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Abstract. Three computers, with local independent choices, genereate
the EPR correlations hence violating Bell’s inequality.

1 Bell’s inequality and its consequences ac-

cording to Bell

Bell’s inequality: Let A,B,C be random variables defined on the same
probability space (Ω,F , P ) and with values in the set {−1, 1}. Denote

〈AB〉 :=

∫
Ω

A(ω)B(ω)P (dω)

the correlations (mean zero can be assumed without loss of generality). Then
the following inequality holds:

|〈AB〉 − 〈CB〉| ≤ 1− 〈AC〉 (1)

Proof. Since the expectation value is linear

|〈AB〉 − 〈CB〉| = |〈AB − CB〉| (2)

Since |〈X〉| ≤ 〈|X|〉 and A,B,C are ±1–valued (2) is

≤ 〈|AB − CB|〉 = 〈|AB| · |1− AC|〉 = 〈|1− AC|〉 = 〈1− AC〉 = 1− 〈AC〉

Corollary (Clauser-Horne-Shimony-Holt (CHSH) inequality): Let
A, B, A′, B′ be random variables defined on the same probability space
(Ω,F , P ) and with values in the set {−1, 1}. Then the following inequal-
ity holds:

|〈AB〉 − 〈A′B〉+ 〈AB′〉+ 〈A′B′〉| ≤ 2 (3)

Proof. Replace C with A′ in (1). Then add to this what we obtain by
replacing again A′ with −A′ and B with B′.

Theorem 1: There cannot exist a stochastic process S
(1)
a , S

(2)
b (a, b ∈ [0, 2π])

defined on a probability space (Ω,F , P ) and with values in the set {±1},
whose correlations are given by:

〈S(1)
a S

(2)
b 〉 = − cos(a− b) ; a, b ∈ [0, 2π] (4)

3



Proof. (4) implies that, for any a ∈ [0, 2π], S
(1)
a = −S(2)

a . Because of (2), if
such a process exists, it should satisfy

|〈S(1)
a S

(2)
b 〉 − 〈S

(1)
c S

(2)
b 〉| − 〈S

(1)
a S(2)

c 〉 ≤ 1 (5)

But, because of (4), with a = 0, b = π/2, c = π/4, the left hand side of (5)
is equal to

√
2.

Physical meaning (Bell [Be64]): “... the statistical predictions of quan-
tum mechanics are incompatible with local predetermination ...”

2 Criticism to Bell’s analysis

Observations:

(i) The contradiction, pointed out by Bell, arises only from his implicit pos-
tulate that 3 statistical correlations, coming from 3 mutually incompat-
ible experiments, can be described within a single classical probabilistic
model.

(ii) This implicit postulate is by no means a consequence of locality and
reality.

Weak point of Bell’s proof. The first step (2) of Bell’s proof:
〈AB〉 − 〈CB〉 = 〈AB − CB〉 reads as∫

Ω

A(ω)B(ω)Pa,b(dω)−
∫

Ω

C(ω)B(ω)Pc,b(dω) =

∫
Ω

(A(ω)B(ω)−C(ω)B(ω))Pa,c,b(dω) .

Thus, Bell’s proof relies on the existence of the triple joint probability Pa,c,b.
While the pair joint probabilities Pa,b, Pc,b, ... are experimentally observable,
there is no reason to postulate that the, experimentally unobservable, triple
joint probabilities Pa,c,b always exist. Indeed, it is well known from classical
probability that there are constraints, i.e. compatibility conditions, which
relate the pair with the triple joint probabilities and which are necessary
conditions for the existence of the latter ones. This fact was first pointed out
in [Ac81a].

It has been claimed that the existence of the triple joint probabilities is
consequence of the “realism” assumption. This is true for “ballot box” (or
Einstein) realism, not for “chemeleon realism”.
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3 “Chameleon (or adaptive) Reality”

Starting point: von Neumann’s measurement theory
The joint evolution of system and apparatus should be taken into account

to analyze measurement processes.
von Neumann’s theory was extended in [Ac93] (cf. also [AcRe00b] [AcRe01a])

to include in it the two basic conditions of locality and causality. To this goal
the notion of “Chameleon reality” was introduced to denote those systems
whose dynamics depends on the observables we want to measure (or the en-
vironment in general). For such systems what you measure is a response to
an interaction. This is opposed to ballot box (or Einstein) reality in which
you measure what was there (independently of the environment).

The law of classical statistics and probability were abstracted having in
mind the “ballot box” reality model. However one can prove that some
simple induction rules (e.g. the “counterfactual argument” cf. [AcRe00b])
which are constantly used in classical statistics and probability, lead to wrong
conclusions when applied to “chameleon reality”. Therefore the statistics
of adaptive systems must be based on different induction rules, hence on
a different probability theory. Quantum probability is one of these non–
Kolmogorovian models. Others are mathematically possible and we expect
that they will find applications to other types of adaptive systems arising,
for example, in medicine, in economics...

Remark 1: Such a dependence, of the dynamical evolution of a system on
the observables we want to measure, is called “chameleon effect”.

Remark 2: The chameleon effect can also be considered within the frame-
work of classical mechanics.

Remark 3: A classical system realizing the chameleon effect can violate
Bell’s inequality while satisfying locality condition.

4 A local classical system violating Bell’s in-

equality

(i) The classical system σ is composed of two sub-systems: σ1 and σ2

(ii) The states of σ1 and σ2 are numbers λ1, λ2 in [0, 2π]; the observables are
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±1–valued functions S̃
(1)
a (λ1), S̃

(2)
b (λ2) of the states (realistic descrip-

tion). Also a, b take values in [0, 2π].

(iii) At time 0 the states (λ1, λ2), of (σ1, σ2), are randomly distributed with
law

ψ0(dλ1, dλ2) = (2π)−1δ(λ1 − λ2)dλ1dλ2 (6)

(iv) The subsystems σ1 and σ2 evolve independently (locality).

(v) Time is discretized and 1 is the instant of simultaneous measurement of
both systems.

(vi) At time 1 two observables, S̃
(1)
a of σ1 and S̃

(2)
b of σ2 are measured and the

result of the measurement is uniquely determined by the state (λ1, λ2)
of the system at time 0 (pre-determination).

(vii) The (Heisenberg) time evolution of the system realizes the chameleon
effect (i.e. depends on the observables we want to measure) and it is
assumed to have the form

P (f ⊗ g)(λ1, λ2) = T ′1,a(λ1)f (T1,a(λ1)) T ′2,b(λ2)g (T2,b(λ2))

where

T ′1,a(λ1) =
√

2π , T ′2,b(λ2) =

√
2π

4

∣∣∣ cos(λ2 − b)
∣∣∣

Notice that the dynamics is deterministic and entirely local: the evolution
of particle 1 (resp. 2) depends only on a (resp. b). It is not an automorphism
because it describes the reduced evolution after averaging over the reservoir
degrees of freedom of the apparatus (cf. Section 3). Notice in addition that
the dual evolution P ∗ (P ∗ψ(F ) := ψ(P (F )) ) applied to the initial proba-
bility measure (6) still gives a probability measure. Thus P is a generalized
Markovian operator (in the sense that P ∗ψ is a probability measure not for
all probability measures ψ, but only for a convex subset So of them, called
the set of admissible initial states). Within this class the interpretation of P
as a reduced evolution is justified. Recently [AcImRe01] it has been proved
that this evolution is indeed obtained by taking partial expectation of an
appropriate automorphic evolution.
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Under these conditions, if the observables are defined by the conditions

S̃(1)
a (T1,a(λ1)) = sgn (cos(λ1 − a)) , S̃

(2)
b (T2,b(λ2)) = −sgn (cos(λ2 − b))

then their correlations

〈S(1)
a S

(2)
b 〉 :=

∫ ∫
P
(
S̃(1)
a ⊗ S̃

(2)
b

)
(λ1, λ2) ψ0(dλ1, dλ2) = (7)

=

∫ 2π

0

dλ

2π
S̃(1)
a (T1,a(λ1))T ′1,a(λ)S̃

(2)
b (T2,b(λ2))T ′2,b(λ)

satisfy condition (4) hence they violate Bell’s inequality. The Schrödinger
represenatation of the correlations (7) is

〈S(1)
a S

(2)
b 〉 :=

∫ ∫
S̃(1)
a ⊗ S̃

(2)
b (λ1, λ2) P ∗ (ψ0) (dλ1, dλ2) =

=

∫ ∫
S̃(1)
a (µ1)S̃

(2)
b (µ2)δ(T−1

1,aµ1 − T−1
2,b µ2)

dµ1dµ2

2π
(8)

which, since P ∗(ψ0) is easily seen to be a probability measure, shows that
our model indeed produces standard correlations of ±1–valued observables.

Notice that, in terms of S
(j)
x (λ) := S̃

(j)
x (Tj,x(λ)) (j = 1, 2, x = a, b) and

Pa,b(dλ) := T ′1,a(λ)T ′2,b(λ)dλ/2π, (7) reads as an average over an observable-
dependent probability measure:

〈S(1)
a S

(2)
b 〉 =

∫ 2π

0

S(1)
a (λ)S

(2)
b (λ)Pa,b(dλ)

The measure Pa,b(dλ), which arises from integration of the δ–function, is
a global object, however the factorization of its density T ′1,a(λ)T ′2,b(λ) reflects
the local action of the environment and allows local simulation.

In summary: we have proved that the correlations (6), of our dynamical
system, are equal to (5) and we use (5) for the local simulation.

Further details on this model can be found in [AcRe01a], [AcRe00b].

Description of the experiment:
The experiment uses three computers, A, B and C, which can be situ-

ated in different towns and exchange data via internet. Due to the identity
between the right hand side of (7) and the right hand side of (6), we use the
form (6) of the integral, which is simpler to implement in the computer. It
consists of the following steps:
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(1) Computer C generates a random number λ ∈ [0, 2π] and it is sent to
computers A and B.

(2) Computer A choses a value a ∈ [0, 2π] and evaluates T ′1,a(λ)S̃
(1)
a (T1,a(λ))

from the λ-value generated by Computer C. The value is sent back to
Computer C.

(3) Computer B choses a value b ∈ [0, 2π] and evaluates T ′2,b(λ)S̃
(2)
b (T2,b(λ))

from the λ-value generated by Computer C. The value is sent back to
Computer C.

(4) Based on the data sent back from Computers A and B, the correlation

〈S(1)
a S

(2)
b 〉 is calculated following (5) and the violation of Bell’s inequal-

ity is checked.
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