$;?‘,2 (f(l)) . . . Bided, ( fn))P~. This involves substituting ut ( HI), as expressed 

in (1.3.2) for example, into the series expansion (1.1.11) for UJfjz and examining each 

of the terms arising. The detailed analysis of [l] shows that each term, upon normal 
ordering, leads to two classes of terms: relevant ones (type I) and negligible ones (type 
II). The type I terms are exactly those put into normal order by commuting time consec- 
utive pairs of reservoir variables, the type II terms account for all others. Following this 
resummation it is shown that the type II terms give vanishing contribution in the limit 
X + 0 while the explicit limit for the type I terms is calculated; uniform convergence is 
established, the main technical device used here is one of various generalizations of the 
Pule inequality [3]. 

The independence of the noise processes for different frequencies follows from the next 
two lemmas. 

LEMMA 1. For each w’, w E F let f: E IL and S,, T,, SW!, T',! E E% then 

s T’,,/X2 

X’.f,du, X S,w.f’,dv 
S’,, /X2 

= &J,d c (x[LT,], x[S~w,T',])L2(R)(fwIf'~)~ 
UEF 

= @wEdX[S,,T,] ‘8 fw)l @w'eF (x[S',,,T',,] @ f’,f). (‘3.11 

Proof: The left hand side of (B.l) can be written as a sum over w, w’ E F of terms 

T, s I 
(T’,, -u)/X2 

Frno du du’(f,, S,W, f’w,)ei(w-w’)u~X* . 
- s w (S’,, -u)/XZ 
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By the RiemannLesbegue Lemma the terms w # w’ vanish while the w = w’ terms 
converge by inspection to 

(X[S,,T,], X[S)Y,T~_])L2(~)(f~lf’iy)U) 0 

LEMMA 2. For n E N let fik) E K,, xi!’ E R, Sik’ < TikJs”), for 1 5 k 5 n and each 

w E F, 

(B.2) 

exists uniformly for the x’s and [S, T] ‘s in a bounded set of JR and is equal to 

(@, ~(@,EF(x~~x~~~~,~~~~ @ f:‘)) . . . ~(tIlw&T)~,~~~,~~~~ @ f;‘)) @$) (B.3) 

For a proof, see [lo]. 

C. The quantum stochastic differential equation for U, 

For convenience we consider only one coupling frequency w so that 

HI E ih, x(Dj @ At (gj)) + 11.~. . (C.1) 

where we have dropped the superscript w from the operators. Also we shall consider only 
the Fock (vacuum) case Q = 1. We define, for $, CJ~ E ~-IS, GA(t) E 7ls by 

($>Gx(t)) = TI- { ]4)($] @ B~~~t(t(f’)l~~)i~~lB~;x!(f)Lr,l:x’,} > cc.3 

where the right hand side inner product is meant on lis 8 rB(L’(& KY))): we know that 

the limit limx_e($, GA(t)) exists and equals 

(II, @ B;‘(f,T)@& U& @ B;‘(f’:T’)@;) . (C.3) 

It is easy to show that this limit has the form ($,! G(t)) where t H G(t) E Es is weakly 
differentiable. In order to obtain a differential equation for G(t) we note, that for fixed 
X one has 
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cc.51 

where we have made the substitution u - t/X2 = v. We see that for bounded D this 
converges as X --) 0 a.e. to 

Cx[S,Tl(flg~)~(D~~,G~(t)). (C.5a) 

Next of all, the term S”X must be reordered as follows 

3x = -; En- { I4)(tiI @ B~jXX’2t(f’)l~~)(~~IB~~~(f) (0; EJ U-$(1 @ A(S;Az))} 

= “a 
‘A +z;. 

In a fashion similar to the calculation of TX, one easily arrives at 

CC.61 

lim z: = - 
X-+0 

c X:o,&Af’MD,th GA(t)) 3 a.e. (C.7) 

TO evaluate the limit of .Fi, we note that from (2.413) 

[(I @ -W,Wlxzgj)) u(‘) 1 ) t/AZ 

=~(t)“b.i*;dr,lft’dti...~~‘-‘~t~[(l~A(S;i,g~)),~~(t~)..~~~(t~)] 

dt, { [(1 @ A(S,Wlxzgj)), Hdtl)lffI(tz) . . HI(L) 
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+Whfl(l c3 A(st/~zgj)~ fJ~ftz) - + - WGdl} . (C-f9 

It can be shown that in the limit X --f 0 only the coInmutator involving Hi contributes. 
Hence 

but this is the same as 

(C.9) 

where we have used a technical lemma (6.3) of fl]_ 
We now have 

= ($,G(O)) + 

(C.10) 

Here we have written (g/f)“- for (g(f)& when Q = 1. 
The quantum stochastic di~~rential equation corresponding to this integral equation 

is 

dUt = c(DJ ~3 dB;+(gj, t) - D] @ dB;(gj, t)) - ~(gj~gk)W-D;Dkdt U, . ((2.11) j j,k 

The generalization to Q > 1 and several coupling frequencies w is now obvious. 
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