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Using a martingale condition and some restrictions on moments up to fourth
order the characterisation problem of boson, fermion, and classical brownian
motions is studied from a unified point of view entirely within the framework of
elementary operator theory. Global commutation and anticommutation rules turn
out to be consequences of corresponding commutation and anticommutation rules
between past and future observables.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Suppose (2, #, P) is a probability space with an increasing filtration
{#, 120} of subalgebras of # where %, is trivial. Let {x(¢, w), =0,
weQR} be a real valued stochastic process with continuous sample paths
and satisfying the following conditions: (i) x(¢,-) is a martingale with
respect to the filtration {Z}; (ii) Ex(s,-) =0, E({x(t,-)—x(s, )}*| F)=
t—sfor all 0 <s << oo. Then it is a classical result of P. Levy (cf. [3,4])
that x(¢, @) is a standard brownian motion. Owing to a well-known result
of A. N. Kolmogorov the continuity of sample paths can be ensured by a
fourth moment condition of the form

E(x(s, ) —x(s, ))*<Clt—s|'*®  forall s, t>0,

where C >0, é >0 are some constants. Thus the characterisation of brow-
nian motion can be based on a martingale property and some moment
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conditions alone. Furthermore, such a result can be expressed entirely in
terms of a commuting family of selfadjoint operators X(f) in L,(P) where
f varies over all real valued square integrable functions on R, = [0, «),
X(f) is the operator of multiplication by the random variable ng f(t) x(dr)
and the integral is defined in the mean square stochastic sense of Ito and
Doob [3]. Even though continuous trajectories do not make sense in the
context of quantum probability theory the martingale and moment
conditions admit an obvious translation. In this paper we drop the
commutativity hypothesis, impose a martingale condition and some restric-
tions on moments up to fourth order, and explore the characterisation
problem of boson, fermion, and classical brownian motions from a unified
point of view entirely within the framework of elementary operator theory.
An interesting feature of this investigation is that global canonical
commutation and anticommutation relations turn out to be consequences
of the martingale condition, with some restrictions on moments up to
fourth order and corresponding commutation and anticommutation rules
between past and future observables.

2. LEvy FiIELDS

Let s be a complex separable Hilbert space and let ¢ # be a fixed
unit vector. To each fin the complex Hilbert space 4= L,(R_ ) let there be
associated a selfadjoint operator X(f) in o such that ¢ is in the domain of
X)) X(fy)---X(f,) for all fe4, 1<j<n, n=1,2.. For any set Ec R,
we denote by y . its indicator function and write

fz]:X[O,t]f’ f[t=X[t,oo)fs fE%

with the convention f,;=0, f, =1 Let .#, .#, denote respectively the
linear manifolds in # generated by {¢, X(f\)---X(f,)9, fie4, 1<j<n,
n=1,2.1} {¢, X(f) - X(f")¢, fPe4 1<j<n n=1,2, .} We say
that the family X = {X(f), fe 4} of selfadjoint operators is a Levy field
with cyclic vector ¢ and covariance kernel K if the following conditions
hold:

(a) A is dense in #;

(b) X(0)=0 and the map (f, f2, -, fu) = X(f1) X(f2) - X(f,)¢ 1s
real multilinear on #£”;

(c) the map t — X(f{)) X(fF)--- X(f%")4 is strongly continuous in
the closed interval [0, co];

(d) (u, X(fr)v>=0forallu,vehy, t=0, fe4;
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(e) there exists a complex valued strongly continuous functional
K(-,-) on 4x 4 such that

<u’ X(f[l) X(g[,)v>= <ll, U> K(f[ta g[l)

forall u,ve #,, t>0, f, g4

Condition (d) expresses the martingale property in the language of
operators. Condition (e) is a direct translation of the second moment or,
equivalently, the covariance condition imposed in Levy’s characterisation
of classical brownian motion. If # is the Hilbert space of all square
integrable functions on the probability space of standard brownian motion
and X(f) denotes the selfadjoint operator of multiplication by [& Re fdw,
w being the sample path, then X = {X(f), fe 4} is a Levy field with cyclic
vector 1 and covariance kernel K(f, g)=[& (Re f)(Re g) dt. We emphasise
that the main feature of this example is the commutativity of all the
operators X(f), fe 4.

As a noncommutative example we may consider the case when # is the
boson (fermion) Fock space over # and X(f)=a(f)+a'(f) where a(f)
and a'(f) are the boson (fermion) annihilation and creation operators in
H# associated with f. Then X is a Levy field with the Fock vacuum vector
as the cyclic vector and covariance kernel K(f, g)= | fg dt.

One of the interesting problems of quantum martingale theory is the
classification of Levy fields up to equivalence defined in the following
obvious way. Two Levy fields X; in Hilbert space 5, with cyclic vector ¢,,
and the same covariance kernel K on £ x 4, i = 1, 2 are said to be equivalent
if there exists a unitary operator U3 — 5 such that Ug,=4¢,,
UXll(le)Xl(fz)"'Xn(fn)¢1 =X,(f1) - Xo(f) ¢, for all fiesd, 1<j<n,
n=12,...

In the present section we define the notion of a certain stochastic integral
in a routine manner and prove the existence of a family of “coherent vec-
tors.” This shows that there must exist a natural isomorphism between #
and a suitable Fock space. However, without additional hypotheses on the
Levy field, which we shall examine in the next section, we are unable to
prove the totality of coherent vectors in # and hence to establish the
desired isomorphism of # with a suitable Fock space.

In the following propositions we work with a fixed Levy field X satisfy-
ing conditions (a)-(e). We denote by #; the closure .#,; of the linear
manifold .#,; with the understanding ;= C¢, Ho1=H, and My;=C,
M= M. For any operator T on # we denote by D(T) its domain.

PROPOSITION 2.1. For all t >0, f, g€ 4, u, ve H,, the following properties
hold.
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(@) <= DX(f))
(i) <u, X(fr o) =0,
(i) Cu, X(fr,) X(g)v> = <u, 05 K(fyis 810):

Proof. For any ue i choose u,e.#,, such that |u,—ul| >0 as
n— oo. By property (e) of the Levy field

“X(f[t)(um - un)||2 = <um — Uy, X(f[r)z(um - un))
= ”um - un“2 K(f[r’ f[t)
Since X(f},) is selfadjoint and hence closed it follows that ue D(X(f;,))

and X(f(,)u=Ilim, , , X(f,) u,. This implies (i). Now (ii) and (iii) follow
immediately from (d) and (e), respectively. ||

PROPOSITION 2.2. There exists a complex 2x2 nonnegative definite
matrix valued function (94 2) in R, which is bounded and satisfies the
relation

K g)=|" olf g 04, 1)
where
ol g -)=(f,,f2)("“ ”)(g) (2.2)
P2 P2/\82

f=/f1+if5, g= g, +ig, being respectively the decompositions of f and g into
their real and imaginary parts.

Proof. Let f, g 4 be fixed. By properties (b) and (d) of the Levy field
we have

K(f, g1)= <&, {X(fi)) + X(f1.)} X(81)8D
={¢, X(f)) X(g1)¢>
=K(fy, &)
On the other hand

K(f3 8) =<8 XU X(g + X(g()} 6>
=K(f, 80) + {X([1) ¢, X(g1)9>
=K(f1, g81)
Thus
K(f, g1)=K(/1r» &) (23)
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Let #g denote # when considered as a real Hilbert space so that
Ar=LYR,)®LYR*) where LYR ) is the Hilbert space of real square
integrable functions on R . Then in view of property (b) of the Levy field
Re K(f, g) and Im K(/, g) are bounded bilinear forms on #4,. Hence there
exist bounded operators 4, B on 4y such that

(f,Ag>o=ReK(f, g),  {f, Bg)o=ImK(/, g),

where 0 indicates the inner product in 4. Equation (2.3) implies that A
and B commute with multiplication by x ,; for every ¢ Since
K(f, g)=K(g, f) it follows that A is selfadjoint and B is skewadjoint. Thus
A and B are respectively multiplications by real 2 x 2 symmetric and skew-
symmetric matrix valued functions when 4 is viewed as the space of
R?-valued square integrable functions on R, . This implies that K(f, g) has
the form (2.1) where p(/, g, ) is given by (2.2). The boundedness of 4
and B implies that ((p;)) is bounded on R, . Since K(f, /)>0 for all f it
follows that ((p,(t))) is nonnegative definite almost everywhere. |

DEFINITION 2.3. A map & R, — & is said to be adapted to the Levy
field X if {(t) € 5, for every ¢.

Let &/ (X) denote the linear space of all strongly continuous maps from
R, into # adapted to X. For any fe 4 let

XAa, b)=X(f,7)— X(f1) 0<agsbhb<g w.

To any partition 2 of an interval [a, b] into ty=a<t, <t,< --- <
t,<b=t,,,, (e (X), and fe4, we can, in view of Proposition 2.1,
associate the Riemann sum

S(Z, 1.¢)= Z XAt 1;410) £(8))- (24)

j=
We write
5(#)= max |1, ~1.
0<j<n

PROPOSITION 2.4. Let f, ge 4, &, ne A (X). Suppose P, P’ are partitions
of intervals [a, b], [a,b'], respectively, into ty=a<it, < --- <t,<b=
Lo, bo=a <tp< - <tp<b' =t,, . Then

(1) <SP £8)>=0,
(i) <S(P, 18 S(P, g n)>=27_o &), n(2))> [i+' p(f, &, 5) ds,
(ii) <S(2, £€), S(Z', g.n)>=0ifb<a’
where p(f, g, -) is defined by (2.2) in Proposition 2.2.
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Proof. (i) follows immediately from (ii) in Proposition 2.1. To prove (ii)

consider any four points 5, <s,<s;<s, in R,. The proof of
Proposition 2.1 shows that X (s,, s,) &(s,) € #,,;. By (ii) in Proposition 2.1

(X515 92) Es1), Xols3, 84) 1(s3) ) =0. (2:5)
This together with (iii) in Proposition 2.1 implies that
(S(2,1.8), S(2, g.n)>
<X/(t]’ 1 1) S(0) Xl 1500) ()

Il I
u M= v M=

<‘f(t) '7 >K(fX[t, 1] gX[tJ l,+1])

J

Now an application of Proposition 2.2 yields (ii). Finally (iii) follows
immediately from (2.5). ||

COROLLARY 2.5. Let fe#4, Cesl(X). Then for any finite interval
[a,b]<=R,

lim S(2, f, &) j X Ads) &(s), say,

H{P)->0

exists in the strong sense as P varies over finite partitions of [a,b].

Proof. This follows from the isometry properties (ii) and (iii) of
Riemann sums in Proposition 2.4 by the same kind of arguments that are
employed in the definition of mean square stochastic integrals in the sense
of Ito and Doob [3]. |

PROPOSITION 2.6. Let f, g€ 4, &, ne Z(X). Then the following properties
hold:

@ (6] 20 200) =
(4]
(ii) < X,(dsf(s),jdxg(ds)n(s)>=ozfo<a<b<c<d,
b b
(i) < X(ds) &(s), | Xg(ds)n(s)>= [ o(s; & 5)<E(s), n(s)> s,

(iv) be,(ds) f(s)+j X{ds) &(s) =j X(ds) &(s) if a<b<c,

a
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(v) as a function of ¢, jr XAds) E(s) is an element of o/(X),
0
b
(vi) j X ds) E(5) is real linear in f and linear in ¢.

Proof. All the properties (i)-(vi) follow immediately from Corollary 2.5,
Proposition 2.4, and the definition of a Levy field. |

PROPOSITION 2.7. For any f,,f,,..€4 define the adapied processes
{'T(fb SFas s fs t)} inductively by

1) = [ Xy(ds)o= X0, 06,

n(fls ""fn+la t)=JOI Xfl(ds)n(fz’fi'n ""fn+1’s)’ h= 1’ 2’ (26)

Then

(1) <D, nf1s foswnSnst)>=0forall t20,n=1,2, ..
(ll) <r,(fl’ f29 “"fm’ t): '7(81, 825 s g",S)> =0 ifm;én,
(111) <'7(f1’f2""’fn’t)’ '7(g1a 825 o gn,S)>

I_[ p(.fu &is ti) dtl dt2 "'dtna

*[0<1,,<t,.-1< - <EAS

where t A s denotes the minimum of t and s and p(f, g, ) is defined by
Proposition 2.2.

Proof. Owing to (v) in Proposition 2.6, the functionals #n(f,, ..., f,, t)
are defined as elements of &/(X). (i) follows from (i) in Proposition 2.6. By
(ii), (iii), and (iv) in the same proposition we have

S 15 Sfasovos Sons 10, 1(815 82, o 8 $)D
=[P 81 0 <UUae Fos o s 182 83 80 1) >
Now (ii) and (iii) follow by induction on (m, n). ||
Remark. 1t is clear that the vectors n(fi, f5, .. f,,t) defined in
Proposition 2.7 behave like the n-particle vectors in a Fock space. It is a

conjecture that all such vectors together with ¢ span #; as n varies over
the set of natural numbers and the fs vary over 4.
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ProrosiTION 2.8. Let

n(LO)=nlf /s 1), n=12 .,

where the element f is repeated n-fold in (2.6). Then the infinite series

g+mfit)+ -+, )+ - =YA1), sap, (2.7)
converges strongly and uniformly in t. Furthermore
YA, Yols) > =exp K(f 1y, &) (2.8)

forall0<s<t<w, f, ge 4.
Proof. From (iii) in Proposition 2.7 we have
I/ )12 = | [1 o(fs £ ) dty dr -y,
Uy <y < oo < <T

y (2.1) and (2.2) we obtain
.0/, 1% = (n)) " K(f 13, fr)" < (n!) " K(Sf, )™

This shows that (2.7) converges strongly and uniformly. By Proposition 2.7

<11m(f; t)s r’n(g’ S))'—‘O if m#n

and

nalfem g )> | [ o 1) dr, diy -,

O<ty<ty-1<-- <H<IAS;_y
_(n' (fl/\s], gl/\s])
—(n’ ﬁ] g.&])

These relations imply (2.8). |

COROLLARY 2.9. Let Y (t) be defined by (2.7). Then there exists a vector
Y(f) such that

lim [y At) =y (/=0 foreach fe4.

Furthermore,

Y(f)¥(g)>=expK(f, g) forall f geh

Proof. This is immediate from (2.8) and the continuity of the
covariance kernel K. ||
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Remark. The vector y(f) may be called the intrinsic coherent vector
associated with f for the Levy field X. The conjecture in the remark after
the proof of Proposition 2.7 can be reformulated as follows: is the family
{¥(f), fe 4} of intrinsic coherent vectors total in #?

Under some additional conditions to be discussed in the next section the
answer will be in the affirmative.

3. Levy FIELDS AND COMMUTATION RELATIONS

Let ¢ be a fixed constant denoting +1. We shall now consider a Levy
field X over 4= L,(R,) with cyclic vector ¢, covariance kernel K, and
satisfying the additional condition

{X(f0) X(fr)+eX(f) X(fi7)} =0 (3.1)

for all ue #, fe#, t>0 in the notations of Section 2. We call X a Levy
boson or fermion field according to whether e= —1 or 1.

We now introduce a fourth order conditional moment condition on X
which is inspired by the discussion in Section 1. To this end, for any
0<s<t< oo, f, ge 4, we write

O(f; g, S, t)= sup “{X/(S, t) Xg(ss t)_K(fX[s.t]’ gX[x,l])}uHZ-

ue . #s)
llul =1

For any partition 2 of any finite interval of the form [0, ] by
O=ty <t <ty< - <t,<t=t,, let

fg’ Z f;g, tj, [j+1)'

We say that a Levy field is smooth if

lim V(f, g, #)=0 (3.2)

ES N

for every 1> 0, 6(2) denoting max,,;, (¢,,;—¢,).

The next proposition gives a more easily verlﬁable sufficient condition
for the smoothness of a Levy field which is modeled after the classical
Kolmogorov’s criterion for the continuity of trajectories of a stochastic
process.

PROPOSITION 3.1. Let X be a Levy field. Suppose there exist two families
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of nonnegative Radon measures {y,,, f, g€ #}, {v;,, f, g€ 4} such that
each v, , is absolutely continuous and

” {X/(S, t) Xg(s’ t) - K(fX[s, t]» gX[x, t])}u”2
S Null? iy g((s, £ vr (s, £1) (3.3)

for all ue #,,, 0<s<t< oo, f, ge4 Then X is smooth.
Proof. Condition (3.3) implies

o/, g t, tj+1)< uf,g((tj? tj+l]) vf,g((tj’ t_/+1])

and hence

V(/, 8 P)<uy,((0, t])mj?lx Vil 11]) (34)

for any partition # of [0,t] by O=ty<t, < --- <t,<t=1t,,,;. The
absolute continuity of v, implies that the right hand side of (3.4) tends to
0as d6(2)—-0. |

Remark. Suppose X(f) is multiplication by {& (Re f)dw in L,(P)
where P is the probability measure of standard brownian motion and w
denotes the brownian path. Then X, as mentioned in Section 2, is a Levy
field with K(f, g)= [ (Re f)(Re g) dt as covariance kernel and cyclic vec-
tor 1, the constant function. For any ue .4,

I{XAs, 1) X (s, 1) — K(fxis, 10 gX[s,x])}u”z
— 1 {(['Rer) (['Reg) + [ (ke NiRe o)}
<20ul* [ (Re /7 | (Re g,

where we have adopted the convention of denoting the Lebesgue integral of
a function f over the interval [a,b] by %/ Thus (3.3) holds with
Hrg((s, 1) =2 [ (Re £)? and v, (s, 1) = ! (Re g)>.

Condition (3.3) also obtains in the cases when X(f)=a(f)+a'(f)
where a(f) and a'(f) are respectively the annihilation and creation
operators of a boson or fermion field over 4 which is either free or
quasifree.

PROPOSITION 3.2. Let X be a Levy boson or fermion field which is also
smooth. Let f, ge 4 be fixed. Suppose &R, — K is a strongly continuous
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map such that &(t)e M,y for every t and the map t — X A0, t) &(t) is also
strongly continuous. Let

n(z):f'xg(ds)c(s), 0.
0
Then n(t)e D(X (0, t)) and

X0, yn(e) = [ Xy(ds)n(s) = [ X,(ds) X,(0. 5) £G5)

+[ otf g5 &5y s

where p(f, g, -) is defined by Proposition 2.2.

Proof. Consider an arbitrary partition 2 of [0,t] by O0=¢,<
< <t,<t=t,,,. From the properties (a)-(e) of the Levy field we
obtain

X,(0; 1) iX (0 10 1) &)

M= 5

X, (0, 1) Xo(1), 1,,.1) €(1))
0

Xn:{X/( Lot Xty ;1) — J;I.]Hp(fsg,s)ds}é(tj)
+.Z": {f:j“p(

+ Z Xp(tih 15 1) X1, 1;14) E(1))

j=0

=S +S,+S5;+9,, say, (3.5)

ﬁg»om}am

where S;=S5,(2) denote the ith sum on the right hand side of (3.5),
1 <i<4. Clearly,

lim S#ﬂ=£ﬂﬁgﬁﬁ@ﬁﬁ (3.6)

5(P) 0

From (3.1) we get

SUP) =~ 3 Xyt 1,,) X,(0, 1) &),

i=0
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Since by hypothesis X (0, -) £(-) € & (X) Corollary 2.5 implies

lim $,(2)= —sj X (ds) X (0, 5) &(s). (3.7)

HP)—-0

In order to analyse S,(£) we first observe that in view of property (e) of
the Levy field and Proposition 2.2

ot 21007 ot g 0ras} e,

7

[t Xt = [ ot 9 a5} ) ) =0

Tk

whenever j # k. Thus

n

IS:P)*= X

j=0

[ o e ash e

i

<{ sup [EI%} V(S & 2)

O0<s<t

{A?(G’ +1)X’( ’j+l)

which, in view of (3.2), tends to 0 as 6(#) — 0. Thus

lim S,(#)=0. (3.8)
H#)—0
We have
S4(?)=ZZ Xty ey 1) Xo(1;, 8541) (1))
k> j
=3 X1y, tk+l){ Y X, (1, tj+1)5(f_,-)}
k k-1

=Xt [ X @) )

#3000t )] T (e d=[ a a0)|
k J<k—1

As 8(2) — 0 the first sum on the extreme right hand side above converges

to [ X(ds) n(s). Putting

w8)=sup [&(a)—¢B))? (39)

O0<ashst
b --a| <
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we obtain from Propositions 2.4 and 2.6

2

;X.f(tk’tkﬂ){ ) (Xg(tj,t,—+,)£(tj)—fMXg(ds)f(ﬂ)}

=X se| T[T X))~ )| ds
=2 Jk p(f, 1. s) ds f p(g, g 5') ds' 0 (8(P))

k>j "

<08(@) | pf f5)ds | p(g. g.5) ds

0
Since ¢ is strongly continuous w(3(#)) — 0 as 6(#)— 0 and hence

lim S, (P)= jo' X (ds) n(s). (3.10)

HP)—-0
Combining (3.6)-(3.8) and (3.10) we conclude

lim X0, 1) }: X(t;,1,41) (1))

5(#) -0 =0

= =& [ X,(ds) X,(0, 5) &(s)+ [ X,(ds) n(s)
0 0

+[ otf g.5) &) .

By definition

n

lim 3 (o ) €)= [ X,(ds) €69)

3#)-0 /7,

Since X (0, 1) = X(f,) is selfadjoint and hence closed the required result
follows. |

PROPOSITION 3.3. Let X be a Levy field Suppose E:R, - # is a
strongly continuous map such that &(s)e .,y for every s and the map

1= X0, 1) &(¢) is strongly continuous. Let n(t) = j{, E(s) ds. Then ne o (X),
n(t)e D(X,(0, t)), and

X0, 1) n(1) = L X,(ds) n(s) + L X0, 5) &(s) ds. (3.11)

580/77/1-15
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Proof. Let & be as in the proof of Proposition 3.2. Then
Z Loi—1) 8(t) = Z (11— 1;) X(0, 1) &(1))

F Y =) Xt 40 €

j=0
+ Z (G0 — 1) X251, 1) E(1))
=0
=8,+5,+8;, say, (3.12)
where S;=S5,(#) denotes the ith sum on the right hand side of (3.12) for
=1 2 2 The gtrane continiity of Y (0 N F(.) imnlies that
i 1, L, PO Y L) Dll\llls WAULILLIA UL i Af\\l, ’ l’\ } llllyll\to Ll
1
lim S(2)=| XA0,s)E(s)ds. (3.13)

3(#) -0 ‘0

By conditions (d) and (e) for a Levy field (cf. Section2) and
Proposition 2.2

----

Then
lim S,(#)=0. (3.14)

Coming to S; we have

S3(2) = yy o —8) Xt te 1) ()

k>j

zgxf(rk,tk“){ > (s t)z(t)— s)dsﬂ

Usk—1 N /7

+Z Xo(te, ti 1) n(te)

The second term on the right hand side above converges to [§ X (ds) n(s)
as 5(2) — 0. By Proposition 2.4 the square of the norm of the first sum is
equal to
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ds

L+l 2
Y [ ey -asnds

Jj<k—17Y

<t[ pUf s dso(a(2))

ijn f. £.5)

where ®.(d) is defined by (3.9). Thus

lim Sy(2)= fo X, (ds) n(s). (3.15)

3#) >0

Combining (3.12)—(3.15) and using the closure property of the operator
X/(0, t) we obtain (3.11). |

If &, n, {ed(X), 1<j<nand
E(1) = £(0) +ZJ X,,(ds) n,(s) + jo'c(s)ds, 120, fc 4

then we write

dé =3 Xy(dr) ny(1) +{(t) dt

PROPOSITION 3.4. For any f;€ 4, 1 <j<n, let
SUf1s S wos fus )= X3(0, 1) Xp(0, 1) - X,.(0, 1) @, (3.16)

where the right hand side is interpreted as ¢ when n=0. If X is a Levy boson
or fermion field which is also smooth then

dé(fl’fb it ] fn’ t)

n' M:

—3)’ XA (dt) E(f 1y s s s fus 1)

+ Z (_E)H-jilp(fi,fj’ t) é(fh“wfis "-7.fj’ ‘"afn,t)9 (317)

Igi<j<n

where A over a letter implies omission of such a term, and p is defined by
Proposition 2.2.

Proof. Let n=2.1In Proposition 3.2 put f'= f|, g= f5, &(¢) = ¢. Then we
get

dX(f1, f2 1) = X (dt) E( S35 1) —eXp(dt) E(fy, ) + p( Sy, fs )@ dt
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which proves (3.17) for n=2. Suppose (3.17) has been established for all
m < n. Since

é(ff]v" fn’ X[(O, t)é(fl""sfn’t)

and £(f7, ., £y ') € (X)), by condition (¢) for a Levy field we obtain from
Proposition 3.2

d[Xf(o, 0] Xfds) Efis s s o s)]

= X(dt) || Xds) Efis oo v S 9)

—EXf,(dt) é(ﬁ fla maﬁa ""fn’ t)
+ U fis ) U frs s is oo Sr 1) . (3.18)

By Proposition 3.3
d{X_,(O, 0] Ui S 8) &l T T s S 8) ds}

= XAd1) [ o1 S125) & o o o o 5)
Pfis [is OVEUS, frs wos fis oo frv s fan 1) A, i< j. (3.19)

It is to be noted that (3.19) is obtained from Proposition 3.3 even though
p(f:, f;» t) need not be continuous in ¢. Multiplying both sides of (3.18) by
(—&)"~ !, both sides of (3.19) by (—&)'*/~ !, and adding up we get from the
induction hypothesis

dE(f, f1son S 1)
= X[ (d) (. f1 o for )

+Z(_8)i Xﬁ(dt) i(f; fl’ "".fia o0y fns l)

+Zp(f;fnt _8)1 léffl"' fz’" fns

+ X 0 i s =&Y TYES f1s s Fis s Fis wes Srus 1) dlL.

i<j

If we rename (f, fy, . f,) as (f1, f2, - fn+1) the above relation is the
same as (3.17) with n replaced by n+1. |}
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PROPOSITION 3.5. Let X be a smooth Levy boson or fermion field with
cyclic vector ¢ and covariance kernel K. Let

E(flaf2s ""fn’ t)= <¢a é(fl’ ""fn’ t)>’ f/'e%a 1<]<na (319)

where E(f1, .y [y -) is defined by (3.16). Then

E(fl’ ""fm’f; 8 815 5 En> t)+£E(fl9 ""fm’ g’fa g5 s &n> t)
= {K(f; & t)+£K(g’f’ t)} E(fl? ""fm’ 815> En» t) (320)

Jor all f.f 8 g¢€4 m=01,2,.,n=0,1,2,., where K(f, g t)=
K(fl]’ gt])-

Proof. By condition (e) for a Levy field
E(f, g 1)= {8, X,(0,1) X (0, 1)¢)> =K(/, g )¢, 4>

which is the same as (3.20) when m =0, n=0. Now we use induction on
the pair (m, n). By Propositions 2.6 and 3.4

dE
E(flamafmsf; 8 815 s &n>» t)

Z (_E)i+j ) lp(fi, .f_;" t) E(fl’ Hatd fh et fmaf; &> 815+ &ns t)

I<i<jsm

+ z (_£)i+j—lp(g'_, g, t)
I<i<j<n

X E(fl’ sey fmaf; g’ 815 e gi’ b g/’ s ns t)
+ Y (=" (S g5 1)

Il<ism
1<j<n

XE(fl’-"’f‘i’ ---’fm’.f’ g9 gla---7 gja veey gn’t)
+ Z (_E)i+m (.fl’ft)Efla-- f;’--7fm9 8s 815 oo gnst)

1<ism

+ Z (_8)i+m+lp(.fia g’ t)E(fla---a_fi’ --"fmaf? gl,---, grn t)
I1<ism

+ z (_8)jp(.f; gj’ I)E(fl,m,fms 8 g1y ees g_/a woes s t)
1<j<n

+ Z —& j‘lp(gsgj7t)Efl’--’fm7f;gla---,gj)---’gnst)

1<j<n

+p(f; g, ) fl’" fm’ 815 - ,g,,,t). (321)
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Suppose (3.20) has been established for m’, n’ whenever (m’, n’) < (m, n)
where < means m’ <m, n’ <n with strict inequality in one of them. Then
interchanging f, g in (3.21), multiplying both sides of the resulting equation
by ¢, and adding to (3.21), we obtain from the induction hypothesis

d
‘_1; {E(fl’ ---nfmuﬁ g7 gla sy gnv t)+8E(f1’ ""fms g’ﬁ gl’ vy gn’ t)}

=(K(f,g,z)+sl<(g,/:z)){ T (=) p(fo S 1)

I<i<j<m

X E(f1s s fis s Fs s foms 815 s @ns 1)

+ Z (—g)Hj"lp(gi, g 1)

1<i<j<n

XE(f1s s fons 81s ves Eir ooos Bjs ooy & 1)
+ Z (—£)m+i+'/“lp(f‘ia &8s t)

Isism
l<j<n

X E(f s ees fr s s 81s wves &js oos & s t)}
+(p(f, &8 1) +ep(g, £, ) E(fis or frns E1s oons &us )

d
=7 {(K(], & ) +eK(g, [, ) E(f1, o, fonr 815 o 8 D)}

This implies (3.20) for (m, n). |

THEOREM 3.6. Let {X(f), fe4} be a smooth Levy boson or fermion
field of operators in # with cyclic vector ¢ and covariance kernel K(f, g).
Suppose M is the linear manifold generated by all vectors of the form
X(f1)X(fy)- - X(f)e, fieh n=12, .., and ¢. Then

X(f)X(g)+eX(g) X(f)=K(f, g)+¢eK(g, [)

on the domain M for all f, g€ 4, where ¢ = —1 or 1 according to whether X
is a Levy boson or fermion field.

Proof. By condition (c) for a Levy field

Hm E(fy, o S 1) =< X(f)) - X([)8) = E(f,, - £,). say.
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By Proposition 3.5

CX(f) - X(f) 4, {X(f) X(g) +eX(8) X(f)} X(g1) -+ X(g,)¢
=E(f1’ "-,fmaf; 85 815 gn)+8E(fl5 "-’fms g7f; 815 e gn)
=llin30 {E(fl’ --'afmvf; g’ gla b4 gn’ t)+8E(fla "',fms g».f’ gl’ Ahbe] gn’ t)}

:[lingo {K(f’ g’ t)+6K(g’f’ t)} E(fla ey fm’ 815 s gn’ t)

= {K(/. &) +eK(g, )} <X (f,)--- X(f1)4, X(g1)--- X(g.) 6> |

THEOREM 3.7. Let X, X' be two smooth Levy boson (fermion) fields in
H, H', respectively, with cyclic vectors ¢, ¢’ and the same covariance kernel
K. Then they are equivalent.

Proof. Let
E*(f1, fas s fur )= <47, XF(0, ) XE(O, 1) --- X7 (0, 1) $7 )

for all f1,..,f,, n=1,2,.., where # indicates two equations with or
without the prime '. From Proposition 3.4 it is clear that E* obeys the
same set of differential equations

dE* o " "
O i S D=5 (=Y " 0 ) E*frs s T T )

and

E(f15f2’ t)zEl(fhfZ’ t)=K(f1’f2’ t),

where p is defined by Proposition22 and K(f,,f, ) is as in
Proposition 3.5. Since E*(f, ..., £, 0)=0 it follows that

E(fl’fZ""’fn’ t)=E’(f1’f27""fn’ t)~

Letting ¢ — oo and using condition (c) for Levy fields we get

(8, X(f1) - X(f,)8)> =<’ X' (/1) X' (/,)¢">

for all n=1, 2, ..., f;€ 4. The selfadjointness of the operators X *(f) implies
that the correspondence ¢ — @', X(f,) X(f3)---X(f,) ¢ =>X'(S1) X'(f3)---
X'(f,) ¢ foralln=1,2, .., f,€ 4 extends to a unitary isomorphism from »#
onto #'. |

Remark. Theorem 3.17 shows that a smooth Levy boson or fermion
field is determined up to equivalence by its covariance kernel K or,
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equivalently, the 2x2 matrix valued function ((p;)) occurring in
Proposition 2.2. We call ((p;)) the covariance density of the Levy field. In
cases when ((p,(t))) has constant rank almost everywhere we shall
construct concrete models of Levy fields using Fock spaces.

Case 1. Let p, (1) pyp(t)—|p12(1)|*>0 ae. t. Define

pt(t)z%(l +(p1 (1) poaft) — [Re Plz(t)]z)ril/z Im Pnz(t)},

P Re py, 2
S, =pl? R 22
=P (Re P12 P2z ) (3.22)
S =p1/2( Pu —Re P12>1/2. (3.23)
- ~ \—Rep, P2 ‘

Define real linear maps S, on # by putting

(s 7) =5+ (imp)

where on the right hand side S, are interpreted as the 2x2 matrices
(3.22), (3.23).

Let I'(#) denote the boson Fock space over 4 with vacuum vector ¢,.
Put # =T(A)QT(4), ¢ =do® ¢y, and

X (f)={aS, H+a" (S, N} ®1+1@{a(S_f)+a"(S )},

where a(f), a'(f) are the annihilation and creation operators associated

with fin I'(4). Then {¥ (f), fe 4} is a smooth Levy boson field with

cyclic vector ¢ and convariance density ((p,)), where ~ indicates closure.
In # define the unitary operators R, for each s> 0 by putting

(R, f)=—f(2) if 1<s,
= f(1) if t>s.

Let J(s)=I'(R,) denote the second quantization of R, acting in I'(#).
Define

X*(f)=]" J6) @ J(s) X; (d),
where X ([0, t])=X"(fX0,,7) and the right hand side is a quantum
stochastic integral in the sense of [1]. It follows from the results of [2, 5]
that {X*(f), f€ 4} is a smooth Levy fermion field with cyclic vector ¢ and
convariance density ((p,)).
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It is to be noted that when Im p,,(1)=0, X~ reduces to a classical com-
plex Gaussian field.

Case 2. Let rank((p;(t))=1 ae. Then we can express

pi(1)

osom=(411

) PRONEG)

where p,, p, are some bounded complex valued Borel functions on R, .
Following the notations in case | put # = I'(#), and define

X~ (f)=a(p,Re f+p,Im f)+a'(p, Re [+ p, Im f).

Then {X~(f), fe #) is a smooth Levy boson field in 5# with cyclic vector
#, and covariance density ((p,)). When Im p,, =0 then p, and p, can be
chosen to be real valued and X~ becomes a Gaussian field.

To construct the corresponding smooth Levy fermion field with
covariance density ((p;)) put

X (f)= |7 J(s) X7 (as)

Then the family {X*(f), f€#} has the required property
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