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Using a martingale condition and some restrictions on moments up to fourth 
order the characterisation problem of boson, fermion, and classical brownian 
motions is studied from a unified point of view entirely within the framework of 
elementary operator theory. Global commutation and anticommutation rules turn 
out to be consequences of corresponding commutation and anticommutation rules 
between past and future observables. 0 1988 Academic Press, Inc. 

1. INTR~D~JCTION 

Suppose (52, F, P) is a probability space with an increasing filtration 
{%;, t 2 O> of subalgebras of 9 where F0 is trivial. Let {x(t, w), t 2 0, 
WEQ} be a real valued stochastic process with continuous sample paths 
and satisfying the following conditions: (i) x(t, .) is a martingale with 
respect to the filtration {g}; (ii)lEx(t,.)=O, lE({x(t,.)-x(s,.)}*19~)= 
t - s for all 0 < s < t < cc. Then it is a classical result of P. Levy (cf. [3,4]) 
that x(t, o) is a standard brownian motion. Owing to a well-known result 
of A. N. Kolmogorov the continuity of sample paths can be ensured by a 
fourth moment condition of the form 

E(x(t, .)-x(s, .))4<Clf-S11+6 for all s, t > 0, 

where C > 0, 6 > 0 are some constants. Thus the characterisation of brow- 
nian motion can be based on a martingale property and some moment 
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conditions alone. Furthermore, such a result can be expressed entirely in 
terms of a commuting family of selfadjoint operators X(f) in L,(P) where 
f varies over all real valued square integrable functions on R + = [0, cc ), 
X(f) is the operator of multiplication by the random variable J; f(t) x(dt) 
and the integral is defined in the mean square stochastic sense of Ito and 
Doob [S]. Even though continuous trajectories do not make sense in the 
context of quantum probability theory the martingale and moment 
conditions admit an obvious translation. In this paper we drop the 
commutativity hypothesis, impose a martingale condition and some restric- 
tions on moments up to fourth order, and explore the characterisation 
problem of boson, fermion, and classical brownian motions from a unified 
point of view entirely within the framework of elementary operator theory. 
An interesting feature of this investigation is that global canonical 
commutation and anticommutation relations turn out to be consequences 
of the martingale condition, with some restrictions on moments up to 
fourth order and corresponding commutation and anticommutation rules 
between past and future observables. 

2. LEVY FIELDS 

Let 2 be a complex separable Hilbert space and let #E Z be a fixed 
unit vector. To each f in the complex Hilbert space R = L,( R + ) let there be 
associated a selfadjoint operator X(f) in J? such that 4 is in the domain of 
X(f,)X(fi)...X(f,) for allf,ER, l<j<n, n=l,2... For any set EclR, 
we denote by xE its indicator function and write 

with the convention fO, = 0, f,, =f: Let .M, At, denote respectively the 
linear manifolds in Y? generated by { 4, X(fl) . . . X(f,)& fi E 4, 1 d j < n, 
n = 1, 2, . . . }, (4, X(f$)) . . . X(f$))& f(j) E A, 1 < j 6 n, n = 1, 2, . ..}. We say 
that the family X = {X(f), f~ 4) of selfadjoint operators is a Levy field 
with cyclic vector 4 and covariance kernel K if the following conditions 
hold: 

(a) & is dense in %; 

(b) X(O)=0 and the map (fi,f2,...,f,)-X(fi)X(fi)...X(f,)~ is 
real multilinear on A”; 

(c) the map t + X(fj:)) X(f$)) . . . X(f$))d is strongly continuous in 
the closed interval [0, co]; 

(d) (u,X(fr,)v)=Oforallu,v~~~,, taO,fER; 
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(e) there exists a complex valued strongly continuous functional 
K(., .) on A x A such that 

for all u,uEJ&,, tBO,f, gEA. 

Condition (d) expresses the martingale property in the language of 
operators. Condition (e) is a direct translation of the second moment or, 
equivalently, the covariance condition imposed in Levy’s characterisation 
of classical brownian motion. If X is the Hilbert space of all square 
integrable functions on the probability space of standard brownian motion 
and X(f) denotes the selfadjoint operator of multiplication by J; Refdw, 
w being the sample path, then X= {X(f), f E &} is a Levy field with cyclic 
vector 1 and covariance kernel K(f, g) = [F (Re f)(Re g) dt. We emphasise 
that the main feature of this example is the commutativity of all the 
operators X(f), f E 4. 

As a noncommutative example we may consider the case when Y? is the 
boson (fermion) Fock space over A and X(f) =a(f) +a+(f) where a(f) 
and at(f) are the boson (fermion) annihilation and creation operators in 
X associated with J: Then X is a Levy field with the Fock vacuum vector 
as the cyclic vector and covariance kernel K(f, g) = JF fg dt. 

One of the interesting problems of quantum martingale theory is the 
classification of Levy fields up to equivalence defined in the following 
obvious way. Two Levy fields Xi in Hilbert space Y& with cyclic vector di, 
and the same covariance kernel K on A x A, i = 1,2 are said to be equivalent 
if there exists a unitary operator U: q -+X2 such that Ud, = #2, 
ux,(fi)X,(fi)...X,(f,)~,=x,(fi)...X,(f,)~, for all .f,~4 l<j<n, 
n = 1, 2, . . . . 

In the present section we define the notion of a certain stochastic integral 
in a routine manner and prove the existence of a family of “coherent vec- 
tors.” This shows that there must exist a natural isomorphism between X 
and a suitable Fock space. However, without additional hypotheses on the 
Levy field, which we shall examine in the next section, we are unable to 
prove the totality of coherent vectors in 9 and hence to establish the 
desired isomorphism of X with a suitable Fock space. 

In the following propositions we work with a fixed Levy field X satisfy- 
ing conditions (a)-(e). We denote by &, the closure My, of the linear 
manifold A,, with the understanding X0, = C#, 2m, =X, and “lt& = C, 
Jllm, = A. For any operator T on 2 we denote by D(T) its domain. 

PROPOSITION 2.1. For all t > 0, f, g E A, u, v E z, the following properties 
hold: 
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0) T1 = W3f,A 
(ii) <u, x(fc,b> = 0, 
(iii) (4 Wfc,) Wgct)u> = (4 0) K(fcrT gcth 

Proof: For any UE zI choose U, E .,&, such that IIu, - ~11 + 0 as 
n + co. By property (e) of the Levy field 

Since X(f[,) is selfadjoint and hence closed it follows that UE D(X(f,,,)) 
and Nfc,)u = lim,, m J’(f[,) u,. This implies (i). Now (ii) and (iii) follow 
immediately from (d) and (e), respectively. i 

PROPOSITION 2.2. There exists a complex 2 x 2 nonnegative definite 
matrix valued function (;;; s;;) in R + which is bounded and satisfies the 
relation 

KU g) = j-m p(f, g, t) dt, 
0 

(2.1) 

where 

P(f, g, .I = (fi 3 f2) (;;: ;::>( ,p:)9 (2.2) 

f = f, + if2, g = g, + ig2 being respectively the decompositions off and g into 
their real and imaginary parts. 

Proof: Let f, g E A be fixed. By properties (b) and (d) of the Levy field 
we have 

KU g,,)= (4, (x(f,,)+Wf,,)) Ng,,M) 

= (43 Wft,) mt,b?9 

= KM,, gt,). 

On the other hand 

Ktf,,, g)= (~,x(f,,){x(g,,+x(gc,)}~) 

=K(f,,, g,,)+ (Wft,M JQ,,M> 

= Hf,, 3 g,, 1. 

Thus 

KU s,]) = K(f,,, 8) (2.3) 
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Let R, denote R when considered as a real Hilbert space so that 
A w = Lt( [w + ) @ Li( !R + ) where Li( Iw + ) is the Hilbert space of real square 
integrable functions on Iw + . Then in view of property (b) of the Levy field 
Re K(f, g) and Im K(f, g) are bounded bilinear forms on A,. Hence there 
exist bounded operators A, B on R, such that 

(f, &), = Re WA g), (f, &do = Im Qf, gh 

where 0 indicates the inner product in A,. Equation (2.3) implies that A 
and B commute with multiplication by xcO, t, for every t. Since 
K(f, g) =K( it follows that A is selfadjoint and B is skewadjoint. Thus 
A and B are respectively multiplications by real 2 x 2 symmetric and skew- 
symmetric matrix valued functions when A, is viewed as the space of 
IW*-valued square integrable functions on Iw + . This implies that K(f, g) has 
the form (2.1) where p(f, g, .) is given by (2.2). The boundedness of A 
and B implies that ( (pV)) is bounded on iw + . Since K(f, f) 2 0 for all f it 
follows that ((pU(t))) is nonnegative definite almost everywhere. 1 

DEFINITION 2.3. A map [: [w + + 2 is said to be adapted to the Levy 
field X if r(t) E %$ for every t. 

Let d(X) denote the linear space of all strongly continuous maps from 
[w + into Y? adapted to Jr’. For any f~ A let 

To any partition 9 of an interval [a, b] into to = a < t, < t, < ... < 
tn<b=t,+,, Tad, and f E R, we can, in view of Proposition 2.1, 
associate the Riemann sum 

We write 

s(9~f, 5)= i x/ttj9 tj+l) tttj). (2.4) 
,=o 

6(p) = oyT:n I tj+ 1 - tjl. 
. . 

PROPOSITION 2.4. Let f, g E A, 5, q E a(X). Suppose 8, 9’ are partitions 
of intervals [a, b], [a’, b’], respectively, into to = a < t, < . . . < t, < b = 
t “+,, tb=a’<tb< a.. <tkr<b’=tL+l. Then 

0) (4, W,.L 5)>=0, 

(ii) (S(g,f, 51, S(9, g, v)> =CJ”=o <t(tj), S(tj)> Jz+l AL g, s) 4 

(iii) (S(B,f, 0, S(P’, g, q)> =O ifbda’ 

where p(f, g, -) is defined by (2.2) in Proposition 2.2. 
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Proof: (i) follows immediately from (ii) in Proposition 2.1. To prove (ii) 
consider any four points si <s2 <ss, < sq in Iw, . The proof of 
Proposition 2.1 shows that X,(3,, s2) ((s,) E J&,. By (ii) in Proposition 2.1 

This together with (iii) in Proposition 2.1 implies that 

(S(P’,f, 09 S(9, g, ?I> 

=jco Cx/ttj9 tj+ 1) 4Ctj), xgCtj2 'j+ 1) ?Ctj)> 

Now an application of Proposition 2.2 yields (ii). Finally (iii) follows 
immediately from (2.5). i 

COROLLARY 2.5. Let f E A, 5 E J&‘(X). Then for any finite interval 
[a, 61 c R+ 

exists in the strong sense as 9 varies over finite partitions of [a,b]. 

Proof: This follows from the isometry properties (ii) and (iii) of 
Riemann sums in Proposition 2.4 by the same kind of arguments that are 
employed in the definition of mean square stochastic integrals in the sense 
of Ito and Doob [3]. 1 

PROPOSITION 2.6. Let f, g E 4, r, q E d(X). Then the following properties 
hold: 

(i) 

(ii) (~~bX,Jds~(s),~~~X,(ds)~(s))=Or/06a<b~c<d, 

(iii) (jab XL&) t(s), Job x,(h) ~4s) 
> 

= j-” PM g, sKt(s), v(s)) ds, c1 

(iv) jbX~ds)4(s)+~~X~ds)5(s)=~cA’,(ds)5(s) ifa<b<c, 
a u 
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(v) as a function of t, 
s 

’ XAds) t(s) is an element of d(X), 
0 

(vi) 1: XAds) t( ) s is real linear in f and linear in 5. 

Proof: All the properties (i)(vi) follow immediately from Corollary 2.5, 
Proposition 2.4, and the definition of a Levy field. 1 

PROPOSITION 2.7. For any fi , f2, . . . E A define the adapted processes 
{rl(fl, f2, . . ..f., t)} inductively by 

‘i’(fi, t) = j-i J+Nd = X,,(O, t)q4 

v(f1 9 ...? fn + 1) t)=~;X/i(d.\)v(f~rfi -.,fn+l,s), n= 1, 2, . . . . (2.6) 

Then 

(i) (fj,q(fi,f2 ,..., f,,t))=OforaElt~O,n=1,2 ,... 

(ii) (vl(f,,f,,...,f,,t),q(g,,g2,...,g,,s))=0ifmfn, 

(iii) <rl(fi,f2, .-,fn, th v(gly g2, -., g,, s)) 

= 
I fi P(LT gi, ti) dtl dt2 . . . dtn, 
O<I”<t,-1< ... <I,<IASi=, 

where t A s denotes the minimum of t and s and p(f, g, -) is defined by 
Proposition 2.2. 

Proof: Owing to (v) in Proposition 2.6, the functionals q(fi, . . . . f,, t) 
are defined as elements of z&‘(X). (i) follows from (i) in Proposition 2.6. By 
(ii), (iii), and (iv) in the same proposition we have 

(?(fiY f2, . ..Y fm, t), v(g,, g2, . ..1 ST,, s)) 

s IhS = df,, g,, t,)<v(fi,fj, . . ..fm tl)>v(g,, g,, . . . . g,, t,)>dt,. o 

Now (ii) and (iii) follow by induction on (m, n). 1 

Remark. It is clear that the vectors q(fi, fi, . . . . fn, t) defined in 
Proposition 2.7 behave like the n-particle vectors in a Fock space. It is a 
conjecture that all such vectors together with 4 span @, as n varies over 
the set of natural numbers and the f;‘s vary over A. 
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PROPOSITION 2.8. Let 

rln(f, t) = v(s, L ...? .L t), n = 1, 2, . ..) 

where the element f is repeated n-fold in (2.6). Then the infinite series 

d+rl,(f, t)+ ... +v,(f, t)+ ... =rClr(t), say, (2.7) 

converges strongly and uniformly in t. Furthermore 

(tikt), Ii/,(s)> =exp K(f,ly s,j) (2.8) 

for all 0 Q s d t < co, f, g E R. 

Proof: From (iii) in Proposition 2.7 we have 

Ilrl,(f, t)l12 = j fi p(f,f, ti)dt, dt*...dtn. 
O<f.<f.-,< ,.. <,,<[i=l 

By (2.1) and (2.2) we obtain 

Ilv,(f, t)ll’=(n!)-‘~(f,,,S,,)“d(n!)~‘~(f,f)”. 

This shows that (2.7) converges strongly and uniformly. By Proposition 2.7 

(?,(f, th ?A g, s) > = 0 if m#n 

and 

(?,(f, th rln( g, s) > J fj ,4f, g, t;) dt, dt, . . . dt, 
o<r,<r,-,< .., <r,<rAs;=, 

= Wr’K(f, A .S]T g, A s,Y 

= Wp’K(fil, g,,)“. 

These relations imply (2.8). 1 

COROLLARY 2.9. Let *At) be defined by (2.7). Then there exists a vector 
$(f) such that 

lim ll+At) - 4Vf III = 0 for each f E A. 
,*a, 

Furthermore, 

($(f ), $(g)> =exp K(f, g) for all f, gER. 

Proof: This is immediate from (2.8) and the continuity of the 
covariance kernel K. 1 
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Remark. The vector $(f) may be called the intrinsic coherent vector 
associated with f for the Levy field X. The conjecture in the remark after 
the proof of Proposition 2.7 can be reformulated as follows: is the family 
W(f),f4 f t o in rinsic coherent vectors total in X? 

Under some additional conditions to be discussed in the next section the 
answer will be in the affirmative. 

3. LEVY FIELDS AND COMMUTATION RELATIONS 

Let E be a fixed constant denoting f 1. We shall now consider a Levy 
held X over A = L,(R+) with cyclic vector 4, covariance kernel K, and 
satisfying the additional condition 

for all u E A, f~ A, t > 0 in the notations of Section 2. We call X a Levy 
boson or fermion field according to whether E = -1 or 1. 

We now introduce a fourth order conditional moment condition on X 
which is inspired by the discussion in Section 1. To this end, for any 
O<s< t-c co,f, gER, we write 

For any partition 9 of any finite interval of the form [0, t] by 
O=t,<t,<t,< ... <t,<t=t,+, let 

'CL g? g) = f O(f, g, tj, tj+ 1). 

j=O 

We say that a Levy field is smooth if 

lim V(f, g, .Y) = 0 
d(B) * 0 (3.2) 

for every t > 0, a(9) denoting maxOd jsn (t,+ , - tj). 
The next proposition gives a more easily verifiable sufficient condition 

for the smoothness of a Levy field which is modeled after the classical 
Kolmogorov’s criterion for the continuity of trajectories of a stochastic 
process. 

PROPOSITION 3.1. Let X be a Levy field. Suppose there exist two families 
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of nonnegative Radon measures { ,uAg, f, g E 4 }, { vhn, f, g E A > such that 
each vIin is absolutely continuous and 

(3.3) 

for all ueA5,, 06s< t< co,A gER. Then X is smooth. 

Proof. Condition (3.3) implies 

O(f, g2 tj9 t,+l)G Pf;g(Ctj2 t,+ll)v,g((tj, tj+ll) 

and hence 

W g, W~P~~W, tlbaxvL,W,, t,+J 
i (3.4) 

for any partition 9’ of [0, t] by 0 = t, < t, < < t, < t = t,, 1. The 
absolute continuity of v,-~ implies that the right hand side of (3.4) tends to 
0 as 6(P) + 0. 1 

Remark. Suppose X(f) is multiplication by f? (Re f) dw in L,(P) 
where P is the probability measure of standard brownian motion and w 
denotes the brownian path. Then X, as mentioned in Section 2, is a Levy 
field with K(f, g) = [F (Re f )(Re g) dt as covariance kernel and cyclic vec- 
tor 1, the constant function. For any u E A+?~, 

6211~11~ 1’ We f)' 1' We gJ2, s .s 

where we have adopted the convention of denoting the Lebesgue integral of 
a function f over the interval [a, b] by j:jI Thus (3.3) holds with 
P,~(s, tl) = 2 j:. We f )' and vAg((s, tl) = 1:. We g)‘. 

Condition (3.3) also obtains in the cases when X(f) = a(f) + at(f) 
where a(f) and at(f) are respectively the annihilation and creation 
operators of a boson or fermion field over A which is either free or 
quasifree. 

PROPOSITION 3.2. Let X be a Levy boson or fermion field which is also 
smooth. Let f, g E A be fixed. Suppose 5: [w + -+ S is a strongly continuous 



UNIFIED FERMION-BOSON 221 

map such that t(t) E A,, for every t and the map t + X,jO, t) l(t) is also 
strongly continuous. Let 

Then q(t) E D(Xf(O, t)) and 

where p(f, g, .) is defined by Proposition 2.2. 

Proof: Consider an arbitrary partition 9 of [0, t] by 0 = to < 
t1 < ... <t,<t=t,+,. From the properties (at(e) of the Levy field we 
obtain 

xf("i t, i xg(tj, tj+ I) 5(tj) 

j=O 

= f xfC"T tj) xgCtj, t,+l) 5ttj) 
j=O 

+ f xf(tj+lY t)Xg(tj9 tj+*)5(tj) 

j=O 

= S, + S, + S3 + S,, say, (3.5) 

where Sj= Si(S) denote the ith sum on the right hand side of (3.5), 
1 < i < 4. Clearly, 

From (3.1) we get 

(3.6) 

s,(p) = m-E i xg<tjY tj+ 1) xf(o, tj) l(tj). 

j=O 
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Since by hypothesis X,(0, .) g(.) E d(X) Corollary 2.5 implies 

lim d(b) + 0 S,(9) = --E ji X,(ds) X,(0, s) t(s), (3.7) 

In order to analyse Sz(9) we first observe that in view of property (e) of 
the Levy field and Proposition 2.2 

({ 
t(tj), 

whenever j # k. Thus 

which, in view of (3.2), tends to 0 as 6(p) + 0. Thus 

(3.8) 

We have 

s4(p) = c c xf(tk~ ‘k+ I) xg(‘j? rj+ 1) <ttj) 
k>j 

=zKfttk, fk+l 
)i = 

Xg(tj, fj+ I) tCtj) 

k j<k-I 

+zx,ffk, *k+l 
k 

){ 

As 6(Y) + 0 the first sum on the extreme right hand side above converges 
to J;, Xf(ds) q(s). Putting 

or(S)= sup 115(a)- ab)l12 (3.9) 
O<OihGt 

Jh- 01 c6 
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we obtain from Propositions 2.4 and 2.6 

/I 
2 

Since 5 is strongly continuous o&6(9)) + 0 as 6(Y) + 0 and hence 

lim S,(9) = J, X,(ds) q(s). (3.10) 
b(d)+0 

Combining (3.6)-(3.8) and (3.10) we conclude 

By definition 

Since X,(0, t) = X(f,,) is selfadjoint and hence closed the required result 
follows. 1 

PROPOSITION 3.3. Let X be a Levy field. Suppose 5: R, +X is a 
strongly continuous map such that t(s) E AS, for every s and the map 
t --) X,(0, t) t(t) is strongly continuous. Let q(t) = s& r(s) ds. Then q E d(X), 
v(t) E Wxf(O, t)), and 

(3.11) 

580/77/l-15 
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Proof: Let 9 be as in the proof of Proposition 3.2. Then 

X,(03 t) i (t,+ I - tj) 5(r,)= i ttj+ I - tj) xfC"Y '1) 5ttj) 
j=O ,=o 

+ f (lj+l - rj) &ttj, [j+ I) ttfj) 
j=O 

+ f @,,I - fj) xf(fj+ 13 '1 t(lj) 
j=O 

= S, + S, + S,, say, (3.12) 

where Si = Si(S) denotes the ith sum on the right hand side of (3.12) for 
i= 1, 2, 3. The strong continuity of X,(0, .) <(.) implies that 

(3.13) 

By conditions (d) and (e) for a Levy field (cf. Section 2) and 
Proposition 2.2 

IIs*(9)I12= i tfj+l -zj)2 llt~fj~l12J,~+’ P(f,f, s)ds 
;=o 

Then 

lim S,(9) = 0. (3.14) 
cq.9) - 0 

Coming to S, we have 

S,(~)=CC(tj+,-tj)X/(rk,fk+I)r(tj) 
k>j 

=I xfttk> fk+ I 
k 

ttj+ 1 - fj) t(lj) -f”+’ 5Cs) ds)} 

‘1 

+c xf(fk, *k+ 1) dtk). 
k 

The second term on the right hand side above converges to 16 X,(A) q(s) 
as a(8) + 0. By Proposition 2.4 the square of the norm of the first sum is 
equal to 
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where as(S) is defined by (3.9). Thus 

lim S,(g) = ji X/(A) q(s). (3.15) 
6(P) - 0 

Combining (3.12)-(3.15) and using the closure property of the operator 
X,(0, t) we obtain (3.11). 1 

If 4, ylj, ~EJ&‘(X), 1 <j<n and 

then we write 

4 = c x&W vi(t) + i(t) dt. 

PROPOSITION 3.4. For any f;E A, 1 <j< n, let 

afi > f2, . ..Y f,, t) = ~,,(OT t) X,(0, t) . . . X,.(0, t)h (3.16) 

where the right hand side is interpreted as 4 when n = 0. Zf X is a Levy boson 
or fermion field which is also smooth then 

&(f,, fiv . . . . f,, t) 

= ic, (-4-‘x/;(W Ofi, . . . . A, . . . . f,, t) 

+ c (-w-‘P(fi,fi, t) 5(fi> . . ..L . . ..J. . . . . f,, t), (3.17) 
I<i-cjSn 

where A over a letter implies omission of such a term, and p is defined by 
Proposition 2.2. 

ProoJ: Let n = 2. In Proposition 3.2 put f = fi, g = f2, t(t) E 4. Then we 
get 
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which proves (3.17) for n = 2. Suppose (3.17) has been established for all 
m < n. Since 

and <(fi, . . . . f,, .) E d(X), by condition (c) for a Levy field we obtain from 
Proposition 3.2 

d x,CO,t) j; &W 5(f, 9 . . . . f,, . . . . f,, ~11 

= x,(dl) j; x,(ds) 5(f,, . . . . f,, . . . . fn, 3) 
- EXJdt) 5(L f,, . . . . f,, . ..> fn, 1) 
+ PM fifi, t) ttj; fi, . ..> fii, . . . . f,,, t) dt. 

By Proposition 3.3 

(3.18) 

=$(dl) j’~(fifi, f;, s) 4(f,, . . . ..k . . . . j;, . . . . f,,, ~1 ds 
0 

+ ~U-ifi, fji, t) 5(f, f,, . . . . .k . . . . A, . . . . fn, t) & i<j. (3.19) 

It is to be noted that (3.19) is obtained from Proposition 3.3 even though 
p(f,, fi, t) need not be continuous in t. Multiplying both sides of (3.18) by 
( -E)~- I, both sides of (3.19) by (-a)‘+j- ‘, and adding up we get from the 
induction hypothesis 

&(f,fi, . . ..fm t) 

=X/(dt) <(if,, . . ..f.c t) 

+ c ( -e)' X,(dt) t(f, .I-,, . . ..A. . . . . fm r) 

+ c P(fi9 fi? t)( --El '+'- '{(f, fi , . . . . Ii, . . . . . A, . . . . f,, t) dt. 
i<j 

If we rename (f, fi, . . . . f,) as (fi, f2, . . . . f,, ,) the above relation is the 
same as (3.17) with n replaced by n + 1. m 
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PROPOSITION 3.5. Let X be a smooth Levy boson or fermion field with 
cyclic vector q5 and covariance kernel K. Let 

E(f, , .fz, . . . . f,, t)= (44 t(fr, . . ..f., t)>, f,E4 1 Gj64 (3.19) 

where r( fi , . . . . f,, .) is defined by (3.16). Then 

Hf,, . . . . f,,,,.L g,g,,...,g,,t)+EE(f,,...,f,,g,f, gl,...,g,,,t) 

= {Wf, g, t)+Mg,f, t,) E(f,, . . ..fm> g,, . ..> g,, t) (3.20) 

for all f,,f, g, g,c R, m =O, 1, 2, . . . . n =O, 1, 2, . . . . where K(f, g, t)= 
K(f,,? g,,). 

Proof By condition (e) for a Levy field 

which is the same as (3.20) when m = 0, n = 0. Now we use induction on 
the pair (m, n). By Propositions 2.6 and 3.4 

~~fw.,r,,S g, g1,-7 gmt) 

c (-~)‘+j -‘p(fi,f;, t) E(f,, . . ..h . . . ..?..A g, g,, . . . . g,, t) 

I<i-cj<m 

+ 1 (-4'+'-'Pki, s,, t) 

1 <i<,<n 

x E(f,, . . . . f,, f, g, g, 9 ..., ii? . ..> i,, ...5 g,, tl 

+ 1 ( -E)m+i+.‘-‘p(fi, g,, t) 

l<i<m 
I<j<n 

x E(f,, . . . . Ai, ...> f,, f, g, g I, ...? tj, ...3 gn, t, 

+I<~<~(-e)i+“p(f,,f,t)E(f,,...,~,...,f~,g,g,,...,g,,t) 

. . 

+ c (-e)i+m+l 
P(.L, g, t)E(fi, ...,TiT . . ..fm.f, gl, ...> gn, t) 

I<i<m 

+ C (-~)~~(f,g,,t)E(f,,...,f,,g,g,,...,gj,...,g,,t) 

I<j<n 

+ lcFcn (--E)~-‘P(ET, gj, t)E(fi, . . ..fm.f, gl, ...T gj, .‘.> gn, t) 

. . 

+~(f, g, t) Qf,, . . ..fm. g,, . . . . g,, t). (3.21) 



228 ACCARDI AND PARTHASARATHY 

Suppose (3.20) has been established for m’, n’ whenever (m’, n’) < (m, n) 
where < means m’ f m, n’ 6 n with strict inequality in one of them. Then 
interchangingf, g in (3.21), multiplying both sides of the resulting equation 
by E, and adding to (3.21), we obtain from the induction hypothesis 

=(K(f, g, t)+EK(g,f; 1)) { 1 (--E)‘+iplP(fi~S/~ l) 
I <i<j<Wl 

x E(,f,, . . . . f,, g,, ..‘, ii, ..‘, gj, . ..T g,, t) 

+ c (-E)m+i+.i-’ P(L, g,, t) 
I si<m 
1 <j<n 

This implies (3.20) for (m, n). 1 

THEOREM 3.6. Let {X(f),f~ R} b e a smooth Levy boson or fermion 
Jield of operators in 2 with cyclic vector q5 and covariance kernel K( f, g). 
Suppose A! is lhe linear manifold generated by all vectors of the form 
x(fi)x(fi)...x(f,)~,fiE~, n=l,2 ,..., and& Then 

X(f) X(g) + EJ-( g) X(f) = K(f, g) + EK( g, f) 

on the domain JGif for all h g E R, where E = - 1 or 1 according to whether X 
is a Levy boson or fermion field, 

ProojI By condition (c) for a Levy field 

lim E(f,, --.,f,, t) = (4, Wf,)~~~X(fJ#> =E(f,, -..,f,), say. 1-00 
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By Proposition 3.5 

(X(fm)-~~X(fiM {x(f)m)+~m)X(f)~ X(g,).~.X(gnM) 

= E(f, 3 . . . . fin, s, g, g,, . ..> g,) + 4fi > . . . . fm, gt f, g, > ..., gn) 

= lim {E(f,, . . . . f,, f, g, g,, . . . . g,, t) + &E(fi, . . . . f,, g, f, g,, . . . . g,,, t)} I-cc 

=,‘iy {K(f, g, t)+Mg,f, f,> E(f,, . . ..fm> g,, . ..> g,,, t) 

= {KU g)+&K(g,f)}(X(f,)...X(fi)~,X(g,)...X(g”)~). I 

THEOREM 3.1. Let X, x’ be two smooth Levy boson (fermion) fields in 
S, %‘, respectively, with cyclic vectors 4, 4’ and the same covariance kernel 
K. Then they are equivalent. 

Proof Let 

for all fi, . . . . f,, n = 1, 2, . . . . where # indicates two equations with or 
without the prime ‘. From Proposition 3.4 it is clear that E# obeys the 
same set of differential equations 

and 

where p is defined by Proposition 2.2 and K(f,, fi, t) is as in 
Proposition 3.5. Since E”(f,, . . . . f,, 0) = 0 it follows that 

E(f,,f,, . . ..fn. t)=E’(f,,f,, . . ..f., t). 

Letting t -+ co and using condition (c) for Levy fields we get 

($4 X(f,) . ..X(fH)d> = (4’> ~(fi)...XYf,)@> 

for all n = 1,2, . . . . f, E A. The selfadjointness of the operators X”(f) implies 
that the correspondence 4 --t $‘, X(f,) X(f,) ..-X(f,) 4 -X’(fi) X’(f2) ... 
X’( f,) 4 for all n = 1, 2, . . . . f, E A extends to a unitary isomorphism from A? 
onto X’. 1 

Remark. Theorem 3.17 shows that a smooth Levy boson or fermion 
field is determined up to equivalence by its covariance kernel K or, 
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equivalently, the 2 x 2 matrix valued function ((pV)) occurring in 
Proposition 2.2. We call ((pg)) the cooariance density of the Levy field. In 
cases when ((p&t))) has constant rank almost everywhere we shall 
construct concrete models of Levy fields using Fock spaces. 

Case 1. Let p,,(t)p22(t.)-Ip12(t)12>0 a.e. t. Define 

P+(t)=21 +(~~~(t)~~~(t)- CRePdt)l*) m”21m~12(t)), 

sp = p’/2 PI1 

-Rep,, 

(3.22) 

(3.23) 

Define real linear maps S+ on A by putting 

where on the right hand side S, are interpreted as the 2 x 2 matrices 
(3.22), (3.23). 

Let f(R) denote the boson Fock space over 4 with vacuum vector &,. 
Put &? = T(R) @ T(A), 4 = &, 0 do, and 

where a(f), at(f) are the annihilation and creation operators associated 
with fin T(A). Then {X-(f),f~d} IS a smooth Levy boson field with 
cyclic vector 4 and convariance density ((p,)), where - indicates closure. 

In A define the unitary operators R, for each sb0 by putting 

t&f) = -f(t) if t < s, 

=f(t) if t>s. 

Let J(s) = T(R,) denote the second quantization of R, acting in f(R). 
Define 

X+(f)=/ox J(s)OJ(s)XJds), 

where Jf,-(CO, tl)=x- (fxCo,,,) and the right hand side is a quantum 
stochastic integral in the sense of [ 11. It follows from the results of [2, 53 
that {W'(f),fe&} 1s a smooth Levy fermion field with cyclic vector 4 and 
convariance density ( (pli)). 
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It is to be noted that when Im p iz( t) = 0, X- reduces to a classical com- 
plex Gaussian field. 

Case 2. Let rank((p&t)) = 1 a.e. Then we can express 

where pi, p2 are some bounded complex valued Bore1 functions on [w + . 
Following the notations in case 1 put Z = Z(A), and define 

X-(f)=a(p, Ref+p,Imf)+at(p, Ref+p,Imf). 

Then {R-(f),f~&) is a smooth Levy boson field in X with cyclic vector 
do and covariance density ((pV)). When Im pi2 = 0 then p, and pz can be 
chosen to be real valued and X- becomes a Gaussian field. 

To construct the corresponding smooth Levy fermion field with 
covariance density ((pU)) put 

X+(f) = p J(s) XT (ds). 

Then the family {I+, f~ A} has the required property 
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