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Hilbert Module Realization of the Square of White Noise
and Finite Difference Algebras

L. Accardi and M. Skeide UDC 517

Abstract. We develop an approach to the representations theory of the algebra of the square of white noise
based on the construction of Hilbert modules. We find the unique Fock representation and show that the

representation space is the usual symmetric Fock space. Although we started with one degree of freedom we end

up with countably many degrees of freedom. Surprisingly, our representation turns out to have a close relation

to Feinsilver’s finite difference algebra. In fact, there exists a holomorphic image of the finite difference algebra

in the algebra of square of white noise. Our representation restricted to this image is the Boukas representation

on the finite difference Fock space. Thus we extend the Boukas representation to a bigger algebra, which is

generated by creators, annihilators, and number operators.

Key words: Fock space, creation, annihilation and number processes, white noise, Feinsilver’s finite difference

algebra, Hilbert module, Boukas representation, Kolmogorov decomposition.

1. Introduction

Following [1], by white noise we understand operator-valued distributions b+t and bt (indexed by the
variable t ∈ R) which fulfill the canonical commutation relations (CCR)

[bt , b
+
s ] = δ(t − s).

Formally, the squares of the white noise should be operator-valued distributions B+t = b+t
2

and Bt = b2t
fulfilling the commutation relations which follow from the CCR.

Unfortunately, it turns out that the objects B+t and Bs are too singular. This manifests itself in
the fact that their formal commutator has the factor δ2(t − s) which a priori does not make sense. To
overcome this trouble, it was proposed in [1] to consider a renormalization of the singular object δ2 ,
which replaces δ2 by 2cδ with c > 0. This choice is motivated by a regularization procedure, where δ is
approximated by functions δε such that δ2ε → 2cδ in a suitable sense, and the constant c may be even
complex.

After the renormalization, the commutator [Bt , B
+
s ] = δ(t − s)(2c + 4b+t bt) has an operator part in

the right-hand side, namely, the number density Nt = b+t bt . Since [Nt , B
+
s ] = δ(t − s)2B+t , we obtain a

closed Lie algebra. Smearing out the densities by setting

B+f =

∫
f(t)B+t dt and N+a =

∫
a(t)N+t dt,

and computing the formal commutators, we find the following relations:

[Bf , B
+
g ] = 2cTr(fg) + 4Nfg , f , g ∈ L2(R) ∩ L∞(R), (1.1a)

[Na , B
+
f ] = 2B+af , a ∈ L∞(R), f ∈ L2(R) ∩ L∞(R), (1.1b)

and [B+f , B
+
g ] = [Na , Na′ ] = 0, where we set Tr f =

∫
f(t) dt . Our aim is to find a representation of the

∗ -algebra generated by these relations.
In [1], the representation of this algebra was constructed with the help of the Kolmogorov decomposition

for a certain positive definite kernel. It was not so difficult to define the correct kernel, but it was difficult
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to show that it is positive definite. In [2], Sniady found an explicit form of the kernel which is obviously
positive. In the present paper, we proceed in a different way, motivated by the following observations.
Relation (1.1a) looks like the usual CCR with the exception that the inner product in the right-hand
side takes values in the algebra generated by the number operators Na . It is therefore natural to try a
realization on a Hilbert module over the algebra of number operators. Additionally, on a Hilbert module,
we have the chance to also realize the relation (1.1b) by representing explicitly a suitable left multiplication
by number operators.

Since the number operators are unbounded, we cannot use the theory of Hilbert modules over C∗ -alge-
bras, but on the contrary, the theory of pre-Hilbert modules over ∗ -algebras is required, as described in
[3]. In Sec. 2, we summarize the necessary notions. In Sec. 3, we show how one can define representations
of the algebra of number operators just by fixing the values of the representation on Na . This is essential
for the definition of left multiplication and allows to identify the algebra generated by Na not just as an
abstract algebra, but concretely as an algebra of number operators.

The main part is Sec. 4, where we construct a two-sided pre-Hilbert module E , and show that it
is possible to construct a symmetric Fock module Γ(E) over E . As we will see, the natural creation
operators a∗(f) on this Fock module and the natural left multiplication by Na fulfill the relation (1.1b)
and the relation (1.1a) up to an additive term. By the tensor product construction, we obtain a pre-
Hilbert space in which the relations (1.1a) and (1.1b) are fulfilled. This representation coincides with the
one constructed in [1].

In Sec. 5, we show that our representation space is isomorphic to the usual symmetric Fock space over
L2(R, �2) . In the final Sec. 6, we show that our representation may be regarded as an extension of the
Boukas representation of Feinsilver’s finite difference algebra [4] on the finite difference Fock space. The
calculus based on the square of white noise generalizes the Boukas calculus [5]. In [6], Parthasarathy and
Sinha realized the finite difference algebra by operators on a symmetric Fock space. However, they do not
consider the question whether this representation is equivalent to the Boukas representation. It is very
likely that the algebra of square of white noise allows a similar representation. It would also be interesting
to know whether this representation is faithful.

2. Hilbert modules over ∗ -algebras
In the sequel, we will need the notion of Hilbert module over ∗ -algebras of unbounded operators. This

makes the definition of positivity somewhat tricky. For a C∗ -algebra, there are many equivalent ways
to define positive elements and positive linear functionals. For a general ∗ -algebra, different definitions
give rise to different notions of positivity. For instance, the algebraic definition, where positive elements
are those in the convex cone generated by all elements of the form b∗b , does not contain enough positive
elements for our purposes. On the other hand, a weak definition which says “an element b is positive, if
ϕ(b) ≥ 0 for all positive functionals ϕ(·)” is uncontrollable, because it does not allow to show that the
inner product on a tensor product of Hilbert modules is again positive.

Here we follow the approach of [3], where a generating set of positive elements is introduced axiomat-
ically, and we consider a certain cone generated by these elements. This definition of positivity remains
controllable, because it is algebraic. However, it makes it necessary to involve directly the existence of a
left multiplication on a two-sided Hilbert module. Therefore, we do not give a definition of a right Hilbert
module, but immediately define a two-sided Hilbert module.

Definition 2.1. Let B be a unital ∗ -algebra, and let S be a distinguished generating subset of self-
adjoint elements in B containing 1 . By P (S) , we denote the convex B -cone generated by S (i.e., the
set of all sums of elements of the form a∗ba with b ∈ S , a ∈ B). We say the elements from P (S)
are S -positive.

A pre-Hilbert B -module is a B -B -module E (where 1x = x1 = x) with a sesquilinear inner product
〈 · , · 〉 : E × E → B , fulfilling the following requirements:

[i] 〈x, x〉 = 0 =⇒ x = 0 (definiteness);
[ii] 〈x, yb〉 = 〈x, y〉b (right B -linearity);
[iii] 〈x, by〉 = 〈b∗x, y〉 (∗ -involution property)
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and the positivity condition, which assumes that for any choices of b ∈ S and any of finitely many xi ∈ E
there exist finitely many bk ∈ S and bki ∈ B such that

〈xi , bxj〉 =
∑
k

b∗kibkbkj.

If the definiteness condition [i] is missing, then we speak of a semi-inner product and a semi-Hilbert module.
A mapping a on a semi-Hilbert B -module E is adjointable, if there exists a mapping a∗ on E such that

〈x, ay〉 = 〈a∗x, y〉 . By Lr(E) and La(E) we denote the spaces of right B -linear and adjointable mappings
on E respectively. Notice that on a pre-Hilbert module the adjoint is unique and La(E) ⊂ Lr(E) .

Since 1 ∈ S , the inner product is S -positive (i.e. 〈x, x〉 ∈ P (S)), and since S consists only of self-adjoint
elements, the inner product is symmetric (i.e., 〈x, y〉 = 〈y, x〉∗) and left anti-linear (i.e., 〈xb, y〉 = b∗〈x, y〉).
It suffices to check the positivity on a subset of E , which generates E as a right module (see [3]); or to
prove the existence of bk ∈ P (S) .

Observation 2.2. Any semi-Hilbert module over a commutative algebra B has the trivial left module
structure over B , where the right and left multiplications are just the same. We denote this trivial left
multiplication by br : x �→ xb in order to distinguish it from a possible non-trivial left multiplication.

Let E and F be semi-Hilbert B -modules. Their tensor product over B expressed by the formula
E � F = E ⊗ F/{xb ⊗ y − x ⊗ by} becomes a semi-Hilbert B -module if we introduce the inner product
〈x � y, x′ � y′〉 = 〈y, 〈x, x′〉y′〉 . In the general case, E � F and F � E may be quite different objects
(see for Example [7, Example 6.7]). Usually, the mapping x � y �→ y � x is ill-defined. Therefore, it is
not always possible to construct a symmetric Fock module over an arbitrary one-particle sector E . The
tensor sign � is “transparent” for algebra elements, i.e., x� by = xb� y . Any operator a ∈ La(E) gives
rise to a well-defined operator a� id ∈ La(E � F ) . This embedding is, however, not necessarily injective.
For operators a on F , the situation is not so pleasant. In general, we can define id �a if a is bilinear,
but this embedding need not to be injective.

Further, we will study semi-Hilbert modules. For several reasons, it is desirable to have a strictly
positive inner product. For instance, contrary to a semi-inner product, an inner product guarantees the
uniqueness of adjoint operators. We introduce a quotienting procedure which allows to construct a pre-
Hilbert module from the given semi-Hilbert module, if on B there exists a separating set S∗ of positive
functionals which is compatible with the positivity structure determined by S . We say that a functional ϕ
on B is S -positive, if ϕ(b) ≥ 0 for all b ∈ P (S) . Let S∗ be some set of S -positive functionals. We say
that S∗ separates the points (or S∗ is separating), if the condition ϕ(b) = 0 for all ϕ ∈ S∗ implies
b = 0. If S∗ is a separating set of S -positive functionals on B , then the set N = {x ∈ E : 〈x, x〉 = 0}
is a two-sided B -submodule of E . Moreover, by definition, the quotient module E0 = E/N inherits the
pre-Hilbert B -module structure 〈x+ N , y + N 〉 = 〈x, y〉 .

Before coming to Fock modules, we describe a construction which relates our algebraic definition of
positivity with the “concrete” positivity of operators on pre-Hilbert spaces. Let π be a representation
of B on a pre-Hilbert space G . In other words, G is a B -C -module. By equipping C with a convex C -cone
structure generated by 1 as a positive element, and by naturally extending our definition of pre-Hilbert
modules to two-sided modules over different algebras in an obvious way, we can ask whether G is a pre-
Hilbert module with its natural inner product. For this, it is necessary and sufficient to have the inequality
〈g, π(b)g〉 ≥ 0 for all g ∈ G and all b ∈ S (see [3]). If π has this property, then we say it is S -positive. In
particular, π is S -positive if it sends elements in S to the sum of elements of the form b∗b (b ∈ La(G)) .
This property holds if and only if 〈g, π(b)g〉 ≥ 0 for all g ∈ G and all b ∈ S (see [3]).

Now let π be S -positive, and let E be a pre-Hilbert B -module. Notice that idC constitutes a separating
set of positive functionals on C . The above tensor product construction goes through as before and
we obtain a pre-Hilbert B -C -module H = E � G . In other words, H is a pre-Hilbert space with a
representation ρ(b) = b � id for B . Actually, with the same definition, ρ extends to a representation of
La(E) on H . Additionally, we may interpret elements x ∈ E as mappings Lx : g �→ x�g in La(G, H) in
La(G, H) with the adjoint L∗x: y� g �→ π(〈x, y〉)g . Of course, Lbxb′ = ρ(b)Lxπ(b

′) . Observe that x �→ Lx
is one-to-one if π is faithful. In this case the state ρ is also faithful.
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Definition 2.3. A full Fock module over the two-sided pre-Hilbert B -module E is the two-sided pre-

Hilbert B -module F(E) =
∞⊕
n=0

E�n , where E�0 = B with the inner product 〈b, b′〉 = b∗b′ , and the

direct sum is algebraic. We denote the unit of E�0 by ω in order to distinguish it from the right or left
multiplication by 1 ∈ B .

On F(E) , we define for each x ∈ E the creation operator �∗(x) by setting

�∗(x)xn � · · · � x1 = x � xn � · · · � x1 , �∗(x)ω = x,

and its adjoint annihilation operator

�(x)xn � · · · � x1 = 〈x, xn〉xn−1 � · · · � x1 , �(x)ω = 0.

For each bilinear operator a on E , we define the operator λ(a) on F(E) by setting

λ(a)xn � · · · � x1 = axn � xn−1 � · · · � x1 + xn � axn−1 � · · · � x1 + · · · + xn � xn−1 � · · · � ax1

and λ(a)ω = 0.

Fock modules were first considered in [8, 9]. The first formal definition of full Fock modules in the
framework of Hilbert C∗ -modules was given in [10, 11]. Here we use the extension to the framework
of ∗ -algebras as given in [3].

3. The algebra of number operators of L∞(R)

Consider the commutative ∗ -algebra of number operators on the symmetric Fock space Γ(L2(R)) to
elements of L∞(R) . As for the full Fock module, we use the algebraic definition of symmetric Fock space
and regard Γ(L2(R)) as a subspace of F(L2(R)) .

Definition 3.1. On the full Fock space F(L2(R)) with vacuum vector denoted by Ω, we define a
projection P by setting

Pfn ⊗ · · · ⊗ f1
def
=

1

n!

∑
σ∈Sn

fσ(n) ⊗ · · · ⊗ fσ(1)

and PΩ = Ω. The symmetric Fock space Γ(L2(R)) coincides with PF(L2(R)) .
For a ∈ L∞(R) , we define the number operator Na = Pλ(a)P . By

N = alg{Na (a ∈ L∞(R))}
we denote the unital algebra generated by all Na .

Clearly, N∗a = Na∗ and NaNa′ = Na′Na , so that N is a commutative ∗ -algebra. From the multiple
polarization formula

1

2n

∑
εn ,...,ε1=±1

εn · · · ε1(εnfn + · · · + ε1f1)
⊗n =

∑
σ∈Sn

fσ(n) ⊗ · · · ⊗ fσ(1)

we see that the vectors Ω and f⊗n (f ∈ L2(R), n ∈ N) form a total subset of Γ(L2(R)) . Note also that
Na = Pλ(a) = λ(a)P . This follows easily from Pλ(a)P = λ(a)P and its adjoint.

Let I1 and I2 be two disjoint measurable subsets of R . It is noteworthy that the well-known factor-
ization formula

Γ(L2(S1)) ⊗ Γ(L2(S2)) ∼= Γ(L2(S1 ∪ S2))

restricts to our algebraic domain, i.e.,

Γ(L2(S1)) ⊗ Γ(L2(S2)) ∼= Γ(L2(S1 ∪ S2))

(cf. the proof of Theorem 5.1). With this identification, we have NχS1 = NχS1 ⊗ id and NχS2 = id⊗NχS2 .
Similar statements are true for a factorization into more than two disjoint subsets.

Since NaΩ = 0 for any a ∈ L∞(R) , the vacuum state ϕΩ( · ) = 〈Ω, ·Ω〉 is a character for N . Its
kernel consists of the span of all monomials with at least one factor Na , and its GNS-pre-Hilbert space is
just CΩ.

As the subset of B defining positivity on B , we choose

S =
{
NχI1 . . . NχIn : Ii bounded intervals on R (n ∈ N0 , i = 1, . . . , n)

}
.
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Proposition 3.2. The defining representation id of N on Γ(L2(R)) is S -positive.

Proof. It is sufficient to show that NχI is of the form
∑
i

b∗i bi , where the bi are taken (for all I) from

the commutative subalgebra of La(F(L2(R))
)
. Let λni (a) (n ∈ N, 1 ≤ i ≤ n) be the representation of

L∞(R) which acts on the ith component of the n -particle sector of F(L2(R)) . Then

NχI =
∑

1≤i≤n<∞
λni (χI)∗ =

∑
1≤i≤n<∞

λni (χI)
∗λni (χI). �

In the next section we define a representation of N by assigning to each Na an operator and an
extension as an algebra homomorphism. The goal of the remainder of the present section is to show that
this is possible, at least if we restrict to the subalgebra S(R) of step functions, which is dense in L∞(R)
in a suitable weak topology.

Denote by N the number operator on F(L2(R)) which sends F ∈ E⊗n to nF . As PN = NP we
use the same symbol for the number operator on Γ(L2(R)) . Then, clearly, alg{N} is isomorphic to the
algebra of polynomials in one self-adjoint indeterminate variable. Moreover, for each measurable non-null-
set S ⊂ R , the algebra alg{NχS} is isomorphic to alg{N} . Therefore, for any self-adjoint element a in
a ∗ -algebra A the mapping N �→ a extends to a homomorphism alg{N} → A .

Let t = (t0 , . . . , tm) be a m+ 1-tuple with t0 < . . . < tm . Then by using the factorization

Γ(L2(t0 , tm)) = Γ(L2(t0 , t1)) ⊗ · · · ⊗ Γ(L2(tm−1 , tm))

we find
Nt = alg{Nχ[tk−1 ,tk] (k = 1, . . . , m)} = alg{Nχ[t0 ,t1]} ⊗ · · · ⊗ alg{Nχ[tm−1 ,tm]}.

Therefore, any involutive mapping

Tt : St(R) = span{χ[tk−1 ,tk] (k = 1, . . . , m)} → A

with commutative range defines a unique homomorphism ρt : Nt → A satisfying ρt(Na) = Tt(a) .
Now we are ready to prove the universal property of the algebra NS :=

⋃
tNt , which shows that NS

is a symmetric tensor algebra over the involutive vector space S(R) .

Theorem 3.3. Let T : S(R) → A be an involutive mapping with commutative range. Then there exists
a unique homomorphism ρ : NS → A fulfilling the condition ρ(Na) = T (a) .

Proof. It suffices to remark that NS is the inductive limit of Nt over the set of all tuples t directed
increasingly by the natural inclusion of tuples. Denoting by βts the canonical embedding Ns → Nt
(s ≤ t) we easily check that ρt ◦ βts = ρs . In other words, the family ρt has the unique extension as the
homomorphism of ρ to all of NS . �

4. Realization of the square of white noise

The idea underlying the realization of relations (1.1a) and (1.1b) on a symmetric Fock module is to take
the right-hand side of (1.1a) as the definition of an N -valued inner product on the module E generated by
the elements f ∈ L2(R) ∩ L∞(R) and then to define the left multiplication by elements of N so that the
generating elements f fulfill Eq. (1.1b). However, the direct attempt to use the inner product determined
by Eq. (1.1a) fails. Therefore, we start with the linear ansatz (see (4.1)) and later adjust the constants in
a suitable way.

In view of Theorem 3.3, for the time being, we restrict to elements in NS . By (1.1a), this makes it
necessary also to restrict to elements f ∈ S(R) .

On S(R) ⊗ NS with its natural right NS -module structure, for arbitrary positive constants β , and γ
we define the sesquilinear mapping 〈 · , · 〉 by setting

〈f ⊗ 1, g ⊗ 1〉 = Mfg , where Ma = βTr a+ γNa , (4.1)
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and by right linear and left anti-linear extensions.
We define the left action of Ma by setting

Ma(f ⊗ 1)
def
= f ⊗Ma + αaf ⊗ 1

and using right linear extension to all elements of S(R)⊗ NS . Here α is an arbitrary real constant. Note
that the scalar term in Ma does not change this commutation relation. Therefore, Na fulfills the same
commutation relations with α replaced by α/γ . By (1.1b), this fraction should be equal to 2 .

By definition, multiplication by Ma from the left is a right linear mapping on S(R) ⊗ NS . One easily
checks that Ma∗ = M∗

a is an adjoint with respect to the sesquilinear mapping (4.1). By Theorem 3.3, this
left action extends to a left action of all elements of NS .

Proposition 4.1. The mapping (4.1) is a semi-inner product so that S(R) ⊗ NS is a semi-Hilbert
NS -module.

Proof. We must check the positivity condition only, because the remaining properties are obvious. We
remarked already that it is sufficient to check the positivity for elements of the form χIi ⊗1 , because these
elements generate S(R)⊗NS as a right module. Additionally, we may assume that Ii∩Ij = ∅ for i �= j .
Then 〈χIi ⊗ 1, b(χIj ⊗ 1)〉 = 0 for i �= j , whatever b ∈ NS may be. Now let b be in S . We may assume
(possibly after suitably modifying the set {Ii}) that b has the form

∏
iN

ni
χIi

, where ni ∈ N0 . Note that

NχIi (χIj ⊗ 1) = (χIj ⊗ 1)NχIi
for i �= j and

NnχI (χI ⊗ 1) =

n∑
k=0

(
n

k

)(
α

γ

)(n−k)
(χI ⊗ NkχI ).

The proof is completed by induction. This implies that

〈χIi ⊗ 1, b(χIj ⊗ 1)〉 = δijMχIi

ni∑
k=0

(
ni
k

)(
α

γ

)(ni−k)
NkχIi

∏
�
=i

Nn
χI

.

Set bk = 〈χIk ⊗ 1, b(χIk ⊗ 1)〉 and bki = δki1 . Then

〈χIi ⊗ 1, b(χIj ⊗ 1)〉 =
∑
k

b∗kibkbkj ,

where bk ∈ P (S) . �
We may filter out the length-zero elements so that

E := S(R) ⊗ NS/NS(R)⊗NS
is a two-sided pre-Hilbert NS -module. Set

f ⊗ b+ NS(R)⊗NS = fb.

Clearly we have
Maf = fMa + αaf. (4.2)

On the generating subset fn � . . . � f1 of E�n , by repeated application of Eq. (4.2) we find

Mafn � · · · � f1 = fn � · · · � f1Ma + αλ(a)fn � · · · � f1.

Therefore, on the full Fock module F(E) we have the relation

Ma = Mr
a + αλ(a), (4.3)

where Mr
a denotes the multiplication by Ma from the right in the sense of observation 2.2.

Now we try to define the symmetric Fock module over E similarly to Definition 3.1. The basis for the
symmetrization is a flip which exchanges the order of factors in the tensor f ⊗g . As we already remarked,
we may not hope to define flips on E � E by just sending x � y to y � x for all x, y ∈ E . We may,
however, hope to succeed, if we, as was done in [7] for centered modules, define such a flip only on the
x, y that come from a suitable generating subset of E . In order to build the general flips on E�n , we
also must be sure that the flip is a bilinear operation.
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Proposition 4.2. The mapping

τ : f � g �→ g � f , f , g ∈ S(R) ⊂ E,

extends to a unique bilinear unitary (i.e., inner product preserving and surjective) isomorphism E �E →
E � E .

Proof. We find the relation

〈f � g, f ′ � g′〉 = 〈g, 〈f , f ′〉g′〉 = 〈g, Mff ′g′〉 = 〈g, g′Mff ′ + αff ′g′〉
= Mff ′Mgg′ + αMgff ′g′ = Mgg′Mff ′ + αMfgg′f ′ = 〈g � f , g′ � f ′〉.

The elements f � g form a (right) generating subset of E � E . Therefore, τ extends as a well-defined
isometric mapping to E � E . Clearly, this extension is surjective so that τ is unitary.

It remains to show that τ is bilinear. Again it suffices to show that this property holds on the generating
subset and, of course, to prove it only for the generators Ma . We find

τ(Maf � g) = τ(f � gMa + α(af � g + f � ag))

= g � fMa + α(g � af + ag � f) = Mag � f = Maτ(f � g). �

Now we are in a position to define the symmetric Fock module Γ(E) precisely as in Definition 3.1. The
preceding proposition also shows that PMa = MaP , i.e., P is a bilinear projection. Again, we have

Pλ(a) = λ(a)P = Pλ(a)P.

Consequently, the relation (4.3) remains true also on the symmetric Fock module. In the sequel, we do
not distinguish between λ(a) and its restriction to Γ(E) . In both cases we denote the number operator
by N := λ(1) . Since λ(a) is bilinear, so is N and, of course, NP = PN . Eq. (3.1) also implies that the
symmetric tensors form a generating subset.

For x ∈ E , we define the creation operator on Γ(E) as a∗(x) =
√
NP�∗(x) . Clearly, x �→ a∗(x) is a

bilinear mapping, because x �→ �∗(x) is. We find the following commutation relation

Maa
∗(f) = a∗(Maf) = a∗(fMa + αaf) = a∗(f)Ma + αa∗(af).

Of course, a∗(x) has an adjoint, namely, a(x) = �(x)P
√
N .

Now we restrict our attention to the creators a∗(f) and annihilators a(f) of elements f in S(R) ⊂ E .
Their actions on symmetric tensors g�n (g ∈ S(R)) have the form

a∗(f)g�n =
1√
n+ 1

n∑
i=0

g�i � f � g�(n−i) , a(f)g�n =
√
nMfgg

�(n−1).

Clearly, a∗(f)a∗(g) = a∗(g)a∗(f) . However, nothing like this is true for a∗(x) and a∗(y) for more general
elements in x, y ∈ E .

For the CCR, we have to compute the products a(f)a∗(f ′) and a∗(f ′)a(f) . We find

a(f)a∗(f ′)g�n =
1√
n+ 1

a(f)

n∑
i=0

g�i � f � g�(n−i) = Mff ′g
�n +Mfg

n−1∑
i=0

g�i � f ′ � g�(n−1−i) ,

a∗(f ′)a(f)g�n =
√
na∗(f ′)Mfgg

�(n−1) =
√
n
(
Mfga

∗(f ′) − αa∗(fgf ′)
)
g�(n−1)

= Mfg

n−1∑
i=0

g�i � f ′ � g�(n−1−i) − αλ(ff ′)g�n.
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Taking the difference, the sums over i disappear. Taking into account the fact that g�n is arbitrary and
using Eq. (4.3), we find

[a(f), a∗(f ′)] = Mff ′ + αλ(ff ′) = 2Mff ′ − Mr
ff ′ = β Tr(ff ′) + 2γNff ′ − γNr

ff ′ .

In other words, by putting β = 2c and γ = 2, we have realized (1.1a) by the operators a∗(f) , however,
only modulo the right multiplication by a certain element of NS . Notice that this is independent of the
choice of α . Putting α = 4, we also realize Eq. (1.1b).

So we have to do two things. Firstly, we must get rid of the contributions of Nra in the above relation.
Secondly, in order to compare with the construction from [1], we must interpret our construction in terms
of pre-Hilbert spaces. Both goals can be achieved at once by the following construction.

We consider the tensor product H = Γ(E) � CΩ of Γ(E) with the pre-Hilbert NS − C -module CΩ
which is the pre-Hilbert space endowed with the GNS-representation of the vacuum state ϕΩ on NS . This
tensor product is admissible, because by Proposition 3.2, the defining representation of N on Γ(L2(R))
is S -positive, and therefore, any subrepresentation on an invariant subspace is S -positive too. Thus, H
is a pre-Hilbert space and carries the representation of La(Γ(E)) . In this representation all operators Nra
are represented by 0. Indeed, Nra commutes with everything, so that we put it on the right, and obtain

Nrag
�n � Ω = g�n � NraΩ = 0.

By B+f , we denote the image of a∗(f) in La(H) . The image of Na coincides with the image of 4λ(a) .
We denote both by the same symbol Na . By Φ = ω � Ω we denote the vacuum vector in H .

Theorem 4.3. The operators B+f , Na ∈ La(H) (f , a ∈ S(R)) fulfill the relations (1.1a) and (1.1b),

and [B+f , B
+
g ] = [Na , Na′ ] = 0 . Moreover, the linear hull of the vectors B+f

n
Φ (f ∈ S(R), n ∈ N0) is

dense in H .

Remark 4.4. It follows that H is precisely a pre-Hilbert space as constructed in [1]. However, in [1],
the inner product on the total set of vectors was defined a priori and it was quite tedious to show that it
is positive. Here the positivity and also the well-definedness of the representation are readily fulfilled.

Remark 4.5. Putting Hn = span{B+f
n
Φ (f ∈ S(R))} , we see that H =

⊕∞
n=0Hn is an interacting

Fock space with creation operators B+f as introduced in [12] in the notation of [3].

Theorem 4.6. The realization of the relations (1.1a) and (1.1b) extends to elements f ∈ L2(R)∩L∞(R)
and a ∈ L∞(R) as a representation by operators on

⊕∞
n=0Hn .

Proof. We extend the definition of the operators B+f and Na formally to f ∈ L2(R) ∩ L∞(R) and

a ∈ L∞(R) , regarding them as operators on vectors of the form B+f
n
Φ (f ∈ L2(R) ∩ L∞(R) , n ∈ N0).

We define the inner product of such vectors by continuous extension of the inner product of those vectors,
where f ∈ S in the weak-∗ topology of L∞(R) Such an extension clearly is well defined and unique.
The positivity of this inner product is inherited from approximation by the inner products, and the well-
definiteness of our operators follows, because all the operators have formal adjoints. �

5. The associated product system

Let I ⊂ R be a finite union of intervals. Denote by HI the subspace of H spanned by the vectors of
the form B+f

n
Φ (f ∈ S(I), n ∈ N0) . In particular, for 0 ≤ t ≤ ∞ set Ht := H[0,t) . This means that

H0 = H∅ = CΦ. Notice that HI is independent of whether the intervals in I are open, half-open, or
closed.

Denote by I + t the time shifted set I . Denote by ft the time shifted function ft(s) = f(s − t) .

Obviously, by sending B+f
n
Φ to B+ft

n
Φ we define an isomorphism HI → HI+t .

Observe that by relation (1.1a), the operators Bf and B+g corresponding to functions f ∈ S(I) and
g ∈ S(R \ I) commute. Define NI := alg{Na (a ∈ S(I))} . Then by the relation (1.1b) the elements
of NI also commute with all Bg corresponding to functions g ∈ S(R \ I) .
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Theorem 5.1. Let I , J ⊂ R be finite unions of intervals such that I ∩ J = ∅ . Then

UIJ : B+f
n
B+g

m
Φ �→ B+f

n
Φ ⊗ B+g

m
Φ, f ∈ HI , g ∈ HJ ,

extends as an isomorphism HI∪J → HI ⊗ HJ . The composition of these isomorphisms is associative in
the sense that

(UIJ ⊗ id) ◦ U(I∪J)K = (id ⊗UJK) ◦ UI(J∪K).
Proof. Of course, the vectors B+f

n
B+g

m
Φ are total in HI∪J and the vectors B+f

n
Φ⊗B+g

m
Φ are total

in HI ⊗ HJ . Thus, it suffices to justify isometry. We have〈
B+f

n
B+g

m
Φ, B+f ′

n′
B+g′

m′
Φ
〉
=
〈
B+g

m
Φ, BnfB

+
f ′
n′
B+g′

m′
Φ
〉
.

Without loss of generality, we assume that n ≥ n′ . Then we have

BnfB
+
f ′
n′

= Bn−n
′

f Bn
′
f B

+
f ′
n′

= Bn−n
′

f

n′∑
k=0

bkB
+
f ′
k
Bkf ,

where bk ∈ NI . Since Bf commutes with B+g and BfΦ = 0, the only nonzero contribution comes from

Bn−n
′

f b0 . On the other hand, also b0 commutes with B+g and b0Φ = ΦϕΩ(b0) = Φ〈Φ, b0Φ〉 . Therefore,

also Bn−n
′

f commutes with B+g and comes to act directly on Φ and gives 0 , unless n = n′ . Hence the

only nonzero contributions appear for n = n′ and m = m′ . We obtain〈
B+f

n
B+g

m
Φ, B+f ′

n
B+g′

m
Φ
〉
=
〈
B+g

m
Φ, B+g′

m
Φ
〉 〈Φ, b0Φ〉 =

〈
B+g

m
Φ, B+g′

m
Φ
〉 〈
B+f

n
Φ, B+f ′

n
Φ
〉
,

as desired. �
Corollary 5.2. We have

Hs ⊗ Ht ∼= H[0,s)+t ⊗ Ht ∼= Hs+t.

The isomorphisms
Ust : Hs ⊗Ht → Hs+t

act associatively. In other words, the spaces Ht form a tensor product system of pre-Hilbert spaces in the
sense of [13].

The definition given in [13] is purely algebraic. It is quite interesting to ask whether the Ht form a
tensor product system in the stronger sense of Arveson [14], who introduced the notion of a product system.
In particular, to this end all Ht must be separable infinite-dimensional spaces and some measurability
conditions must be checked. We proceed in a more indirect way.

If Ht is an Arveson system, then naturally the question of what type it has arises. Type I product
systems are precisely those which come from a symmetric Fock space. The characteristic property of
the symmetric Fock space among other Arveson systems is that it is spanned by exponential vectors. In
other words, we must find all families ψt ∈ Ht (so-called units) which compose under tensor product like
exponential vectors to indicator functions, i.e., ψs ⊗ ψt = ψs+t .

Good candidates for exponential vectors are

ψρ(t) =
∞∑
n=0

B+ρχt
n
Φ

n!
=

∞∑
n=0

ρn

n!
B+χt

n
Φ,

where ρ ∈ C and χt := χ[0,t] . If we replace B+ by the creators on the ordinary symmetric Fock space,
we obtain precisely the usual exponential vector ψ(ρχt) . Whenever ψρ0(t) exists, it is an analytic vector-
valued function of ρ with |ρ| < |ρ0| . It is not difficult to check that whenever ψρ(s) and ψρ(t) exist, then
also ψρ(s + t) exists and equals ψρ(s) ⊗ ψρ(t) (see Corollary 5.2). Moreover, since ψρ(t) is an analytic
function in variable ρ , it is differentiable. It follows that

B+χt
n
Φ =

dn

dρn

∣∣∣∣
ρ=0

ψρ(t)

is in the closed linear span of ψρ(t) (|ρ| < |ρ0|) . Therefore, if for each t > 0 there exists ρ0 > 0 such

that ψρ0(t) exists, then the vectors ψρ(t) and their time shifts form a total subset of H∞ .
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Lemma 5.3. If |ρ| < 1/2 , then ψρ(t) exists. Moreover,

〈ψρ(t), ψσ(t)〉 = e−(ct/2) ln(1−4ρσ) , (5.1)

where the function

κ : (ρ, σ) �→ − c

2
ln(1 − 4ρσ)

is a positive definite kernel on U1/2(0) × U1/2(0) .

Proof. First, we show that the left-hand side of (5.1) exists in the simpler case σ = ρ . This establishes
the existence of ψρ(t) .

Set f = ρχt . Then (ff)f = |ρ|2f . This yields the commutation relation NffB
+
f = B+f Nff +2|ρ|2B+f .

Moreover, 2cTr(ff) = 2c|ρ|2t . We have

BfB
+
f

n
= B+f BfB

+
f

n−1
+ (2c|ρ|2t+ 4Nff )B

+
f

n−1

= B+f BfB
+
f

n−1
+B+f

n−1(
2c|ρ|2t+ 8|ρ|2(n − 1)

)
+B+f

n−1
4Nff

= B+f
n
Bf + nB+f

n−1
4Nff +B+f

n−1
2|ρ|2((ct+ 4(n − 1)) + (ct+ 4(n − 2)) + · · · + (ct+ 0)

)
= B+f

n
Bf + nB+f

n−1
4Nff +B+f

n−1
2n|ρ|2(ct+ 2(n − 1)).

If we apply this operator to the vacuum Φ, the first two summands disappear. We find the recursion
formula

〈B+f
n
Φ, B+f

n
Φ〉

(n!)2
= 4|ρ|2

(
ct

2n
+
n − 1

n

) 〈B+f
n−1

Φ, B+f
n−1

Φ〉
((n − 1)!)2

.

It is clear that the series
∞∑
n=0

〈B+f
n
Φ, B+f

n
Φ〉

(n!)2

converges if and only if 4|ρ|2 < 1 or |ρ| < 1/2.
For fixed ρ ∈ U 1

2
(0) , the function 〈ψρ(t), ψρ(t)〉 is the uniform limit of entire functions in the variable t

and, therefore, it is an entire function on t as well. In particular, since ψρ(s + t) = ψρ(s) ⊗ ψρ(t) , there
must exist a number κ ∈ R (actually, in R+ , because 〈ψρ(t), ψρ(t)〉 ≥ 1) such that

〈ψρ(t), ψρ(t)〉 = eκt.

We find κ by differentiating at t = 0. The only contribution to the product

d

dt

∣∣∣∣
t=0

4|ρ|2
(
ct

2n
+
n − 1

n

)
· · · 4|ρ|2

(
ct

2
+ 0

)

comes by the Leibniz rule, if we differentiate the last factor and put t = 0 in the remaining ones. We find

d

dt

∣∣∣∣
t=0

〈ψρ(t), ψρ(t)〉 =
∞∑
n=1

(4|ρ|2)n 1

n

c

2
= − c

2
ln(1 − 4|ρ|2).

The remaining statements follow essentially by the same computations, replacing |ρ|2 by ρσ . Clearly, ρσ
is a positive definite kernel. Then by the Schur lemma, the function κ(ρ, σ) is also positive definite as
the limit of positive linear combinations of powers of ρσ . �
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Remark 5.4. The function κ is nothing but a covariance function of the product system in the sense
of Arveson [14], which is defined on the set of all units, restricted to the set of special units ψρ(t) . In the
set of all units, we must also take into account the multiples ect of our units. The covariance function on
this two-parameter set is only a conditionally positive kernel.

Set

vρ =

√
c

2

(
2ρ,

(2ρ)2√
2
, . . . ,

(2ρ)n√
n

, . . .

)
∈ �2.

Then 〈vρ , vσ〉 = −(c/2) ln(1 − 4ρσ) and the vectors vρ are total in �2 . In other words, the Kolmogorov
decomposition for the covariance function is the pair (�2 , ρ �→ vρ) . The following theorem is a simple
corollary of Lemma 5.3.

Theorem 5.5. There is a unique time shift invariant isomorphism

H∞ → Γ(L2(R+ , �2))

such that
ψρ(t) �→ ψ(vρχt).

Consequently, Ht is a type I Arveson product system.

Remark 5.6. By defining EI as the submodule of E generated by S(I) , we obtain the relation

Γ(EI∪J ) = Γ(EI) � Γ(EJ )

for disjoint I and J precisely as in the proof of Theorem 5.1. The above introduced isomorphism sends
a∗(f)na∗(g)mω to a∗(f)nω � a∗(g)mω , and the argument is the same with the exception that, which
makes it even simpler, bω = ωb . Clearly, by setting Et = E[0,t) , we find a tensor product system {Γ(Et)}
of pre-Hilbert NS − NS -modules in the sense of [13].

6. Connections with the finite difference algebra

After the rescaling c → 2 and ρ → ρ/2, the right-hand side of Eq. (5.1) extended in the obvious way
from indicator functions to step functions, is the kernel used by Boukas [15, 16] to define the representation
space for Feinsilver’s finite difference algebra [4]. Therefore, the Boukas space and ours coincide.

Once established that the representation spaces coincide, it is natural to ask whether the algebra of
the square of white noise contains elements fulfilling the relations of the finite difference algebra. Indeed,
setting c = 2 and defining

Qf =
1

2
(B+f +Nf ), Pf =

1

2
(Bf +Nf ), Tf = 1Tr f + Pf +Qf (6.1)

for f ∈ L2(R) ∩ L∞(R) , we obtain

[Pf , Qg] = [Tf , Qg] = [Pf , Tg] = Tfg. (6.2)

In the particular case f = f ∈ S , these are precisely the relations of the finite difference algebra. In fact,
the operators Qf , Pf and Tf are precisely those which were found by Boukas. However, it is not clear
whether the relations Tf = 1Tr f + Pf +Qf already follows from (6.2), or they are independent. In the
second case, the Boukas representation has no chance to be faithful.

In all cases, the operators Qf , Pf and Tf are not sufficient to recover Bf , B
+
f and Nf . We can

only recover the operators B+f − Bf and B+f +Bf + 2Nf . Whereas the algebra of square of white noise
is generated by creation, annihilation, and number operators, the representation of the finite difference
algebra is generated by certain linear combinations of such operators.

The second author is supported by Deutsche Forschungsgemeinschaft.
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