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The principle of detailed balance is at the basis of equilibrium physics and is equivalent to the
Kubo-Martin-Schwinger (KMS) condition (under quite general assumptions). In the present paper
we prove that a large class of open quantum systems satisfies a dynamical generalization of the de-
tailed balance condition (dynamical detailed balance) expressing the fact that all the micro-currents,
associated to the Bohr frequencies are constant. The usual (equilibrium) detailed balance condition
is characterized by the property that this constant is identically zero. From this we deduce a simple
and experimentally measurable relation expressing the microcurrent associated to a transition be-
tween two levels ǫm → ǫn as a linear combination of the occupation probabilities of the two levels,
with coefficients given by the generalized susceptivities (transport coefficients). Finally, using a
master equation characterization of the dynamical detailed balance condition, we show that this
condition is equivalent to a ”local” generalization of the usual KMS condition.

PACS numbers: 05.60.Gg, 05.30.-d,03.65.Yz,

I. INTRODUCTION

To understand non-equilibrium phenomena is one of the most important challenges of modern physics. The mono-
graphs [1–3] summarize the early developments in this direction and, after them, several endeavors were made by
many authors to construct a satisfactory description of non-equilibrium phenomena from the stand point of micro-
scopic physics (cf. e.g. [4–10]). As pointed out by many authors (see for example [10]), the most crucial difficulty
of the problem is that we lack a good characterization of non-equilibrium states whereas we have criteria for the
equilibrium case: detailed balance, the KMS condition, stability and so on. In the present paper, starting from some
physically interesting situations we deduce a general characterization of a class of stationary states which satisfy a
condition (dynamical detailed balance) generalizing the usual detailed balance and KMS conditions. For this purpose,
we apply the stochastic limit technique [11–15] to some concrete and widely studied models and show that this leads
to a natural generalization of both the detailed balance and the KMS conditions which characterizes a rather wide
and interesting class of non-equilibrium stationary states.
The first basic idea of the present paper can be described as follows. The most commonly used states in quantum

field theory are the Fock (vacuum) or Gibbs (equilibrium) states. When a field in such a state interacts with a
discrete system (e.g. an atom) in the stochastic limit one obtains a master equation for the system whose stationary
state is the ground state of the atom, if the field was originally in the Fock state; while it is the Gibbs state of
the system at inverse temperature β, if the field was originally in its equilibrium state at inverse temperature β.
The systematic development of the theory of stochastic limit (see below and [11, 12]), has revealed that the above
described phenomenon is quite universal namely: for a large class of states (including many concrete examples which
are neither Fock nor equilibrium) the stochastic limit procedure allows to deduce master equations whose associated
Markov semigroups drive the system to a stationary state ρ∞ in the sense that, independently of the initial state ρ0 ,
one has

lim
t→+∞

P t∗ρ0 = ρ∞

(P t∗ is the Markov semigroup acting on density matrices). This fact suggests to give a dynamical characterization of
ground (or equilibrium) states of the system (atom) in terms of their response to an interaction with the environment
(field) in the stochastic limit regime. This extends to the non-equilibrium regime the approach of [16, 17]. In fact,
from the above considerations it is natural to expect that the analysis of the stationary states of master equations
associated via stochastic limit to non equilibrium states of the environment, will lead to a new class of states, of
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discrete quantum systems, which should play for non-equilibrium phenomena, a role analogue to that played by Gibbs
states for equilibrium phenomena. In the present paper, we prove that this is indeed the case.
The second basic idea of the present paper is to exploit the main advantage of stochastic limit with respect to the

old Markovian approximation namely: the field degrees of freedom are not traced away, but they survive in the limit
as ”quantum noise” (or master field). In particular, as shown in [14, 15], the slow degrees of freedom of the field
(e.g. the functions of the free energy of the field) survive in the stochastic limit. This allows us to define the energy
currents in a natural way and to study their dynamics, thus going far beyond the Markov approximation where one
only obtains the master equation for system observables and looses any control on the limits of field observables.
We will illustrate our ideas with two models: one is very well studied in the literature and consists of a system

interacting with two equilibrium thermal reservoirs at different temperatures. The master equation approach to this
model was discussed in [4]. As already mentioned, this technique cannot be applied to the problem studied in the
present paper, i.e. the dynamical study of the currents associated to the field because the field degrees of freedom are
traced away from the beginning. The second class of models is more general (see Sec.VI), because the field, with which
the system interacts is not in a usual equilibrium state, but in a new class of states in which, roughly speaking, each
frequency is at local equilibrium at its own (frequency dependent) temperature. Although states of this type have been
considered in studies of molecular kinetics, we do not know if these states have been experimentally realized. However
their structure, characterized by local equilibrium at energy dependent temperatures, is a natural modification of the
usual equilibrium states (see Sec. VII below) and we are confident that the inventiveness of experimentalists is rich
enough to allow their realization.
We briefly describe the general scheme of the stochastic limit technique for Hamiltonians of the form

H(λ) = H0 + λHI (1)

where λ is a real parameter, H0 is the free Hamiltonian and HI is the interaction Hamiltonian (see the concrete
example in the next section). The general idea of the stochastic limit approach [11, 12] is to introduce the time
rescaling

t→ t/λ2 (2)

in the solution

U
(λ)
t = eitH0e−itH

(λ)

(3)

of the Schrödinger equation in interaction picture associated to the Hamiltonian H(λ), i.e.

d

dt
U
(λ)
t = −iλHI(t)U (λ)t , HI(t) = eitH0HIe−itH0 . (4)

The rescaling (2) gives the rescaled equation

d

dt
U
(λ)
t/λ2 = −

i

λ
HI(t/λ

2)U
(λ)
t/λ2 (5)

and the limit λ → 0 (which is equivalent to λ → 0 and t → ∞ under the condition that λ2t tends to a constant)
captures the dominating contributions to the dynamics, which, under appropriate assumptions on the model [12] is
shown to converge to the solution of

d

dt
Ut = −ihtUt, ht = lim

λ→0

1

λ
HI(t/λ

2) , U(0) = 1 (6)

Similarly one obtains the limit of the Heisenberg evolution

lim
λ→0
X
(λ)
t := limU

(λ)
t/λ2

†
XU

(λ)
t/λ2 = U

†
tXUt (7)

where Ut is the solution of (6) and X is an observable belonging to a certain class (slow observables, cf. Sec.III below
and [12]).
The main result of this theory is that the time rescaling induces a rescaling

ak −→
1

λ
e−i

t

λ2
(ω(k)−Ω)ak (8)
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of the quantum field, defining the Hamiltonian (1), which in the present paper will be assumed to be a scalar boson
field: ([ak, ak′ ] = δ(k − k′)) (the meaning of ω(k) and Ω will be described in next chapter) and, in the limit λ → 0,
the rescaled field becomes a quantum white noise (or master field) bΩ(t, k) satisfying the commutation relations

[bΩ(t, k), b
†
Ω′(t

′, k′)] = δΩ,Ω′2πδ(t− t′)δ(k − k′)δ(ω(k) −Ω). (9)

Moreover, if the initial state of the field is a mean zero gauge invariant Gaussian state ρf (0) with correlations:

〈a†kak′〉 = N(k)δ(k − k′) (10)

then the state of the limit white noise will be of the same type with correlations

〈b†Ω(t, k)bΩ′(t′, k′)〉 = δΩ,Ω′2πδ(t − t′)δ(k − k′)δ(ω(k) − Ω)N(k) (11a)

〈bΩ(t, k)b†Ω′(t′, k′)〉 = δΩ,Ω′2πδ(t− t′)δ(k − k′)δ(ω(k) −Ω)(N(k) + 1). (11b)

It is now well understood that this scheme plays an important role in the analysis of the limit (7) when X is a
system operator. In Sec.III, we describe a new development of the stochastic limit which allows to extend this scheme
to a class of observables describing the slow degrees of freedom of the field.
The remaining part of this paper is arranged as follows: In Sec. II we consider a model which drives the system to

a non-equilibrium stationary state. It describes a quantum system put between two reservoirs at different tempera-
tures. By analysis of the reduced density matrix with stochastic limit, we show that this system has non-equilibrium
stationary state which doesn’t satisfy the detailed balance condition. In Sec.III, we apply the stochastic limit to the
slow degrees of freedom of the field. This allows to define the currents associated to these degrees of freedom and to
discuss their properties. In terms of these currents, we define the dynamical detailed balance condition which is a
generalization of the usual detailed balance condition. In addition, we show that in the linear approximation these
currents satisfy the Onsager reciprocal relations [18]. In Sec.IV, we investigate a master equation characterization of
this dynamical detailed balance condition, which corresponds to the well-known fact that the usual detailed balance
condition is characterized by the master equation which drives the state to equilibrium [16, 17]. Then in the next
section, we introduce the local KMS condition and prove that it is equivalent to the dynamical detailed balance
condition for the state. In addition, we consider another model in which the system interacts with an environment
whose state is non-equilibrium and satisfies the local KMS condition. We show that such states of the environment
drive the system to a non-equilibrium state satisfying the local KMS condition with a non linear temperature function
which is uniquely determined by the state of the field. Finally in Sec.VII, we summarize the contents of this paper
and discuss related topics.

II. DEDUCTION OF THE STOCHASTIC SCHRÖDINGER, LANGEVIN AND MASTER EQUATION

In this section, we consider a model in which the system is driven to a non-equilibrium stationary state by its
interaction with two non-equilibrium boson fields. This interaction is described by the Hamiltonian

H = H0 + λ
∑

j=1,2

HIj , (λ is a coupling constant.) (12a)

H0 = HS +HB, HS =
∑

l

ǫl|ǫl〉〈ǫl|, HB =
∑

j

∫

ωj(k)a
†
j,kaj,k [aj,k, a

†
j′,k′] = δjj′δ(k − k′), (12b)

HIj =

∫

dk
(

gj(k)Dja
†
j,k + g

∗
j (k)D

†
jaj,k

)

(12c)

where Dj and D
†
j are operators on the system space, aj,k and a

†
j,k are the annihilation and creation operators of the

j-th field (j=1,2) and gj(k) is a form factor.

The initial state of each field is a Gibbs state at temperature β−1j and chemical potential µj with respect to the free

Hamiltonian (throughout the present paper we assume ωj(k) − µj > 0 for all k as usual), i.e. the mean zero gauge
invariant Gaussian state with correlations:

〈a†j,kaj′,k′〉 = δjj′N(k; βj, µj)δ(k − k′), N(k; βj , µj) =
1

eβj(ωj(k)−µj) − 1 (13)
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The Schrödinger equation in the interaction picture is

d

dt
U
(λ)
t = −iλHI(t)U (λ)t , U

(λ)
t = eitH0e−itH (14)

where

HI(t) =
∑

j=1,2

eitH0HIje
−itH0

=
∑

j=1,2

∑

ω∈F

∑

lm

∫

dk
(

gj:lm(k)Eω(lm)a
†
j,ke

+i(ωi(k)−ω)t + g∗j:lm(k)E
†
ω(lm)aj,ke

−i(ωi(k)−ω)t
)

(15a)

gj:lm(k) = gj(k)〈ǫl|D|ǫm〉, Eω(lm) =
∑

ǫr∈Fω

〈ǫr − ω|ǫl〉〈ǫm|ǫr〉|ǫr − ω〉〈ǫr|, (15b)

F = {ω = ǫr − ǫr′ ; ǫr, ǫr′ ∈ Spec.(HS)}, Fω = {ǫr′ ∈ Spec.(HS); ǫr′ − ω ∈ Spec.HS} (15c)

In the following, for simplicity, we assume that HS is generic, i.e.
1) the spectrum Space HS is not degenerate
2) For any ω |Fω| = 1, i.e. there exist a unique pair of energy levels ǫl, ǫm ∈ Spec.(HS) such that ω = ǫm − ǫl
In such case, (15a) becomes

HI(t) =
∑

j=1,2

∑

ω∈F

∫

dk
(

gj:ω(k)Eωa
†
j,ke

+i(ωi(k)−ω)t + g∗j:ω(k)E
†
ωaj,ke

−i(ωi(k)−ω)t
)

(16a)

where

gj:ω(k) = gj(k)〈ǫl|Dj|ǫm〉, Eω = |ǫl〉〈ǫm|, for ǫl, ǫm s.t. ǫm − ǫl = ω. (16b)

Giving an Hamiltonian such as (12) the stochastic limit technique proceeds in four steps:

1. Write the associated white noise Hamiltonian (WNH) equation (17).

2. The causally normally ordered form of the WNH equation gives the Stochastic Schrödinger (SS) equation (19).

3. From the SS one deduces the Langevin equation (e.g. (21) and (31)).

4. Partial trace of the Langevin gives the master equation (e.g. (22)).

In the following, we shall describe the results of these steps for our models and we refer to [12] for a detailed description
of the steps necessary to achieve these results.
Applying stochastic limit as explained in Sec. I, we obtain the white noise Hamiltonian equation

d

dt
Ut = −i

∑

j=1,2

∑

ω∈F

(

Eωb
†
t:j,ω + E

†
ωbt:j,ω

)

Ut (17a)

where

bt:j,ω =

∫

dk g∗j:ω(k)bt:j,ω(k), bt:j,ω(k) = lim
λ→0

1

λ
e−i(ωj(k)−ω)t/λ

2

aj,k. (17b)

Notice that the state of the limit white noise will be of the same type as (13) but with correlations

〈b†t:j,ω(k)bt′:j′,ω′(k′)〉 = δjj′δωω′2πδ(t− t′)δ(k − k′)δ(ωj(k) − ω)N(k; βj , µj) (18a)

〈bt:j,ω(k)b†t′:j′,ω′(k′)〉 = δjj′δωω′2πδ(t− t′)δ(k − k′)δ(ωj(k) − ω) (N(k; βj, µj) + 1) . (18b)

The SS equation associated to the WNH equation (17) is

dUt = −i
∑

j=1,2

(

EωdB
†
t:j,ω +E

†
ωdBt:j,ω − i

(

γ−,j,ωEωE
†
ω + γ

∗
+,j,ωE

†
ωEω

)

dt
)

Ut. (19a)
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where

dBt:j,ω =

∫ t+dt

t

bτ:j,ωdτ, dB
†
t:j,ω =

∫ t+dt

t

b†τ:j,ωdτ (19b)

are stochastic differentials and satisfy the Ito table

dBt:j,ωdB
†
t:j′,ω′ = 2δjj′δωω′Reγ−,j,ωdt, dB

†
t:j,ωdBt:j′,ω′ = 2δjj′δωω′Reγ+,j,ωdt (19c)

dtdBt:j,ω = dBt:j,ωdBt:j′,ω′ = dB
†
t:j,ωdB

†
t:j′,ω′ = dtdB

†
t:j,ω = 0. (19d)

The main physical information is contained in the generalized susceptivities (or transport coefficients):

γ−,j,ω =

∫

dk|gj,ω(k)|2
−i(N(k; βj , µj) + 1)
ω − ωj(k) − i0

= π

∫

dk |gj,ω(k)|2
eβi(ωj(k)−µj)

eβj(ωj(k)−µj) − 1δ(ωj(k) − ω) − iP.P
∫

dk
|gj,ω(k)|2
ωj(k)− ω

eβi(ωj(k)−µj)

eβj(ωj(k)−µj) − 1 (20a)

γ+,j,ω =

∫

dk|gj,ω(k)|2
−iN(k; βj , µj)
ω − ωj(k)− i0

= π

∫

dk |gj,ω(k)|2
1

eβj(ωj(k)−µj) − 1δ(ωj(k) − ω) − iP.P
∫

dk
|gj,ω(k)|2
ωj(k)− ω

1

eβj(ωj(k)−µj) − 1 . (20b)

For an operator X of the system space HS , from the SS equation (19), one obtains the Langevin equation

d
(

U †tXUt

)

=
∑

j=1,2

∑

ω∈F

[

i
(

U †t [Eω, X]UtdB
†
t,j,ω + U

†
t [E

†
ω, X]UtdBt,j,ω

−Imγ−,j,ωU †t [EωE†ω, X]Ut dt+ Imγ+,j,ωU †t [E†ωEω, X]Ut dt
)

−U †t
(

Reγ−,j,ω
(

{EωE†ω, X} − 2EωXE†ω
)

+Reγ+,j,ω
(

{E†ωEω, X} − 2E†ωXEω
))

Ut dt
]

. (21)

The Langevin equation with the state for some operators of the field degrees of freedom will be discussed in the
following section (see (31)). Taking the partial expectation value of both sides of this Langevin equation with the
state (13), the master equation for the reduced density matrix is obtained:

d

dt
ρS(t) = −i[∆, ρS(t)]

−
∑

ω∈F

Γ−,ω

(

1

2

{

E†ωEω, ρS(t)
}

−EωρS(t)E†ω
)

−
∑

ω∈F

Γ+,ω

(

1

2

{

EωE
†
ω, ρS(t)

}

−E†ωρS(t)Eω
)

(22a)

∆ = i
∑

ω∈F

∑

j=1,2

(

Im(γ−,jω)E
†
ωEω − Im(γ+,jω)EωE†ω

)

(22b)

Γ∓,ω = 2Re
∑

j=1,2

γ∓,j,ω ≥ 0, (Γ∓,ω = 0 for ω ≤ 0). (22c)

The generator of (22a) has the standard GKSL form [19]. For the off-diagonal matrix elements ρmn(t) = 〈ǫm|ρS(t)|ǫn〉
(m 6= n) we obtain

d

dt
ρmn(t) = (i∆mn −Gmn) ρmn(t) (23a)

∆mn =
∑

l

(θ−,ǫm−ǫl − θ−,ǫn−ǫl − θ+,ǫl−ǫm + θ+,ǫl−ǫn) , θ∓,ω = Imγ∓,j,ω (23b)

Gmn =
∑

l

(Γml + Γnl) > 0, where Γml =

{

Γ−,ǫm−ǫl for ǫm > ǫl
Γ+,ǫl−ǫm for ǫm < ǫl

(23c)
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which shows that these elements vanish at t→ ∞ whenever Gmn 6= 0, (∀ m, n).
The diagonal matrix elements ρmm(t) describe a classical birth and death process characterized by the equation

d

dt
ρmm(t) = −

∑

l

((Γ−,ǫm−ǫl +Γ+,ǫl−ǫm)ρmm(t) − (Γ−,ǫl−ǫm +Γ+,ǫm−ǫl)ρll(t))

= −
∑

l

(Γml ρmm(t)− Γlm ρll(t)) (24a)

= −
∑

l

Amlρll, Aml =

{ ∑

l Γml for l = m
−Γlm for l 6= m (24b)

Γml
Γlm

=
Re
∑

j=1,2 γ−,j,ǫm−ǫl

Re
∑

j=1,2 γ+,j,ǫm−ǫl
(for ǫm > ǫl), or

Γml
Γlm

=
Re
∑

j=1,2 γ+,j,ǫl−ǫm

Re
∑

j=1,2 γ−,j,ǫl−ǫm
(for ǫl > ǫm). (24c)

Notice that this quotient is universal in the sense that it does not depend on gj whenever in the interaction (12)
form factors gi do not depend on j (gj = g). When the matrix A has a non-trivial eigenvector associated to the 0
eigenvalue, a stationary state exists. In addition, the convergence to the stationary state from any initial state ρS(0) is
guaranteed under quite general conditions (cf. [13]). Notice, that the stationary solution of (22) satisfies the detailed
balanced condition, i.e.

ρmm
ρll
=
Γlm
Γml
, (25)

if and only if the coefficients Γml satisfy

Γml
Γlm

=
Γmk
Γkm

Γkl
Γlk
, ∀ m, l, k (26)

In the non-equilibrium case (26) is not satisfied. With this model given by (12) and (13), (26) is satisfied only in
some special cases (for example when both fields have the same temperature and chemical potential, or the system
has only one Bohr frequency).
In general, the stationary state of the master equation (22) can be described by the nonlinear temperature function

βS(ǫm) =
−1
ǫm
logρmm > 0 (27)

as

ρS =
e−βS(HS)HS

Z
, Z = trS

(

e−βS(HS)HS
)

. (28)

The state is Gibbs state the function βS(HS) becomes constant. This fact actually leads to the idea that a rather wide
class of non-equilibrium stationary states can be treated with such generalized temperature functions. This notion is
valid not only for the system but also for the state of the field. Indeed, in the Sec.VI below, we will consider another
model in which the system is driven to a non-equilibrium stationary state by an interaction with a non-equilibrium
field described by a generalized temperature function.

III. MICROSCOPIC CURRENTS AND DYNAMICAL DETAILED BALANCE

In the previous section, we have investigated the dynamics of a system interacting with fields in a non-equilibrium
situation and we have already remarked some important difference from the equilibrium case. However one can see a
more direct and crucial difference through the study of the dynamics of the field degrees of freedom.

A. Slow degrees of freedom and micro-current

In order to investigate the dynamics of the field, it is important to notice that some operators of the field degrees
of freedom, i.e. the slow degrees, survive even after stochastic limit. As we explained in the introduction, the rescaled
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field operators ak and a
†
k become white noise operators denoted by bω(t, k) and b

†
ω(t, k) whose commutation relation

is given by (9). Due to this fact we can intuitively say that the fast degrees of the field become noise (singular) in the
stochastic limit. However we can describe the time evolution of some of operators of the field in terms of the rescaled
time even after stochastic limit, and this approach gives us meaningful information on the original dynamics as well
as on the system operator. Since the stochastic limit is an asymptotic theory, mathematically we have to prove the
convergence of the dynamics and this has been done elsewhere [12]. In the present paper, we apply the theory to the
number operator in the model and discuss its physical meaning.

Let us sketch how to compute the time evolution of the number operator nk = a
†
kak under the white noise equation

d

dt
Ut = −i

∑

ω∈F

(

Eωb
†
t +E

†
ωbt

)

Ut. (29)

We will illustrate the calculation only in the simplest (Fock) case. The more general states (10) can be reduced
to a linear combination of two independent Fock representations (cf. [12] section 2.18). The key formula to apply

stochastic limit to the number operator of the field nk = a
†
kak is

[bω(t, k), nk′] = bω(t, k)δ(k − k′). (30)

The Heisenberg evolution of nk, after the stochastic limit is described by the Langevin equation

d

dt

(

U †t nkUt

)

= i
∑

ω∈F

U †t [Eωb
†
t,ω +E

†
ωbt,ω, nk]Ut

= −i
∑

ω∈F

(

U †t
(

Eωb
†
ω(t, k)− E†ωbω(t, k)

)

Ut

)

= −i
∑

ω∈F

(

b†ω(t, k)U
†
tEωUt − U †t EωUtbω(t, k) + [U †t , b†ω(t, k)]EωUt − U †t E†ω[bω(t, k), Ut]

)

= −i
∑

ω∈F

(

b†ω(t, k)U
†
tEωUt − U †t EωUtbω(t, k)

+i
(

γω(k)U
†
t E
†
ωEωUt + γω(k)U

†
t E
†
ωEωUt

))

δ(ω(k) − ω) (31)

where in the Fock case

γω(k) = π|gω(k)|2. (32)

Taking partial trace 〈 · 〉 over the initial state of the system and noise we obtain the evolution equation of the mean
number of quanta

d

dt
〈U †t nkUt〉 = 2

∑

ω∈F

γω(k)〈U †t E†ωEωUt〉δ(ω(k) − ω). (33)

This can be expressed in terms of the time evolution (under the master equation (22)) of the reduced density matrix
ρS(t), i.e.

d

dt
〈U †t nkUt〉 = 2

∑

ω∈F

δ(ω(k)− ω)γω(k)trS
(

E†ωEωρS(t)
)

= 2
∑

ǫm>ǫn

δ(ω(k) − (ǫm − ǫn))trS
(

γω(k)|ǫm〉〈ǫm|ρS(t)
)

(34)

In the case of a general initial state described by (10), the computation is similar, and one get

d

dt
〈U †t nkUt〉 = 2

∑

ω∈F

δ(ω(k) − ω)trS
((

γ−,ω(k)E
†
ωEω − γ+,ω(k)EωE†ω

)

ρS(t)
)

= 2
∑

ǫm>ǫn

δ(ω(k) − (ǫm − ǫn))trS
((

γ−,ǫm−ǫn(k)|ǫm〉〈ǫm| − γ+,ǫm−ǫn(k)|ǫn〉〈ǫn|
)

ρS(t)
)

(35a)
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where now instead of γω(k) given by (32) one has:

γ−,ω(k) = γω(k)(N(k) + 1), γ+.ω(k) = γω(k)N(k). (35b)

As the consequence of (34), once we obtain the time evolution of ρS(t) by solving the master equation discussed in
the previous section, we find the time evolution of the number operator of field degrees of freedom.
In order to apply (34) to the model discussed in the previous section, we can consider the number operator for each

field. Defining nj,k = a
†
j,kaj,k, we obtain

d

dt
〈U †t nj,kUt〉 = 2

∑

ω∈F

δ(ωj(k) − ω)trS
((

γ−,ω,j(k)E
†
ωEω − γ+,ω,j(k)EωE†ω

)

ρS(t)
)

= 2
∑

ǫm>ǫn

δ(ωj(k) − (ǫm − ǫn))trS
((

γ−,ǫm−ǫn,j(k)|ǫm〉〈ǫm| − γ+,ǫm−ǫn,j|ǫn〉〈ǫn|
)

ρS(t)
)

= 2
∑

ǫm>ǫn

δ(ωj(k) − (ǫm − ǫn))
(

γ−,ǫm−ǫn,j(k)ρmm(t)− γ+,ǫm−ǫn,jρnn(t)
)

(36a)

where

γ−,ω,j(k) = π|gj,ω(k)|2 (N(k; βj, µj) + 1), γ+,ω,j(k) = π|gj,ω(k)|2 N(k; βj, µj). (36b)

This time dependence of the slow of degrees of freedom of the field is due to the interaction with the system and is
a direct evidence of the existence of a family of currents passing through the system: one for each proper frequency
ω = εm− εn > 0. To investigate these currents, let us define, for each ǫm > ǫn, the region Ωmn in k-space, resonating
with the frequency ωmn := εm − εn which includes all kmn such that

ω(kmn) − (ǫm − ǫn) = 0. (37)

Then define the microscopic number current, associated to the frequency ωmn by:

Jj,mn(t) : =
d

dt

(

∫

Ωmn

dk 〈U †t nj,kUt〉
)

= 2 (Reγ−,j,ǫm−ǫn ρmm(t)− Reγ+,j,ǫm−ǫn ρnn(t)) ,
Jj,mn : = 2 (Reγ−,j,ǫm−ǫn ρmm − Reγ+,j,ǫm−ǫn ρnn) , (in stationary state of the system)

= 2γj,mn ρmm
e(ǫm−ǫn−µj)βj

e(ǫm−ǫn−µj)βj − 1

(

1− e−(ǫm−ǫn−µj)βj ρnn
ρmm

)

(38a)

and similarly the microscopic energy current

JEj,mn(t) : =
d

dt

(

∫

Ωmn

dk ωj(k)〈U †t nj,kUt〉
)

= 2 (ǫm − ǫn) (Reγ−,j,ǫm−ǫn ρmm(t)− Reγ+,j,ǫm−ǫn ρnn(t))
JEj,mn : = 2 (ǫm − ǫn) (Reγ−,j,ǫm−ǫn ρmm − Reγ+,j,ǫm−ǫn ρnn) , (in stationary state of the system)

= 2(ǫm − ǫn)γj,mn ρmm
e(ǫm−ǫn−µj)βj

e(ǫm−ǫn−µj)βj − 1

(

1− e−(ǫm−ǫn−µj)βj ρnn
ρmm

)

(38b)

where

γj,mn = π

∫

k∈Ωmn

dk |gj,ǫm−ǫn(k)|δ(ωj(k) − (ǫm − ǫn)). (38c)

The term microscopic here refers to the fact that we define one current for each atomic frequency. We see, from (38)
that in the stationary state for the system

ρS(t) = ρS

we have a constant flow of quanta from the field to the system.
The sum, over all m and n, of our micro-currents gives two macro-currents which coincide with those defined by

H. Spohn and J. L. Lebowitz in terms of the master equation [4]. In fact, as seen in (38), these currents can be
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represented with the matrix elements of the reduced density matrix and the generators of master equation like they
defined (cf. also the formulas (41) and (42) bellow). However the micro-currents are essential to define dynamical
detailed balance and the fact that we started from the dynamics of the fields and deduced them gives a physical
interpretation to these currents.
Moreover our approach shows that in fact a much stronger condition is satisfied namely: for each Bohr frequency

ω ∈ F the mean micro-current relative to the frequency ω = εm−εn is constant. This means that, for each ω ∈ F , the
flow of quanta from the modes of the field resonating with the frequency ω (in the sense of condition (37)) is constant.
Thus the current of quanta in the field is split into a family of independent microscopic currents, one for each Bohr
frequency ω. In the stationary state each of these microscopic currents is constant: we shall call this fact dynamical
detailed balance. This condition gives a simple and experimentally measurable relation expressing the microcurrent
associated to a transition between two levels ǫm → ǫn as a linear combination of the occupation probabilities of the
two levels, with coefficients given by the generalized susceptivities (transport coefficients).
The usual (equilibrium) detailed balance condition is the particular case of the dynamical one corresponding to the

case in which all the microscopic currents are zero. In fact in this case equation (38) is reduced to

ρnn
ρmm

=
tr
(

|n〉〈n|ρS
)

tr
(

|m〉〈m|ρS
) = eβj(ǫm−ǫn−µj), ∀j = 1, 2

for any kmn satisfying condition (37). From this, by standard arguments, it follows that there exists a constant β > 0
such that

β1 = β2 = β, ρmm =
e−βǫm

Zβ
; Zβ =

∑

m

e−βǫm

so that ρS is the Gibbs distribution.
In the general case the dynamical detailed balance condition is

2 (Reγ−,ǫm−ǫn,j ρmm − Reγ+,ǫm−ǫn,j ρnn) = Jj,mn (39)

This gives, for m > 0

2Reγ−,ǫm−ǫ0,j ρmm = 2Reγ+,ǫm−ǫ0,j ρ00 + Jj,m0

or

ρmm =
Reγ+,ǫm−ǫ0,j
Reγ−,ǫm−ǫ0,j

ρ00 +
Jj,m0

2Reγ−,ǫm−ǫ0,j

Replacing this into (39) we find

2Reγ−,ǫm−ǫn,j

[

Reγ+,ǫm−ǫ0,j
Reγ−,ǫm−ǫ0,j

ρ00 +
Jj,m0

2Reγ−,ǫm−ǫ0,j

]

= 2Reγ+,ǫm−ǫn,j

[

Reγ+,ǫn−ǫ0,j
Reγ−,ǫn−ǫ0,j

ρ00 +
Jj,n0

2Reγ−,ǫn−ǫ0,j

]

+ Jj,mn

or equivalently

Jj,mn = 2

[

Reγ−,ǫm−ǫn,jReγ+,ǫm−ǫ0,j
Reγ−,ǫm−ǫ0,j

− Reγ+,ǫm−ǫn,jReγ+,ǫn−ǫ0,j
Reγ−,ǫn−ǫ0,j

]

ρ00

+
Reγ−,ǫm−ǫn,j
Reγ−,ǫm−ǫ0,j

Jj,m0 −
Reγ+,ǫm−ǫn,j
Reγ−,ǫn−ǫ0,j

Jj,n0 (40)

which shows that, under the dynamical detailed balance condition, the intensities of the microscopic currents are
uniquely determined by the single sequence Jj,m0.
The following identities make the physical meaning of the currents Jj,mn(t) and J

E
j,mn(t) clear:

Jm(t) : =
∑

j=1,2

(

∑

n<m

Jj,mn(t) −
∑

n>m

Jj,nm(t)

)

= − d
dt
tr
(

|ǫm〉〈ǫm|ρS(t)
)

(41)
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is the difference between the quanta emitted from and absorbed by the level ǫm.

∑

m

JEm(t) : =
∑

m

∑

j=1,2

(

∑

n<m

JEj,mn(t) −
∑

n>m

JEj,nm(t)

)

= − d
dt
tr
(

HSρS(t)
)

(42)

expresses the fact that the variation of energy of the system is exactly balanced.
On the other hand, the behavior of each microscopic current Jj,mn doesn’t always follow a naive intuition. For

example, even in the symmetric configuration of interaction (g1(k) = g2(k) = g(k) and µ1 = µ2), there are cases when
some micro currents flow backward (i.e. from the low to the high temperature reservoir), however it is impossible
that all micro currents flow backward. A sufficient condition that the total energy current

J
(E)
1 =

∑

m

(

∑

n<m

JE1,mn −
∑

n>m

JE1,nm

)

= −J (E)2 (43)

is positive when the reservoir 1 is at lower temperature than 2 is that

ρmm
ρnn

< 1, ∀m > n, (44)

i.e. that there is no inversely populated state. In addition, if all J1,mn and J2,mn have opposite sign, the following
strong relation (Gibbs domination bound) holds:

e−(ǫm−ǫn−µ1)β1 ≤ ρmm
ρnn

≤ e−(ǫm−ǫn−µ2)β2 , ǫm > ǫn. (45)

However

J
(E)
1,mn = −J

(E)
2,mn (46)

is not true when the stationary state of the system does not satisfy the detailed balance condition (See (24), (25) and
(26)). In fact

J1,mn + J2,mn =
∑

j=1,2

Jj,mn

= 2
∑

j=1,2

(Reγ−,j,ǫm−ǫn ρmm − Reγ+,j,ǫm−ǫn ρnn)

= Γmnρmm − Γnmρnn 6= 0, (47a)

JE1,mn + J
E
2,mn 6= 0. (47b)

In other words, these stationary current can satisfy (46) if and only if the stationary state of the system satisfies
the detailed balance condition. When the stationary state can be described with detailed balance condition, the
generalized temperature defined by (28) becomes constant which can be interpreted as the local temperature of the
system in between two fields. Thus this condition gives a characterization of those non-equilibrium stationary states
which are local equilibrium stationary states with current. We show an important example of such state in the
following, however apart from few trivial cases, to satisfy the detailed balance condition strictly is impossible in this
model as explained in the previous section. We consider the case where the detailed balance condition is satisfied
approximately, i.e. the linear transport regime.

B. Linear approximation, local equilibrium and Onsager relation

Here we show that the stationary current defined by (38) is consistent with well-known non-equilibrium physics
in linear regime. First we assume that the form factors in the interactions are the same for the two fields (g1(k) =
g2(k) := g(k)). This implies that the stationary solution is symmetric with respect to the indices 1 and 2. Now
consider a small variation of these parameters

β0 =
β1 + β2
2
, δβ = β1 − β2, and µ0 =

µ1 + µ2
2

, δµ = µ2 − µ1 (48)
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and the first order expansion of the stationary solution in δβ and δµ. This gives

ρmm����� β1 = β0 + δβ
2
, µ1 = µ0 −

δµ
2

β2 = β0 −
δβ
2
, µ2 = µ0 +

δµ
2

=
(

1 + δβ
2
∂
∂β1
− δβ
2
∂
∂β2
− δµ
2
∂
∂µ1
+ δµ
2
∂
∂µ2

)

ρmm����� β1 = β0, µ1 = µ0β2 = β0, µ2 = µ0

+higher order corrections

(49)

Using the symmetry (in 1, 2) of ρmm at δβ = δµ = 0:

∂ρmm
∂β1

����� β1 = β0, µ1 = µ0β2 = β0, µ2 = µ0

=
∂ρmm
∂β2

����� β1 = β0, µ1 = µ0β2 = β0, µ2 = µ0

,
∂ρmm
∂µ1

����� β1 = β0, µ1 = µ0β2 = β0, µ2 = µ0

=
∂ρmm
∂µ2

����� β1 = β0, µ1 = µ0β2 = β0, µ2 = µ0

(50)

all the cross terms in (49) cancel and we obtain

ρmm����� β1 = β0 + δβ
2
, µ1 = µ0 −

δµ
2

β2 = β0 −
δβ
2
, µ2 = µ0 +

δµ
2

= ρmm����� β1 = β0, µ1 = µ0β2 = β0, µ2 = µ0

+ (corrections of order ≥ 2). (51)

Therefore as far as we consider J
(E)
j,mn up to the first order in δβ and δµ (linear transport regime) we can replace ρmm

in the definition (38) into

ρ̃mm = ρmm
����� β1 = β0, µ1 = µ0β2 = β0, µ2 = µ0

(52)

Using

Reγ−,1,ǫm−ǫn − Reγ−,2,ǫm−ǫn = γmn
(

δβ
∂

∂β0
− δµ ∂

∂µ0

)

e(ǫm−ǫn−µ0)β0

e(ǫm−ǫn−µ0)β0 − 1 + higher order correction (53a)

Reγ+,1,ǫm−ǫn −Reγ+,2,ǫm−ǫn = γmn
(

δβ
∂

∂β0
− δµ ∂

∂µ0

)

1

e(ǫm−ǫn−µ0)β0 − 1 + higher order correction (53b)

γmn = π

∫

k∈Ωmn

dk |g0,ǫm−ǫn(k)|2δ(ω(k)− (ǫm − ǫn)) (53c)

we get (we denote the approximate currents J̃
(E)
j,mn)

J̃2→1,mn :=
1

2

(

J̃1,mn − J̃2,mn
)

= γmn

(

ρ̃mm

(

δβ
∂

∂β0
− δµ ∂

∂µ0

)

e(ǫm−ǫn−µ0)β0

e(ǫm−ǫn−µ0)β0 − 1 − ρ̃nn
(

δβ
∂

∂β0
− δµ ∂

∂µ0

)

1

e(ǫm−ǫn−µ0)β0 − 1

)

=
γmn

Z̃

[

ρ̃mm

(

δβ

β0
(ǫm − ǫn − µ0) − δµ

)

∂

∂(ǫm − ǫn)
e(ǫm−ǫn−µ0)β0

e(ǫm−ǫn−µ0)β0 − 1

−ρ̃nn
(

δβ

β0
(ǫm − ǫn − µ0)− δµ

)

∂

∂(ǫm − ǫn)
1

e(ǫm−ǫn−µ0)β0 − 1

]

(54)

JE2→1,mn = (ǫm − ǫn)J2→1,mn (55)

In addition, if ǫm ≫ µ0 ≫ δµ, by the equilibrium approximation

ρ̃mm =
1

Z̃
e−β0ǫm , Z̃ =

∑

m

e−β0ǫm , (56a)

one can see

J̃
(E)
2→1,mn = J̃

(E)
1,mn = −J̃

(E)
2,mn 6= 0, (56b)

which hold the condition (46).
From this it is clear that, for the system S (say atom), the non-equilibrium effects appear as first order effects in

the currents (56b), but only as second order terms in the state. This suggests a theoretical explanation of both the
empirical success and the limitations of Kubo linear response theory.
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Let us show a relation [18] between the two currents J̃1→2,mn and J̃
Q
1→2,mn = J̃

E
1→2,mn − µ0J̃1→2,mn, which is the

analogue of the famous Onsager relation between the electric and heat currents in the conductivity problem. It is
only an analogy because the carrier of our currents is a Boson particle and not Fermion (electron). From (54),

[

J̃1→2,mn
J̃Q1→2,mn

]

=

[

Γmn Lmn
Lmn Mmn

] [

δµ0
δβ
β0

]

(57a)

where

Γmn = −γmn
(

ρ̃mm
∂

∂(ǫm − ǫn)
e(ǫm−ǫn−µ0)β0

e(ǫm−ǫn−µ0)β0 − 1 − ρ̃nn
∂

∂(ǫm − ǫn)
1

e(ǫm−ǫn−µ0)β0 − 1

)

=
γmnβ0e

(ǫm−ǫn−µ0)β0

(e(ǫm−ǫn−µ0)β0 − 1)2 (ρ̃mm − ρ̃nn) (< 0 when (44) holds.) (57b)

Lmn = −(ǫm − ǫn − µ0)Γmn, Mmn = −(ǫm − ǫn + µ0)2Γmn (57c)

or we obtain explicitly

∂J̃1→2,mn

∂
(

δβ
β0

) =
∂J̃Q1→2,mn
∂δµ

= Lmn , (58)

which is the Onsager reciprocal relation.
One can easily see that these currents produce positive entropy. Following [1], the entropy production with these

currents is given as

σ : = β0

(

J̃1→2,mn(−δµ) + J̃Q1→2,mn
δβ

β0

)

= β0

(

−Γmnδµ2 − 2Lmnδµ
δβ

β0
+Mmn

(

δβ

β0

)2
)

, (59)

and as far as (44) holds, since L2mn + ΓmnMmn = 0, δS is positive for any (δµ, δβ) except for

δµ = δβ = 0, δµ = (ǫm − ǫn − µ0)
δβ

β0
(60)

which imply J̃
(E)
1→2,mn = 0.

As is well known, Onsager reciprocal relation is understood as a consequence of microscopic symmetry of the
dynamics, based on the following two assumptions [18]: (i) There exists an intermediate time scale between macro
and micro dynamics. (ii) Average of spontaneous thermal fluctuation of the microscopic observable decaying is
described by macroscopic transport theory. Notice that both the above assumptions were deduced in our model from
the stochastic limit. (i) corresponds to the fact that the convergence to the stationary state of the system is described
in the rescaled time scale. This time scale is exactly the time scale used in assumption (i). Moreover what the
stochastic limit tells us is that the dynamics of the currents (or the transport coefficients) are given in terms of the
time correlations of the original field in the initial state. This is nothing but the situation described by assumption
(ii). In the context of derivation of the Onsager relation between heat and electric currents by linear response theory,
since there is no Hamiltonian which can describe the force generating a heat current whereas chemical potential can
be treated always dynamically, (ii) has to be required as assumption[20]. In the present paper, both temperature and
chemical potential are treated as parameters of the environment fields in the framework of the quantum mechanics
for a open system. Moreover one should notice that the current is described directly in terms of the dynamics of
the fields. It is also important to notice that the equilibrium state approximation (56) is not necessary to derive
the Onsager relation (58). Usually, Onsager relation is derived assuming a symmetric property of the microscopic
dynamics [18]. However as is discussed in the next section, this symmetric property is equivalent to the requirement
that the state is equilibrium (see below (71)). Our results prove that the Onsager reciprocal relation (58) can be
valid without any symmetry of the dynamics. Gabrielli, Jona-Lasinio and Landim illustrated such a possibility using
a classical, solvable and phenomenological model [21].
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IV. MASTER EQUATION CHARACTERIZATION OF DYNAMICAL DETAILED BALANCE

In the equilibrium case, it is well known that the detailed balance condition can be characterized by a generator of
the master equation of the system interacting with the environment [16, 17]. Given the dynamical semigroup which
drives the state to an equilibrium state

d

dt
ρt = L∗ρt, ρt → ρeq , (61)

where

tr (XL∗(ρt)) = tr (ρtL(X)) . (62)

The detailed balance condition or KMS condition for ρeq is characterized by the following equations [17]:

tr
(

ρeqL+(A)B
)

:= tr (ρeqAL(B)) for all A,B (63a)

L(X) −L+(X) = 2i[H,X] (H = H†) for all X (63b)

In this section, we prove a generalization of the above characterization to non-equilibrium stationary states in terms
of the dynamical detailed balance condition defined in the previous section.
We consider the forward and the backward Heisenberg evolution of a system operator X, i.e. (cf. [12] Chap I,

section 1.1.29)

j
(F )
t (X) := U

†
tXUt for t > 0, j

(B)
t (X) := U−tXU

†
−t for t < 0 (64)

where Ut is the time evolution operator in interaction picture. After stochastic limit and in the notations (17), (23),
these lead to the master equations for observables

d

dt
〈j(F )t (X)〉 = i[∆, 〈j(F )t 〉]

−
∑

ω∈F

(

Γω−

(

1

2
{E†ωEω, 〈j

(F )
t (X)〉} − E†ω〈j

(F )
t (X)〉Eω

)

+Γω+

(

1

2
{EωE†ω, 〈j

(F )
t (X)〉} −Eω〈j

(F )
t (X)〉E†ω

))

=: L(〈j(F )t (X)〉), for t ≥ 0 (65a)

d

dt
〈j(B)t (X)〉 = i[∆, 〈j(B)t 〉]

+
∑

ω∈F

(

Γω−

(

1

2
{E†ωEω, 〈j

(B)
t (X)〉} −E†ω〈j

(B)
t (X)〉Eω

)

+Γω+

(

1

2
{EωE†ω, 〈j

(B)
t (X)〉} − Eω〈j

(B)
t (X)〉E†ω

))

=: −LB(〈j(B)t (X)〉), for t ≤ 0. (65b)

where 〈·〉 denotes partial trace of the field degrees of freedom. Through (62), the dual master equation (22) (for
density matrices) is written as

d

dt
ρS(t) = L∗ρS(t), t ≥ 0. (66)

Similarly, we introduce a master equation associated to LB as

d

dt
ρ
(B)
S (t) = −L∗Bρ

(B)
S (t), t ≤ 0. (67)

Both master equations have the same stationary state ρS (see (23) and (24)).
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As easily seen from (65), with ∆ = ∆† given by (23) one has

L(X) − LB(X) = 2i[∆, X]. (68a)

By direct computation we obtain the deviation from the symmetry condition tr(ρSxL(y)) = tr(ρSLB(x)y) which
characterizes equilibrium:

tr (ρSXL(Y )) − tr (ρSLB(X)Y ) =
∑

lm

XllYmm (ρll(Γ−,ǫl−ǫm + Γ+,ǫm−ǫl) − ρmm(Γ−,ǫm−ǫl + Γ+,ǫl−ǫm))

=
∑

lm

XllYmmθ(ǫl − ǫm)(J1,lm + J2,lm)− θ(ǫm − ǫl)(J1,ml + J2,ml) (68b)

where

Xll = 〈ǫl|X|ǫl〉, Ymm = 〈ǫm|Y |ǫm〉, ρll = 〈ǫl|ρS |ǫl〉. (68c)

Choosing

X = |ǫa〉〈ǫa| =: Pa, Y = |ǫb〉〈ǫb| =: Pb, (69)

(68b) becomes

tr (ρSPaL(Pb)) − tr (ρSLB(Pa)Pb) = θ(ǫa − ǫb)(J1,ab + J2,ab)− θ(ǫb − ǫa)(J1,ba + J2,ba). (70)

The left hand side describes the balance between two processes: transition from |ǫa〉 to |ǫb〉 and its converse in
stationary state ρS . Thus (68) (or (70)) is a characterization of the dynamical detailed balance condition discussed
the previous section. Remember usual detailed balance condition is characterized by (63) which is the case when the
right hand side of (68b) is identically zero.
Notice that ρS is an equilibrium state when J1,mn + J2,mn = 0. Let us remark again that as far as linear ap-

proximation is concerned, J̃1,mn = J̃2,mn = 0 is not necessary to realize an equilibrium state ρ̃eq (the equilibrium
approximation (56)) which follows the condition (63) up to the first order (see Sec.III B). In this case,

tr (ρ̃eqXL(Y ))− tr (ρ̃eqLB(X)Y ) = tr (ρ̃eqXL(Y )) − tr (ρ̃eqL(X)Y )
= 0 (71)

and it is exactly the symmetry of microscopic dynamics assumed in the original derivation of Onsager law[18].

V. LOCAL KMS CONDITION

The KMS condition is known to be a characterization of equilibrium states equivalent to the detailed balance
condition. In this section, we prove that a generalization of the KMS condition which characterizes the state described
with the dynamical detailed balance condition.
First, we introduce a generalization of the KMS condition which distinguishes between those general density matrices

which commutes with a given discrete Hamiltonian and those which are function of the given Hamiltonian. This
condition, which we call local KMS condition in the sense of energy space, can describe states with mode-dependent
temperatures
Given a discrete spectrum Hamiltonian HS:

HS =
∑

ǫ

ǫPǫ , Pǫ = |ǫ〉〈ǫ| , HS|ǫ〉 = ǫ|ǫ〉 (72)

For any complex valued Borel function f : R→ C the map x 7→ eitf(HS)xe−itf(HS) is defined by the spectral theorem
and one has

x(t) := eitf(HS)xe−itf(HS) =
∑

ǫ,ǫ′

eit(f(ǫ)−f(ǫ
′))PǫxPǫ′ =

∑

δ∈Bf

eitδEfδ (x) (73a)

where

Bf := {f(ǫ) − f(ǫ′); ∀ǫ, ǫ′} , Efδ (x) :=
∑

ǫ,ǫ′ : f(ǫ)−f(ǫ′)=δ

PǫxPǫ′ . (73b)

For such Hamiltonian HS the following theorem holds:
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Theorem 1. For a density matrix ρ and the corresponding state 〈〈 · 〉〉 the following are equivalent:
(i) There exists a real valued Borel function β : R→ R such that exp−β(HS)HS is trace class and

ρ =
1

Z
e−β(HS)HS (74a)

(ii) There exists a real valued Borel function β : R → R such that exp−β(HS)HS is trace class and ρ satisfies the
following local KMS condition with respect to the Heisenberg dynamics x 7→ eitHSxe−itHS :

∀x, y, t, 〈〈xy(t + iβ(HS))〉〉 = 〈〈y(t)x〉〉 (74b)

where the meaning of y(t + iβ(HS)) is given by (73a).

Proof.
(74a) ⇒ (74b).

〈〈xy(t + iβ(HS))〉 = tr
(

ρxe−β(HS)HS y(t)e+β(HS )HS
)

=
1

Z
tr
(

xe−β(HS)HSy(t)
)

= tr (y(t)xρ) = 〈〈y(t)x〉〉 (75)

(74b) ⇒ (74a).
(74b) means that for all x, y and for all t

tr
(

e−β(HS )HSy(t)e+β(HS )HSρx
)

= tr (ρy(t)x) (76)

Therefore for all y and for all t

e−β(HS)HS y(t)e+β(HS )HSρ = ρy(t) (77)

or equivalently, putting t = 0 and replacing y by ye−β(HS )HS

e−β(HS)HS yρ = ρeβ(HS )HSy (78)

hence, putting y = 1

eβ(HS)HSρ = ρeβ(HS )HS (79)

(78),(79) imply that, for all y

yeβ(HS )HSρ = eβ(HS )HSρy (80)

and this implies that, for some scalar λ

eβ(HS)HSρ = λ1 (81)

Since tr(ρ) = 1, (81) implies that

ρ =
1

Z
e−β(HS )HS . (82)

(Q.E.D)
Notice that when β(HS) = β (constant), the state (74a) is the Gibbs state at temperature β

−1 and (74b) becomes
the KMS condition.
We shall prove that this local KMS condition (74) is equivalent to the dynamical detailed balance condition (68).

To avoid infinite-valued functions, we assume that all the ρll are strictly positive and we represent the stationary
solution ρS of (66) and (67) in the form

ρS =
1

Z
e−βS(HS)HS , βS(ǫl) = −

1

ǫl
log ρll . (83)

For such state the following theorem holds:

Theorem 2. The dynamical detailed balance condition (68) holds if and only if the local KMS condition (74) is
satisfied.
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Proof. (74) ⇒ (68).
Appling the local KMS-condition (74) to this state, we get

〈〈AB〉〉 = 〈〈B(−iβS (HS))A〉〉, (84)

In addition in the notations (17), (23) and using relations

∆(−iβS(HS)) = ∆ (85a)

Eǫm−ǫn(−iβS(HS)) = eβS(ǫn)ǫn−βS(ǫm)ǫmEǫm−ǫn , E†ǫm−ǫn(−iβS(HS)) = e
βS(ǫm)ǫm−βS(ǫn)ǫnE†ǫm−ǫn , (85b)

we obtain

〈〈X[∆, Y ]〉〉 = 〈〈X∆Y −∆(−iβS(HS))XY 〉〉
= 〈〈X∆Y −∆XY 〉〉
= 〈〈[X,∆]Y 〉〉 (86a)

〈〈X{E†ǫm−ǫnEǫm−ǫn , Y }〉〉 = 〈〈XE
†
ǫm−ǫnEǫm−ǫnY +XY E

†
ǫm−ǫnEǫm−ǫn〉〉

= 〈〈XE†ǫm−ǫnEǫm−ǫnY + E
†
ǫm−ǫn(−iβS(HS))Eǫm−ǫn(−iβS (HS))XY 〉〉

= 〈〈XE†ǫm−ǫnEǫm−ǫnY + E
†
ǫm−ǫn

Eǫm−ǫnXY 〉〉
= 〈〈{X,E†ǫm−ǫnEǫm−ǫn}Y 〉〉 (86b)

〈〈XE†ǫm−ǫnY Eǫm−ǫn〉〉 = eβS(ǫn)ǫn−βS(ǫm)ǫm〈〈Eǫm−ǫnXE
†
ǫm−ǫnY 〉〉 (86c)

〈〈XEǫm−ǫnY E†ǫm−ǫn〉〉 = eβS(ǫm)ǫm−βS(ǫn)ǫn〈〈E
†
ǫm−ǫnXEǫm−ǫnY 〉〉. (86d)

Now let us define L+G by the relation:
〈〈L+G(X)Y 〉〉 := 〈〈XL(Y )〉〉 (87)

for L given by (65a). Notice that we are defining L+G not only in equilibrium state but also in the non-equilibrium
stationary state which is described with the local KMS condition (74), unlike (63a). Using relation (86), we find
(ω = ǫm − ǫn)

L+G(X) = −i[∆, X]−
∑

ω∈F

(

Γ−,ω

(

1

2
{E†ωEω, X} −E†ωXEω

)

+ Γ+,ω

(

1

2
{EωE†ω, X} − EωXE†ω

))

+
∑

ω∈F

(

(Γ+,ωe
βS (ǫm)ǫm−βS(ǫn)ǫn − Γ−,ω)E†ωXEω + (Γ−,ωeβS(ǫn)ǫn−βS(ǫm)ǫm − Γ+,ω)EωXE†ω

)

= LB(X) +
∑

ω∈F

Π̂ω(X) (88a)

Π̂ω(X) = (Γ+,ωe
βS(ǫm)ǫm−βS(ǫn)ǫn − Γ−,ω)E†ωXEω + (Γ−,ωeβS(ǫn)ǫn−βS(ǫm)ǫm − Γ+,ω)EωXE†ω (88b)

(87) and (88) mean

〈〈XL(Y )〉〉 = 〈〈LB(X)Y 〉〉+
∑

ω∈F

〈〈Π̂ω(X)Y 〉〉 (89)

and

∑

ω∈F

〈〈Π̂ω(X)Y 〉〉 =
∑

ω∈F

tr

(

e−βS(HS)HS

Z

(

(Γ+,ωe
βS(ǫm)ǫm−βS(ǫn)ǫn − Γ−,ω)E†ωXEω

+(Γ−,ωe
βS(ǫn)ǫn−βS(ǫm)ǫm − Γ+,ω)EωXE†ω

)

Y
)

=
∑

ǫm,ǫn

(XnnYmm (Γ+,ǫm−ǫnρnn − Γ−,ǫm−ǫnρmm)

+XmmYnn (Γ−,ǫm−ǫnρmm − Γ+,ǫm−ǫnρnn))
=

∑

ǫm,ǫn

XnnYmm (Γ+,ǫm−ǫnρnn − Γ−,ǫm−ǫnρmm + Γ−,ǫn−ǫmρnn − Γ+,ǫn−ǫmρmm)

=
∑

ǫm,ǫn

XnnYmmθ(ǫn − ǫm)(J1,nm + J2,nm) − θ(ǫm − ǫn)(J1,mn + J2,mn) (90)
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(89) and (90) is exactly the dynamical detailed balance condition (68).
(68) ⇒ (74).
Following (84)∼(90) conversely, we see that the dynamical detailed balance condition (68) implies

tr (ρSXL(Y )) = tr
(

ρSe
βS(HS)HSL(Y )e−βS(HS)HSX

)

, ∀ X, Y. (91)

For off diagonal type operator

ỹ =
∑

m6=n

Cmn|ǫm〉〈ǫn|

there exists Y such that

L(Y ) = ỹ (92)

and putting ỹ = eitHSye−itHS (y is also off diagonal type) we get

tr
(

ρSXe
itHSye−itHS

)

= tr
(

ρSe
βS(HS)HSeitHSye−itHSe−βS(HS)HSX

)

, ∀ X.

or

tr (ρSXy(t)) = tr (ρSy(t + iβS(HS))X) , ∀ X. (93)

In addition, since ρst is diagonal, (93) is always satisfied with any diagonal type operator y =
∑

mCmm|ǫm〉〈ǫm| also.
Therefore, (93) is always satisfied with any operator X and y.
(Q.E.D)
Notice that since

L+G(1) =
∑

ω

Π̂ω(1) 6= 0

in the non-equilibrium case, L+G cannot be a generator of any dynamical semigroup whereas LB always exists as
generator of dynamical semigroup. This is also one of the particular properties of the non-equilibrium state. In an
equilibrium case, as we have seen βS(x) become a constant β which is the same inverse temperature of the environment

fields, and the equality Γ+,ω/Γ−,ω = e
−β·(ǫm−ǫn)holds, i.e. Π̂ω(X) = 0 which implies LB = L+G.

VI. INTERACTION WITH NON-EQUILIBRIUM FIELD

In the previous sections, we considered the non-equilibrium stationary states of a system driven by two environments
at two different temperatures and we discussed several characterizations of such states. In this section, applying these
characterizations to the state of the environment, we consider a system interacting with an environment in local
equilibrium. (On the local KMS condition for the field degrees of freedom, see the next section.) One will see not only
that the stationary state of the system driven by such non-equilibrium environment can be characterized as for the
previous model, but also that interesting non-linear effects due to the interaction with non-equilibrium environment
exist whose physical meaning is different from the previous model.
We consider a system interacting with a single boson field whose state is described by a generalized temperature

function. Technically, the analysis of the model can be done in the same way as the previous one. Instead of (12) but
similarly, the Hamiltonian

H = H0 + λHI , (λ is a coupling constant.) (94a)

H0 = HS +HB, HS =
∑

l

ǫl|ǫl〉〈ǫl|, HB =
∫

ω(k)a†kak [ak, a
†
k′] = δ(k − k′), (94b)

HI =

∫

dk
(

g(k)Da†k + g
∗(k)D†ak

)

. (94c)



18

On the other hand, we assume that the initial state of the field is a mean zero gauge invariant Gaussian state with
correlations:

〈a†kak′〉 = N(k)δ(k − k′), N(k) =
1

eβ(ω(k))ω(k) − 1 (95)

where β(ω(k)) is some positive function. This is a natural generalization of the Gibbs factor to which it reduces when
β(ω) is constant:

β(ω) = β. (96)

Exactly in the same way as in the previous argument, one can derive the white noise Hamiltonian equation

d

dt
Ut = −i

∑

ω∈F

(

Eωb
†
t:ω + E

†
ωbt:ω

)

Ut (97)

where

bt:ω =

∫

dk g∗ω(k)bt:ω(k), bt:ω(k) = lim
λ→0

1

λ
e−i(ωj(k)−ω)t/λ

2

ak. (98)

The state of the limit white nose will be of the same type with correlations

〈b†t:ω(k)bt′:ω′ (k′)〉 = δωω′2πδ(t − t′)δ(k − k′)δ(ω(k) − ω)N(k) (99a)

〈bt:ω(k)b†t′:ω′ (k′)〉 = δωω′2πδ(t − t′)δ(k − k′)δ(ω(k) − ω) (N(k) + 1) . (99b)

Finally we obtain the master equation (22) but with different parameters

∆ = i
∑

ω∈F

(

Im(γ−ω)E
†
ωEω − Im(γ+ω)EωE†ω

)

(100a)

Γ∓,ω = 2Re γ∓,ω ≥ 0, (Γ∓,ω = 0 for ω ≤ 0). (100b)

where

γ−,ω =

∫

dk|gω(k)|2
−i(N(k) + 1)
ω − ω(k)− i0

= π

∫

dk |gω(k)|2
eβ(ω(k))ω(k)

eβ(ω(k)ω(k)) − 1δ(ω(k) − ω)− iP.P
∫

dk
|gω(k)|2
ω(k) − ω

eβ(ω(k))ω(k)

eβ(ω(k))ω(k) − 1 (100c)

γ+,ω =

∫

dk|gω(k)|2
−iN(k)

ω − ω(k)− i0

= π

∫

dk |gω(k)|2
1

eβ(ω(k))ω(k) − 1δ(ω(k) − ω)− iP.P
∫

dk
|gω(k)|2
ω(k) − ω

1

eβ(ω(k))ω(k) − 1 . (100d)

As in the previous model, the off-diagonal elements vanish when Gmn 6= 0, (∀ m, n) which is defined in (23c). In
order to see if the stationary state can violate the detailed balance condition or not, let us check condition (26). With
direct computation we find

Γml
Γlm

= e+β(ǫm−ǫl)(ǫm−ǫl) for ǫm > ǫl (101a)

Γml
Γlm

= e−β(ǫl−ǫm)(ǫl−ǫm) for ǫm < ǫl (101b)

Let us remark this fraction does not depend on the structure function g(k) unlike the previous model, however it can
violate condition (26) due to the generalized temperature function β(ω), i.e.

Γml
Γlm

6= Γmk
Γkm

Γkl
Γlk

(102)
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except for the constant temperature case (96).
Let us show a typical example of non-equilibrium effects due to the generalized temperature function. To realize the

stationary state with non-detailed balance condition at least, two Bohr frequencies (three level system) are necessary.
With a generic 3–level system, whose energy levels are given by ǫ1 < ǫ2 < ǫ3 and ǫ3 − ǫ2 6= ǫ2 − ǫ1: the concrete form
of the matrix A in (24) is written as

A =





Γ+,ǫ2−ǫ1 +Γ+,ǫ3−ǫ1 −Γ−,ǫ2−ǫ1 −Γ−,ǫ3−ǫ1
−Γ+,ǫ2−ǫ1 Γ−,ǫ2−ǫ1 + Γ+,ǫ3−ǫ1 −Γ−,ǫ3−ǫ2
−Γ+,ǫ3−ǫ1 −Γ+,ǫ3−ǫ2 Γ−,ǫ2−ǫ1 + Γ−,ǫ3−ǫ2



 (103)

and one can directly see that its eigenvalues are

λ = 0,
b±
√
b2 − 4c
2

> 0, (104a)

b = Γ+,ǫ2−ǫ1 + Γ+,ǫ3−ǫ1 + Γ+,ǫ3−ǫ2 + Γ−,ǫ2−ǫ1 +Γ−,ǫ3−ǫ1 + Γ−,ǫ3−ǫ2 (104b)

c = Γ+,ǫ2−ǫ1Γ+,ǫ3−ǫ2 + Γ+,ǫ2−ǫ1Γ−,ǫ3−ǫ1 + Γ+,ǫ2−ǫ1Γ−,ǫ3−ǫ2 + Γ+,ǫ3−ǫ1Γ−,ǫ2−ǫ1 + Γ+,ǫ3−ǫ1Γ+,ǫ3−ǫ2
+Γ+,ǫ3−ǫ1Γ−,ǫ3−ǫ2 + Γ−,ǫ2−ǫ1Γ−,ǫ3−ǫ1 +Γ−,ǫ2−ǫ1Γ−,ǫ3−ǫ2 + Γ+,ǫ3−ǫ2Γ−,ǫ3−ǫ1 (104c)

and the stationary state

ρ11 =
1

1 +X + Y
; ρ22 =

X

1 +X + Y
; ρ33 =

Y

1 +X + Y
(105a)

where

ρ22
ρ11

=
Γ−,ǫ3−ǫ1Γ+,ǫ2−ǫ1 + Γ−,ǫ3−ǫ2Γ+,ǫ2−ǫ1 + Γ+,ǫ3−ǫ1Γ−,ǫ3−ǫ2
Γ−,ǫ3−ǫ1Γ−,ǫ2−ǫ1 + Γ−,ǫ3−ǫ1Γ+,ǫ3−ǫ2 + Γ−,ǫ3−ǫ2Γ−,ǫ2−ǫ1

=: X (105b)

ρ33
ρ11

=
Γ+,ǫ3−ǫ1Γ−,ǫ2−ǫ1 +Γ+,ǫ3−ǫ2Γ+,ǫ2−ǫ1 + Γ+,ǫ3−ǫ1Γ+,ǫ3−ǫ2
Γ−,ǫ3−ǫ2Γ−,ǫ2−ǫ1 + Γ−,ǫ3−ǫ1Γ−,ǫ2−ǫ1 + Γ−,ǫ3−ǫ1Γ+,ǫ3−ǫ2

=: Y (105c)

ρ33
ρ22

=
Γ+,ǫ3−ǫ2Γ+,ǫ2−ǫ1 +Γ+,ǫ3−ǫ1Γ−,ǫ2−ǫ1 +Γ+,ǫ3−ǫ2Γ+,ǫ3−ǫ1
Γ−,ǫ3−ǫ1Γ+,ǫ2−ǫ1 +Γ−,ǫ3−ǫ2Γ+,ǫ2−ǫ1 +Γ+,ǫ3−ǫ1Γ−,ǫ3−ǫ2

=: Z. (105d)

When (26) is not satisfied, the above solution does not satisfy the detailed balance condition. Notice that in this case
the detailed balance condition is equivalent to

δ := β(ǫ2 − ǫ1)(ǫ2 − ǫ1) − β(ǫ3 − ǫ1)(ǫ3 − ǫ1) + β(ǫ3 − ǫ2)(ǫ3 − ǫ2) = 0. (106)

Let us remark that the physics of this model can be different from the previous model. For example, taking 〈ǫ1|D|ǫ2〉 =
0 (so as Γ±,ǫ2−ǫ1 = 0) for simplicity, the above quotients become

ρ22
ρ11
=
Γ+,ǫ3−ǫ1Γ−,ǫ3−ǫ2
Γ−,ǫ3−ǫ1Γ+,ǫ3−ǫ2

= eβ(ǫ3−ǫ2)(ǫ3−ǫ2)e−β(ǫ3−ǫ1)(ǫ3−ǫ1) := X (107a)

ρ33
ρ11
=
Γ+,ǫ3−ǫ1
Γ−,ǫ3−ǫ1

= e−β(ǫ3−ǫ1)(ǫ3−ǫ1) < 1,
ρ33
ρ22
=
Γ+,ǫ3−ǫ2
Γ−,ǫ3−ǫ2

= e−β(ǫ3−ǫ2)(ǫ3−ǫ2) < 1 (107b)

and X is larger than 1 when

β(ǫ3 − ǫ2) >
ǫ2 − ǫ1
ǫ3 − ǫ2

β(ǫ3 − ǫ1) (108)

Thus, for such temperature function β(x) the stationary state satisfies ρ22 > ρ11 which means that 2 is a so-called
inversely populated state.
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Here, we focus on the current passing through the stationary state and discuss the non-linear effects. For simplicity,
we discuss the case of a three level system. In this case (ǫ1 < ǫ2 < ǫ3), with direct computation we obtain

Jmn : =

∫

Ωmn

dk〈U †t nkUt〉

= (−1)m+n+1 eβ(ǫ2−ǫ1)(ǫ2−ǫ1)−β(ǫ3−ǫ1)(ǫ3−ǫ1)+β(ǫ3−ǫ2)(ǫ3−ǫ2) − 1
(eβ(ǫ2−ǫ1)(ǫ2−ǫ1) − 1)(eβ(ǫ3−ǫ2)(ǫ3−ǫ2) − 1)(1− e−β(ǫ3−ǫ1)(ǫ3−ǫ1))I (109a)

JEmn : =

∫

Ωmn

dkω(k)〈U †t nkUt〉 = (ǫm − ǫn)Jmn (109b)

I = |〈ǫ1|D|ǫ2〉|2
∫

k∈Ω21

dk |g(k)|2δ(ω(k) − (ǫ2 − ǫ1))

× |〈ǫ2|D|ǫ3〉|2
∫

k∈Ω32

dk |g(k)|2δ(ω(k) − (ǫ3 − ǫ2))

× |〈ǫ3|D|ǫ1〉|2
∫

k∈Ω31

dk |g(k)|2δ(ω(k) − (ǫ3 − ǫ1)) (109c)

Notice J
(E)
21 and J

(E)
32 have same (and J

(E)
31 has opposite) sign. In addition

J
(E)
31 = −(J

(E)
21 + J

(E)
32 ) (110)

and the sign of each currents depends on

δ := β(ǫ2 − ǫ1)(ǫ2 − ǫ1)− β(ǫ3 − ǫ1)(ǫ3 − ǫ1) + β(ǫ3 − ǫ2)(ǫ3 − ǫ2). (111)

In the case δ = 0, all currents vanish. Especially, when the function is a constant β (i.e. the initial state of the field
is an equilibrium state with temperature β−1), this is easily understood with the fact that the state of the system
converges to the equilibrium state at the same temperature without any stationary currents. Notice that even within
the linear approximation up to order δ, there is no local stationary state (with currents) which satisfies the detailed
balance condition, unlike the previous model. In this model, the existence of currents always implies the deviation
from the equilibrium.
Now let us see some interesting properties of the currents (109). In the case δ > 0, we obtain from (109)

J
(E)
21 , J

(E)
32 > 0, and J

(E)
13 < 0. (112)

As clearly understood from the definition of the currents, the relation (112) is describing the process that a field
quantum with energy ǫ3 − ǫ1 is converted into two quanta with energy ǫ2 − ǫ1 and ǫ3 − ǫ2. On the contrary when
δ < 0,

J
(E)
21 , J

(E)
32 < 0, and J

(E)
13 > 0 (113)

and this can be interpreted as a process from two quanta to one quantum. There are interesting analogies of these
processes with parametric downconversion and second harmonic generation in non-linear quantum optics[22]. They
are considered as opposite process of another. In our model, the direction of the process depends on the generalized
temperature function β(ω) which is a parameter of the initial state of the field. This phenomenon can be understood
as the fact that through interaction with a non-equilibrium field the system can have such a function, which is an
example of dissipative structure in the Prigogine sense [1].

VII. DISCUSSION

In conclusion, let us further comment on a few related topics.

1) On the irreversibility and unitarity of time evolution.

As we discussed in Sec.III B, we can see irreversibility in this model through the entropy production (59) due
to the stationary currents, which should be considered as processes involving the total system including the
environment. On the other hand, the time evolution operator of the total system Ut is unitary in the sense that

U †t Ut = UtU
†
t = 1, t > 0, (114)
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which is easily checked by putting X = 1 in (21). These statements might seem to be contradiction. However,
one should notice that the appearance of irreversibility has nothing to do with the unitarity of Ut. When the
temperatures of both environments are the same, it is known that the unitarity condition (114) is required
to realize a physical fluctuation-dissipation relation or a correct equilibrium stationary state [12]. Moreover,
when we speak of macroscopic phenomena like entropy production, we need a good procedure to extract the
proper degrees of freedom to discuss them. Since there exist same macroscopic states which are distinguishable
microscopically from each other, not all microscopic degrees can be employed to discuss macroscopic properties.
Indeed, the entropy production (59) is discussed in terms of what we call slow degrees of freedom, and the
stochastic limit can be considered as the procedure of extracting the proper degrees of freedom. In other words,
we extract information from the total dynamics as slow degrees which can describe the macroscopic phenomena.

2.) Local KMS condition for field.

A possible formulation of the local KMS condition for the field is the following.

Definition 1. A state 〈·〉 on the polynomial algebra ak, a†k, is said to satisfy the local KMS condition with
temperature function β : Rd → R if, for every m, n ∈ N, ε1, . . . , εn, η1, . . . , ηm ∈ {0, 1}, and with the convention
x0 = x†, x1 = x for any operator x, the following identities hold in the sense of distributions.

〈aη1k1(0) . . . a
ηm
km
(0)aεnhn(t + iβhn )a

εn−1
hn−1
(t + iβhn−1 ) . . . a

ε1
h1
(t + iβh1 )〉

= 〈aεnhn(t) . . . a
ε1
h1
(t)aη1k1(0) . . . a

ηm
km
(0)〉. (115)

Lemma 1. Define the local inverse temperature function by

−β(k) :=
(

log
n(k)

m(k)

)

1

ωk
, (116)

where

〈aka†k′〉 =: m(k)δ(k − k′) =
eβωk

eβωk − q = (qn(k) + 1)δ(k − k
′) (117)

(q = −1 for Bosons and q = +1 for Fermions). Then the local KMS condition is satisfied by the 2–point
functions:

〈ak(0)a†k′(t+ iβ(k′))〉 = 〈a
†
k′(t)ak〉 (118)

〈a†k(0)ak′(t+ iβ(k′))〉 = 〈ak′(t)a
†
k(0)〉 (119)

Proof . In the above notations, one has

〈ak(0)a†k′(t+ iβ(k′))〉 = ei(t+iβ(k
′))ωk′ 〈aka†k′〉 = e−β(k

′)ωk′ eitωk′ 〈aka†k′〉

= eitωk
m(k)

n(k)
n(k)δ(k − k′) = eitωk′m(k′)δ(k′ − k) = eitωk′ 〈a†k′ak〉 = 〈a

†
k′(t)ak〉

and this proves (118). In a similar way one verifies that (119) holds.

Proposition 1. If the state 〈·〉 is mean zero gauge invariant and Boson Gaussian then condition (115) is
satisfied.

Proof . By Gaussianity both sides of (115) are reduced to weighted sums of pair correlation functions. Since
in both sides of (115) we can distinguish the (h, ε)–terms from the (k, η)–terms and since the pair correlations
preserve the order, there will be 3 types of pair correlations: (i) those of type (h, k), (ii) those of type (h, h),
(iii) those of type (k, k).
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In case (i), due to gauge invariance, the only none zero combinations are of the form 〈aa†〉 or 〈a†a〉 so we can
apply (118) and (119).

In case (ii) the terms are already in the correct order.

In case (iii), again by gauge invariance, the only possibilities are

〈ah(t+ iβh)a†h′ (t+ iβh′ )〉 = e−(t+iβh)ωhei(t+iβh′)ωh′ 〈aha
†
h′ 〉

= eit(ωh′−ωh)+(βhωh−βh′ωh′ )δ(h− h′)

= 〈a†h(t)ah′ (t)〉 (120)

and similarly for the other term.

Since in the Boson case the weight of each pair partition is equal to 1, after the replacements (118), (119), (120)
the pair–partition expansion of the left hand side of (115) becomes the pair–partition expansion of the right
hand side.

The validity of the local KMS condition for more general Gaussian states as well as for quantum Markov states
is now under investigation.

3.) The generalized temperature function and its thermodynamics.

On the description of the generalized temperature function β(H), R. S. Ingarden, A. Kossakowski, M. Ohya,
T. Nakagomi have discussed similar idea in the context of information theory [23]. They introduce a system
described by the density operator

ρ =
1

Z(β1 , ..., βn)
exp



−
n
∑

j=1

βjH
j



 , βj > 0 (121)

and discussed possible generalization of thermodynamics for structured complex systems (e.g. biological system)
including bifurcations, catastrophes and self organization. As mentioned in their book [23], their phenomenolog-
ical idea is in the line of thought of synergetics by Haken [24]. In the present paper, we explained the microscopic
origin of such states and their physical meaning through the dynamical detailed balance condition. Through the
local KMS condition a general classification of such non-equilibrium states became possible. We believe that
our approach gives a good insight to generalization of thermodynamics in this direction.
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