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The quantum decomposition of a classical random variable is one of the deep results of
quantum probability: it shows that any classical random variable or stochastic process

has a built in non commutative structure which is intrinsic and canonical, and not arti-

ficially put by hands.
Up to now the technique to deduce the quantum decomposition has been based on the

theory of interacting Fock spaces and on Jacobi’s tri–diagonal relation for orthogonal

polynomials. Therefore it requires the existence of moments of any order and cannot be
applied to random variables without this property.

The problem to find an analogue of the quantum decomposition for random variables

without finite moments of any order remained open for about fifteen years and nobody
had any idea of how such a decomposition could look like.

In the present paper we prove that any infinitely divisible random variable has a quantum
decomposition canonically associated to its Lévy–Khintchin triple. The analytical for-

mulation of this result is based on Kolmogorov representation of these triples in terms of

1–cocycles (helices) in Hilbert spaces and on the Araki–Woods–Parthasarathy–Schmidt
characterization of these representation in terms of Fock spaces. It distinguishes three

classes of random variables: (i) with finite second moment; (ii) with finite first moment

only; (iii) without any moment, The third class involves a new type of renormalization
based on the associated Lévy–Khinchin function.

Keywords: positive definite kernel, Kolmogorov decomposition, Lévy processes, Araki–
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1. Introduction

This paper is organized as follows:

In Section 2 we recall some known facts about positive definite kernels, their Kol-

mogorov decomposition and the Araki–Woods–Parthasarathy–Schmidt theorem.

In section 3 we recall the Lévy–Khintchin formula and its connection with pos-

itive definite and conditionally positive definite kernels. Then, for any infinitely

divisible probability measure µ on R with Lévy triple (α, σ2, ν), we give a concrete

realization of the Araki–Woods–Parthasarathy–Schmidt theorem (see 22) by con-

structing a canonical isomorphism U between L2
C(R, µ) and the Boson Fock space

Γ(C⊕ L2(R, ν)).

It is known that the random variable with distribution µ can be identified, up

to stochastic equivalence, with the the position operator q on L2
C(R, µ). Therefore

the canonical isomorphism U induces an action of this operator on the Fock space

Γ(C⊕L2(R, ν)), In Section 4 we prove that this action is implemented by a gener-

alized field operator in the sense of the paper 12, i.e. the self–adjoint generators of

the group generated by the Fock second quantization of translations and unitaries

in the one–particle space.

Since the structure of these generators is well known, this gives a natural candidate

for the quantum decomposition.

The precise realization of this decomposition however requires some care due to the

possible presence of unbounded operators. For example we prove that the vacuum

vector is in the domain of the generalized field operator if and only if the second

moment of the measure µ is finite. In such case all coherent vectors are in this do-

main. Otherwise no coherent vector is in this domain. These equivalent conditions

naturally single out a first class of infinitely divisible random variables.

Then we notice that, in the quantum decomposition of these random variables, their

first moments explicitly appear. In other words: the finiteness of the first moment

is a necessary condition for this form of quantum decomposition. This suggests to

introduce a second class of of infinitely divisible random variables: those for which

only the first moment is finite. In section (5) we prove that the random variables

in this class admit a quantum decomposition which is formally identical to that of

the random variables in the first class, but takes place in a weaker topology.

The crucial remark to deal with the third class, consisting of those infinitely di-

visible random variables with no finite moment, is that the 1–parameter unitary

group generated by the generalized field operator can be split as a product of a

1–parameter scalar family times a projective, non unitary representation of the

group R on the Fock space whose multiplier is the exponential of the same additive

2–coboundary which appears in the Araki–Woods–Parthasarathy–Schmidt repre-

sentation theorem. This projective non unitary representation is differentiable on a
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natural domain and its generator gives the quantum decomposition of the gener-

alized field operator associated to the third class of random variables. It turns out

that the quantum decomposition of the random variables in this class coincides with

that of the other two classes except for the fact that the constant term is absent.

Thus the multiplicative renormalization corresponds, at infinitesimal level, to a for-

mal substraction of the infinite constant corresponding to the first moment.

2. Preliminaries

Recall that, given a set S, a function k : (x, y) ∈ S × S −→ k(x, y) ∈ C is called a

positive definite (PD) C-valued kernel if, for every finite subset F ⊆ S the complex

square matrix

k(i, j) =: kij , i, j ∈ F

is positive definite, i.e. if ∀d ∈ N, ∀x1, · · · , xd ∈ S, λ1, · · · , λd ∈ C, one has

λikijλj :=

d∑
i,j=1

λ̄ik(xi, xj)λj ≥ 0 (2.1)

k is called conditionally positive definite if (2.1) holds whenever the λj ’s satisfy the

additional condition

d∑
j=1

λj = 0

For a kernel q on S and for any x0 ∈ S the following statements are equivalent:

(1) q is conditionally positive definite and q(x0, x0) ≤ 0,

(2) the kernel

k(x, y) := q(x, y)− q(x, x0)− q(x0, y)

is positive definite on S.

An infinitely divisible kernel k on S is characterized by the property that for each

t ≥ 0 the kernel

kt(x, y) :=
(
k(x, y)

)t
is positive definite.

According to Kolmogorov representation theorem a C–valued kernel k on a set S is

positive definite if and only if there exists an Hilbert space H and a map

e· : x ∈ S 7−→ ex ∈ H

such that the following two conditions are satisfied:

k(x, y) = 〈ex, ey〉H ; ∀x, y ∈ S (2.3)

{ex : x ∈ S} is total in H (2.4)
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The pair (H, e·) is unique up to unitary isomorphism and is called the Kolmogorov

pair associated to the positive definite kernel k.

If H is an Hilbert space with scalar product 〈·, ·〉H, the exponential kernel

exp〈·, ·〉H : (x, y) ∈ H ×H → C (2.5)

is also a positive definite kernel on H.

Definition 2.1. The Kolmogorov pair associated to the positive definite kernel

exp〈·, ·〉H on H is denoted (
Γ(H), Exp( · )

)
and called the exponential space (or Boson Fock space) over H.

The total set

Exp(H) :=
{
Exp(f) :=

+∞∑
n=0

f⊗n√
n!
∈ Γ(H) ; f ∈ H

}
is called the set of exponential vectors of Γ(H).

The characterizing property of the exponential vectors is

〈Exp(f), Exp(g)〉 = 〈ef , eg〉 = e〈f,g〉H ; ∀f, g ∈ H (2.6)

Clearly any exponential kernel (2.6) is infinitely divisible. The converse state-

ment is the main point of the Araki–Woods–Parthasarathy–Schmidt theorem.

Theorem 2.1. (Araki–Woods–Parthasarathy–Schmidt)

For a kernel k on a set S the following statements are equivalent:

(i) k is infinitely divisible positive definite

(ii) there exists a conditionally positive definite kernel q0 such that k has the form

k(f, g) = eq0(f,g) ; f, g ∈ S

(iii) For any f0 ∈ S the kernel q on S, defined by

q(f, g) = q0(f, g)− q0(f, f0)− q0(f0, g) (2.7)

is positive definite and the map

κ : f ∈ S 7−→ κf := −q0(f0, f) ∈ C (2.8)

is such that, denoting (H, e·) and (K, u) the Kolmogorov decompositions of k

and q respectively, then the map

U : Exp(uf ) ∈ Γ(K) 7−→ eκf ef ∈ H (2.9)

extends to a unitary isomorphism between H and the Fock space Γ(K) over K.
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3. The Kolmogorov isomorphism associated to an infinitely

divisible probability measure on R

In this section we construct the explicit form of the isomorphism (2.9) in the case

in which the kernel k is the one associated to an infinitely divisible law on R.

It is known, (see 24), that any infinitely divisible probability measure µ on R is

canonically associated to a triple (α, σ, β) such that:

– α is a real constant

– β is a positive finite measure on R with

σ2 = β({0})

– denoting µ̂ the Fourier transform of µ and Ψ, the function

Ψ(x) = iαx− σ2

2
x2 +

∫
R\{0}

(
eixt − 1− ixt

1 + t2

)1 + t2

t2
dβ(t) ; x ∈ R (3.1)

one has

µ̂(x) =: eΨ(x) ; x ∈ R (3.2)

Conversely given any such a triple (α, σ, β), there exists an infinitely divisible prob-

ability measure on R whose has the form (3.2) with Ψ given by (3.1).

The function Ψ is called the Lévy–Khintchine function, or the characteristic expo-

nent, of µ and the triple (α, σ, β) is called a generating triple for the measure µ.

Finally the measure on R \ {0}

dν(t) =
1 + t2

t2
dβ(t) (3.3)

is called the Lévy measure of µ.

In the following the measure µ will be fixed and the corresponding random variable

will be denoted X1. For any such µ the kernel on R

q0(x, y) := Ψ(y − x)

is conditionally positive definite and the kernel

k(x, y) := eΨ(y−x)

is infinitely divisible and positive definite. Moreover, in this case, the Araki–Woods–

Parthasarathy–Schmidt isomorphism described in theorem (2.1) can be explicitly

expressed in terms of the Lévy triple of µ as shown in the following theorem.

Theorem 3.1. Let µ be an infinitely divisible measure with generating triple

(α, σ, β). For each x ∈ R and for any b ∈ C such that

|b|2 = σ (3.4)

denote:

(i) ex ∈ L2(µ) the trigonometric function associated to x

ex(t) := eitx ; t ∈ R (3.5)
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(ii) fx be the function defined by

fx(t) := eixt − 1 (3.6)

and K0 the space:

K0 := closed linear span of {fx , x ∈ R} ⊆ L2(ν) (3.7)

(iii) ux the vector in C⊕K0 given by:

ux = bx+ fx ∈ C⊕K0 (3.8)

where fx is defined by (3.6) and b by (3.4).

Then each fx (x ∈ R) is in L2(ν) and the unique linear operator U such that ∀x ∈ R:

U : eΨ(x)Exp(ux) ∈ Γ(C⊕K0) −→ U(eΨ(x)Exp(ux)) := ex ∈ L2(µ) (3.9)

is a unitary isomorphism from the Fock space Γ(C⊕K0), over C⊕K0, to L2(µ).

Remark 3.1. The linear independence of the fxs (∈ R) depends on the support of

the Lévy measure of µ. However in any case there exists a subset S0 ⊆ R such that

{fx : x ∈ S0} is a linearly independent set and

K0 := closed linear span of {fx , x ∈ S0}

Proof. The fact that the set

E := {fx ; x ∈ R} (3.10)

is contained L2(ν), i.e. that the integral∫
R\{0}

|fx(t)|2ν(dt) =

∫
R\{0}

|fx(t)|2 1 + t2

t2
β(dt)

is finite for all x ∈ R,is well known. We include a proof for completeness. Notice

that, as t −→ 0

|fx(t)|2 1 + t2

t2
= 2(1− cos(xt))

1 + t2

t2
∼ x2

while, as t −→∞

|fx(t)|2 1 + t2

t2
≤ 4

1 + t2

t2
∼ 4

Therefore the measurable function

t 7→ |fx(t)|2 1 + t2

t2

is bounded hence integrable w.r.t. the finite measure β.

In the notations of theorem (2.1) we choose:

S = R ; k(x, y) = eΨ(y−x) ; q0(x, y) = Ψ(y − x) ; f0 := 0 ∈ R
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Then, using the expression (3.1) for the Lévy–Khintchine function, one has

q0(x, y) = Ψ(y − x)

= iα(y − x)− σ2

2
(y − x)2 +

∫
R\{0}

(
ei(y−x)t − 1− i(y − x)t

1 + t2

)
ν(dt)

Therefore since, in the notation (2.8):

κx = −q0(0, x) = −iαx+
σ2

2
x2 −

∫
R\{0}

(
eixt − 1− ixt

1 + t2

)
ν(dt)

Thus, with the above choices, the kernel q defined by (2.7) is given by:

q(x, y) = iα(y − x)− σ2

2
(y − x)2 +

∫
R\{0}

(
ei(y−x)t − 1− i(y − x)t

1 + t2

)
ν(dt)

+ iαx− σ2

2
x2 +

∫
R\{0}

(
e−ixt − 1 +

ixt

1 + t2

)
ν(dt)

− iαy − σ2

2
y2 +

∫
R\{0}

(
eiyt − 1− iyt

1 + t2

)
ν(dt)

= σ2xy +

∫
R\{0}

(
ei(y−x)t − e−ixt − eiyt + 1

)
ν(dt)

= σ2xy +

∫
R\{0}

fx(t)fy(t)ν(dt) (3.11)

The right hand side of (3.11) suggests a natural choice for a Kolmogorov represen-

tation of the kernel q. In fact the first term of the sum is a scalar product on R
and the second, due to the linear independence of the fx’s, x ∈ S0 extends to a

scalar product on the space K0, defined by (3.7). The complexification of the inner

product (3.11) gives a scalar product on the space

K := C⊕K0 (3.12)

with inner product

〈·, ·〉K := 〈·, ·〉 := 〈·, ·〉C + 〈·, ·〉L2(ν) (3.13)

From the definition of K0 it is clear that the range of the map (3.8) is total in C⊕K0.

Therefore the pair (K, u) defined respectively by (3.12) and (3.8) is a Kolmogorov

representation of the kernel q. Passing to the exponential space Γ(K) of K the

exponential kernel of the scalar product (3.13) is:〈
Exp(ux), Exp(uy)

〉
= e〈ux,uy〉 = eq(x,y)

On the other hand one has:

eΨ(y−x) =

∫
R
e−ixteiytµ(dt) = µ̂(y − x) = 〈ex, ey〉L2(µ)
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and the family of trigonometric exponentials {ex , x ∈ R} is total in L2(µ). It

follows that, if we define the linear map

U : Γ(K) = Γ
(
C⊕ L2(ν)

)
−→ L2(µ)

by linear extension of

U(eΨ(x)Exp(ux)) = ex ; x ∈ R

then we get

〈ex, ey〉L2(µ)
= µ̂(y − x) = eΨ(y−x) = eq0(x,y) = eq(x,y)+q0(x,0)+q0(0,y) =

= e〈ux,uy〉+Ψ(x)+Ψ(y) =
〈
eΨ(x)Exp(ux), eΨ(y)Exp(uy)

〉
Γ(K)

Therefore the pair

(H, e) := (L2(µ), (ex)x∈R)

is a Kolmogorov representation of the kernel Exp〈·, ·〉K. �

Example 3.1. (Gaussian case)

Let X1 ∼ N (0, σ2) =: µ
G

be the mean zero, real valued, Gaussian random variable

with variance σ2. Then

q(x, y) = σ2xy ; k(x, y) = exp
{
− σ2

2
|y − x|2

}
; −Ψ(x) =

σ2

2
x2

In this case

K = C ; H = L2(µ
G

) ; ux = bx ∈ C,

with |b| = σ and ex given by (3.5). Hence the Gaussian isomorphism is given by

UG : Γ(C) 3 e−σ
2

2 x
2

Exp(bx) 7−→ ex ∈ L2(µ
G

)

Example 3.2. (Poisson case)

Let X1 ∼
∏

(λ) =: µ
P

be the Poisson random variable with intensity λ > 0. In this

case

H = L2(µ
P

) =
{
z = (zn)n,

∞∑
n=0

λn

n!
|zn|2 <∞

}
≡ `2(N)

and we refer it to the orthonormal basis:

ex = (einx)n

Introducing the function (extended to zero by continuity)

e1 : x ∈ R→ e1(x) :=
ex − 1

x
∈ R

one has

q(x, y) = λxye1(−ix)e1(iy) = λxye1(ix)e1(iy),
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k(x, y) = exp
{
iλ(y − x)e1(i(y − x))

}
; −Ψ(x) = −iλxe1(ix).

K = C ; ux =
√
λxe1(ix) ∈ C

As a consequence we obtain the following Poisson isomorphism

U
P

: Γ(C) 3 eλ(eix−1)Exp(
√
λxe1(ix)) 7−→ (einx)n ∈ L2(µ

P
)

Example 3.3. (Gamma case)

Let X1 ∼ Γ(α) be the Gamma random variable with parameter α > 0. Then

q(x, y) =

∫
R

(e−ixt − 1)(eiyt − 1)νΓ(dt)

where

ν
Γ
(dt) =

e−αt

t
1(0,∞)

is the Lévy measure of the Gamma distribution µΓ . By a simple calculation we have

k(x, y) = e−α log(1−i(y−x)) ; −Ψ(x) = α log(1− ix)

In this case

K = L2(νΓ) ; H = L2(µΓ) ; ux = fx,

where fx is given by Eq. (3.6) and we obtain the Gamma isomorphism

U
Γ

: Γ(L2(ν
Γ
)) 3 e−α log(1−ix)Exp(ex − 1) 7−→ ex ∈ L2(µ

Γ
)

Lemma 3.1. If the Lévy measure ν (see (3.3)) has finite second order moment∫
R\{0}

|t|2ν(dt) < +∞ (3.14)

then K0 = L2(ν).

Proof. We know from Theorem (3.1) that E is a subset of L2(ν). Let f ∈ L2(ν)

satisfy

〈fx, f〉 =

∫
R\{0}

fx(t)f(t)ν(dt) = 0 ; ∀x ∈ R (3.15)

and consider the function

F (x) :=

∫
R\{0}

h(x, t)ν(dt)

where h(t, x) = (eixt − 1)f(t). To prove that F is derivable it is sufficient to check

the two following conditions.

(i) x 7−→ h(x, t) is derivable on R for ν-a.e. t ∈ R \ {0}.
(ii) ∂

∂xh(x, t) exists on R for ν-a.e. t ∈ R \ {0} and | ∂∂xh(x, t)| is dominated by a

ν-integrable function ϕ(t), independent of x.
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Condition (i) is easily checked and we have∣∣∣ ∂
∂x
h(x, t)

∣∣∣ = |iteixtf(t)| = |tf(t)| =: ϕ(t)

But ∫
R\{0}

ϕ(t)ν(dt) ≤
(∫

R\{0}
t2ν(dt)

) 1
2
(∫

R\{0}
|f(t)|2ν(dt)

) 1
2

< +∞

This gives (ii). Then from (3.15), we deduce that F (x) = 0 ∀x ∈ R. Hence

F ′(x) =

∫
R\{0}

iteixtf(t)ν(dt) = 0 ∀x ∈ R

which is equivalent to ρ̂(x) = 0, where the the signed measure ρ is given by

ρ(dt) = tf(t)ν(dt)

This gives that ρ is the null measure which implies that f = 0. �

4. The generalized field operator

It is known that the bosonic Fock space Γ(H) can be represented in the form

Γ(H) :=

+∞⊕
n=0

H◦n

where H◦n denotes the n–th symmetric tensor power of H and by definition H◦n :=

CΦ where Φ is the vacuum vector. Using this identification the bosonic creation and

annihilation operators are defined, on the total set

{v1 ◦ · · · ◦ vn ∈ H◦n : v1, . . . , vn ∈ H}

as follows: for u ∈ H,

A+(u) : v1 ◦ · · · ◦ vn ∈ H◦n 7−→
√
n+ 1 u ◦ v1 ◦ · · · ◦ vn ∈ H◦(n+1) (4.1)

A+(u)Φ = u

A−(u) : v1 ◦ · · · ◦ vn ∈ H◦n 7−→
1√
n

n∑
i=1

〈u, vi〉v1 ◦ · · · ◦ v̂i ◦ · · · ◦ vn ∈ H◦(n−1) (4.2)

A−(u)Φ = 0,

where .̂ denotes omission of the corresponding variable.

Definition 4.1. The differential second quantized Λ(T ) of a self–adjoint operator

T of H is defined via the Stone theorem by

Γ(eitT ) =: eitΛ(T ) , t ∈ R,

where for an unitary operator X,Γ(X) is the second quantized of X.
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The creation, annihilation operators and second quantized operator of T act on

the domain of the exponential vectors as follows:

A−(u)Exp(x) := 〈u, x〉Exp(x) , A+(u)Exp(x) :=
d

ds

∣∣∣
s=0

Exp(x+ su) (4.4)

and

Γ(T )Exp(x) := Exp(Tx)

It follows that if x ∈ Dom(T )

Λ(T )Exp(x) = −i d
ds

∣∣∣
s=0

Exp(eisTx) = A+(Tx)Exp(x) (4.5)

Definition 4.2. Let q be the multiplication (position) operator in L2(µ):

(qf)(t) := tf(t) ; f ∈ L2(µ) , t ∈ R

Define the operator Q on Γ(C⊕K0) by

Q := U∗qU

where U is the isomorphism defined by (3.9). Since µ is a finite measure on R, q is

self–adjoint (see 23 Proposition 1, chapter VIII. 3) and

eitQ = U∗eitqU , t ∈ R

Moreover Q is called the generalized field operator.

Lemma 4.1. The one–parameter unitary group

t 7→ eitQ

acts on the total set
{
Exp(ux), x ∈ R

}
as follows:

eitQExp(ux) = eΨ(x+t)−Ψ(x)Exp(ux+t) (4.6)

Proof. From the definition (3.9) of the isomorphism U we get

eitQExp(ux) = U∗eitqUExp(ux) = U∗eitq
(
e−Ψ(x)ex

)
= e−Ψ(x)U∗

(
eitqeix(·)

)
= e−Ψ(x)U∗

(
ei(t+x)(·)

)
= e−Ψ(x)U∗

(
ex+t

)
= e−Ψ(x)eΨ(x+t)U∗

(
e−Ψ(x+t)ex+t

)
= e−Ψ(x)eΨ(x+t)Exp(ux+t) = eΨ(x+t)−Ψ(x)Exp(ux+t)

�

Lemma 4.2. The following statements are equivalent:

(i) The second moment of µ is finite.
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(ii) The vacuum vector is in the domain D(Q) of Q.

(iii) There exists y ∈ R such that Exp(uy) is in the domain D(Q) of Q.

(iv) The total set
{
Exp(uy), y ∈ R

}
is in the domain of Q.

Proof. The domain D(q) of the multiplication operator q is defined by

D(q) :=
{
f ∈ L2(µ) , xf ∈ L2(µ)

}
Therefore, given y ∈ R, Exp(uy) ∈ D(Q) if and only if

+∞ > ‖Q
(
Exp(uy)

)
‖2 = ‖U∗QU

(
Exp(uy)

)
‖2 = ‖q

(
e−Ψ(y)ey

)
‖2

= e−2<(Ψ(y))〈ey, q2ey〉 = e−2<(Ψ(y))

∫
R\{0}

t2µ(dt)

= e−2<(Ψ(y))〈Φ, Q2Φ〉Γ(K)

From which the thesis immediately follows. �

Proposition 4.1. If the second moment of µ is finite, the generalized field operator

Q acts on the total set {Exp(ux), x ∈ R} as follows:

Q
(
Exp(ux)

)
=
(
A+(hx) +A−(hx) + λ(x)

)
Exp(ux)

where

hx := −ib+ qex ; λ(x) = E(X1)− 2<〈hx, ux〉

where E(X1) denotes the first moment of µ (which under our assumptions exists).

Proof. It is known (see 24) that µ has a finite second moment if and only if ν has

the same property and in this case Ψ is twice differentiable. Thus one can take the

derivative at t = 0 of equation (4.6) obtaining

iQExp(ux) = Ψ′(x)Exp(ux) +
d

dt

∣∣∣
t=0

Exp(ux+t) (4.7)
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But with notation f(t) = ux+t − ux one has

d

dt

∣∣∣
t=0

Exp(ux+t) = lim
t→0

+∞∑
n=0

1√
n!

(
ux+t

)⊗n − (ux)⊗n

t

=

+∞∑
n=1

1√
n!

lim
t→0

(
ux+t

)⊗n − (ux)⊗n

t

=

+∞∑
n=1

1√
n!

lim
t→0

(
f(t) + ux

)⊗n − (ux)⊗n

t

=

+∞∑
n=1

1√
n!

lim
t→0

n∑
k=1

(
n

k

)
f(t)

t
⊗̂(f(t))⊗̂(k−1)⊗̂(ux)⊗̂(n−k)

=

+∞∑
n=1

√
n√

(n− 1)!
f ′(0)⊗̂(ux)⊗̂(n−1)

Note that

f ′(0) = lim
t→0

ux+t − ux
t

= lim
t→0

b(x+ t)− bx
t

+
fx+t − fx

t
= b+ iqex

= ihx

Then from (4.1) we conclude that

d

dt

∣∣∣
t=0

Exp(ux+t) =

+∞∑
n=1

√
n√

(n− 1)!
ihx⊗̂(ux)⊗(n−1) = iA+(hx)Exp(ux).

On the other hand we have

Ψ′(x) = iα− σ2x+

∫
R\{0}

(
iteixt − it

1 + t2

)
ν(dt)

= iα− σ2x+

∫
R\{0}

(iteixt − it)ν(dt) +

∫
R\{0}

(
it− it

1 + t2

)
ν(dt)

= iα− σ2x+ i

∫
R\{0}

(teixt − t)ν(dt) + i

∫
R\{0}

tβ(dt)

and

〈ux, hx〉 = iσ2x+

∫
R\{0}

(eixt − 1)teixtν(dt)

= iσ2x+

∫
R\{0}

(t− teixt)ν(dt).

Then using the fact that

E(X1) = −iΨ′(0) = α+

∫
R\{0}

tβ(dt),
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we get

Ψ′(x) = iE(X1)− i〈ux, hx〉.

Thus

Ψ′(x) = i
(
E(X1)− 2<(〈hx, ux〉)

)
+ i〈hx, ux〉 = iλ(x) + i〈hx, ux〉

and we obtain

QExp(ux) = λ(x)Exp(ux) + 〈hx, ux〉Exp(ux) +A+(hx)Exp(ux)

= A+(hx)Exp(ux) +A−(hx)Exp(ux) + λ(x)Exp(ux).

�

Theorem 4.1. Assume that the second moment of µ is finite. Then under the

identification

Γ(C⊕ L2(ν)) ≡ Γ(C)⊗ Γ(L2(ν)) =: ΓG ⊗ Γ
CP

Exp(z ⊕ f) ≡ Exp(z)⊗ Exp(f), (4.8)

the generalized field operator Q takes the form

Q = Q
G
⊗ 1 + 1⊗Q

CP
,

where

Q
G

= A+(−ib) +A−(−ib) = i(b̄a− ba+)

Q
CP

= A+
ν (q · 1) +A−ν (q · 1) + Λν(q) + E(X1)1 (4.9)

and a, a+ are the usual 1–mode creation and annihilation operators and A+
ν , A

−
ν ,Λν

are the creation, annihilation and preservation operators in the Fock representation

of L2(ν).

Remark 4.1. Notice that in general the constant function 1 /∈ L2(ν). However, if

the second moment of µ is finite, then q ·1 ∈ L2(ν) so that expressions like A±ν (q ·1)

make sense.
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Proof. By using Proposition (4.1) and the identification (4.8), we have

QExp(ux) =
d

ds

∣∣∣
s=0

Exp(ux + shx) + 〈−ib+ qex, bx+ fx〉Exp(bx+ fx)

+
(
E(X1)− 2<(〈hx, ux〉)

)
Exp(bx+ fx)

=
d

ds

∣∣∣
s=0

Exp
(
(bx+ s(−ib)) + (fx + sqex)

)
+
(
〈−ib, bx〉+ 〈qex, fx〉

)
Exp(bx+ fx)

+
(
E(X1)− 2<(〈hx, ux〉)

)
Exp(bx+ fx)

=
d

ds

∣∣∣
s=0

(
Exp(bx+ s(−ib))⊗ Exp(fx + sqex)

)
+
(
〈−ib, bx〉+ 〈qex, fx〉

)
Exp(bx+ fx)

+
(
E(X1)− 2<(〈hx, ux〉)

)
Exp(bx+ fx)

=
( d
ds

∣∣∣
s=0

Exp(bx+ s(−ib))
)
⊗ Exp(fx)

+ Exp(bx)⊗
( d
ds

∣∣∣
s=0

Exp(fx + sqex)
)

+ 〈−ib, bx〉Exp(bx)⊗ Exp(fx) + 〈qex, fx〉Exp(bx)⊗ Exp(fx)

+
(
E(X1)− 2<(〈hx, ux〉)

)
Exp(bx)⊗ Exp(fx)

Hence by equation (4.4) we have

QExp(ux) =
(
A+(−ib)Exp(bx)

)
⊗ Exp(fx) + Exp(bx)⊗

(
A+
ν (qex)Exp(fx)

)
+
(
A−(−ib)Exp(bx)

)
⊗ Exp(fx) + Exp(bx)⊗

(
A−ν (qex)Exp(fx)

)
+ Exp(bx)⊗

(
λ(x)Exp(fx)

)
=
[(
A+(−ib) +A−(−ib)

)
Exp(bx)

)
⊗ Exp(fx)

+ Exp(bx)⊗
[(
A+
ν (qex) +A−ν (qex) + λ(x)

)
Exp(fx)

]
, (4.10)
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where

λ(x) = −2

∫
R\{0}

(t− t cos(xt))ν(dt) + E(X1)

=

∫
R\{0}

[−2t+ t(eixt + e−ixt)]ν(dt) + E(X1)

=

∫
R\{0}

(−t+ teixt)ν(dt) +

∫
R\{0}

(−t+ te−ixt)ν(dt) + E(X1)

= −(〈qex, fx〉+ 〈fx, qex〉) + E(X1)

Therefore using the fact that

qex = q · 1 + qfx ; 〈fx, qex〉 = −〈q · 1, fx〉

and equation (4.5), we obtain

(
A+
ν (qex) +A−ν (qex) + λ(x)

)
Exp(fx) = A+

ν (q · 1 + qfx)Exp(fx) + 〈qex, fx〉Exp(fx)

−
(
〈qex, fx〉+ 〈fx, qex〉

)
Exp(fx) + E(X1)Exp(fx)

= A+
ν (q · 1)Exp(fx) +A+

ν (qfx)Exp(fx)− 〈fx, q · 1〉Exp(fx) + E(X1)Exp(fx)

= A+
ν (q)Exp(fx) + Λν(q)Exp(fx) + 〈q · 1, fx〉Exp(fx) + E(X1)Exp(fx)

= A+
ν (q · 1)Exp(fx) + Λν(q)Exp(fx) +A−ν (q · 1)Exp(fx) + E(X1)Exp(fx)

Finally, the previous equation and (4.10) yields

Q =
(
A+(−ib) +A−(−ib)

)
⊗ 1 + 1⊗

(
A+
ν (q · 1) +A−ν (q · 1) + Λν(q) + E(X1)1

)
= Q

G
⊗ 1 + 1⊗Q

CP

�

5. The weak quantum decomposition

If the second order moment of ν does not exist the technique used in the proof of

Theorem (4.1) cannot be applied.

In the present section we assume that only the first order moment of ν is finite,

meaning by this that the vector q · 1 ∈ L1(ν) but q · 1 /∈ L2(ν). This implies that

for any f ∈ L∞(ν), q · f ∈ L1(ν).

Under this assumption we prove that the quantum decomposition of the generalized

field can be given a meaning in a weak sense (see Definition (5.3) below).
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Since the problem of infinite moments is only related to the Lévy measure, in this

and the following section we will neglect the Gaussian part (i.e. we focus on the case

b = 0) and for simplicity of notation we denote again Ψ the characteristic exponent

associated to the compound Poisson process.

If µ has only the first order moment, then q · 1 /∈ L2(ν) and the first problem is to

define objects like:

A+
ν (q · 1) ; A−ν (q · 1)

To this goal recall that, denoting Un(K0) the unitary group on K0, for any

(u, T, v, z) ∈ K0 × Un(K0)×K0 × C (5.1)

the operator

Γ(u, T, v, z) = eA
+(u)Γ(T )eA

−(v)ez (5.2)

is well-defined on the domain of the exponential vectors and maps the scalar mul-

tiples of these vectors into themselves because

Γ(u, T, v, z)Exp(f) = ez+〈v,f〉Exp(Tf + u) ; f ∈ K0 (5.3)

Moreover the set (5.1) is a group for the composition law

(u1, T1, v1, z1) ◦ (u2, T2, v2, z2) := (u1 + Tu2, T1T2, v2 + T ∗2 v1, z1 + z2 + 〈v1, u2〉)

(a generalization of the Heisenberg group) and the map

(u, T, v, z) ∈ K0 × Un(K0)×K0 × C→ Γ(u, T, v, z)

is a group representation, i.e. ∀u1, u2, v1, v2 ∈ L2(ν), z1, z2 ∈ C and for any two

unitary operators T1, T2 on K0 one has (see12):

Γ
(
u1, T1, v1, z1

)
Γ
(
u2, T2, v2, z2

)
= Γ

(
u1 + Tu2, T1T2, v2 + T ∗2 v1, z1 + z2 + 〈v1, u2〉

)
Theorem 5.1. The operator valued function

t 7−→W (t) := Γ(ft, e
itq, f−t,Ψ(t)) = eA

+(ft)Γ(eitq)eA
−(f−t)eΨ(t) (5.4)

is a strongly continuous one-parameter unitary group with generator Q
CP

.

Proof.

Step 1. It is known (and easily checked) that (ft) is a 1–cocycle for the group

(eisq)s∈R, i.e.

ft+s = eisqft + fs , f−t = −e−itqft

and that the 2–coboundary associated to Ψ has the form

Ψ(t+ s)−Ψ(s)−Ψ(t) = Ψ(t− (−s))−Ψ(−s)−Ψ(t) = q(−s, t) = 〈f−s, ft〉

Therefore, for f, g ∈ K0, one has:

〈W (t)Exp(f),W (t)Exp(g)〉 =
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=
〈
eΨ(t)+〈f−t,f〉Exp(eitqf + ft), e

Ψ(t)+〈f−t,g〉Exp(eitqg + ft)
〉

= exp
{

Ψ(t) + Ψ(t) + 〈f−t, f〉+ 〈f−t, g〉
}〈
Exp(eitqf + ft), Exp(e

itqg + ft)
〉

= exp
{

Ψ(t) + Ψ(t) + 〈f−t, f〉+ 〈f−t, g〉+ 〈eitqf + ft, e
itqg + ft〉

}
= exp

{
〈ft, ft〉+ Ψ(t) + Ψ(t) + 〈−e−itqft, f〉+ 〈−e−itqft, g〉

+ 〈f, e−itqft〉+ 〈ft, eitqg〉+ 〈f, g〉
}

= exp
{
q(t, t) + Ψ(t) + Ψ(t) + 〈f, g〉}

= exp{〈f, g〉}

=
〈
Exp(f), Exp(g)

〉
Thus W (t) is unitary ∀t ∈ R.

Step 2. Now we prove the group property and the strong continuity.

It is easily seen that

W (0) = Γ(f0,1, f0,Ψ(0)) = 1

and we have

W (t)W (s) = Γ
(
ft, e

itq, f−t,Ψ(t)
)
Γ
(
fs, e

isq, f−s,Ψ(s)
)

= Γ
(
ft + eitqfs, e

itqeisq, f−s + (eisq)∗f−t,Ψ(t) + Ψ(s) + 〈f−t, fs〉
)

From the identities

ft + eitqfs = ft+s ; f−s + (eisq)∗f−t = f−s + e−isqf−t = f−s−t

Ψ(t) + Ψ(s) + 〈f−t, fs〉 = Ψ(t) + Ψ(s) + q(−t, s)

= Ψ(t) + Ψ(s) + Ψ(s− (−t))−Ψ(−t)−Ψ(s)

= Ψ(t+ s)

we deduce that

W (t)W (s) = Γ(ft+s, e
i(t+s)q, f−(t+s),Ψ(t+ s)) = W (t+ s)

For the strong continuity, it is sufficient to prove that

lim
t→0
‖W (t)Exp(f)− Exp(f)‖ = 0 ∀f ∈ L2(ν)
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We have

‖W (t)Exp(f)− Exp(f)‖2 = ‖W (t)Exp(f)‖2 + ‖Exp(f)‖2

− 2<
〈
Exp(f),W (t)Exp(f)

〉
= 2‖Exp(f)‖2 − 2<

〈
Exp(f),W (t)Exp(f)

〉
= 2e‖f‖

2

− 2<
(〈
Exp(f), exp(Ψ(t) + 〈f−t, f〉)

Exp(eitqf + ft)
〉)

= 2e‖f‖
2

− 2<
(

exp(Ψ(t) + 〈f−t, f〉 (5.5)

+ 〈f, eitqf〉+ 〈f, ft〉)
)
.

By dominated convergence ∀f ∈ K0 one has

〈f, eitqf〉 =

∫
R\{0}

|f(s)|2eitsν(ds) −→ ‖f‖2 as (t→ 0) (5.6)

On the other hand for |t| < 1, one has also

∣∣∣f(s)(eist − 1)
∣∣∣ ≤ ϕ(s) =


|sf(s)| if |s| ≤ 1;

2|f(s)| if |s| > 1.

and ϕ ∈ L1(ν) because∫
R\{0}

ϕ(s)ν(ds) =

∫
|s|≤1

|sf(s)|ν(ds) +

∫
|s|>1

2|f(s)|ν(ds)

≤
(∫
|s|≤1

s2ν(ds)
) 1

2
(∫
|s|≤1

|f(s)|2ν(ds)
) 1

2

+ 2
(∫
|s|>1

ν(ds)
) 1

2
(∫
|s|>1

|f(s)|2ν(ds)
) 1

2

<∞

Again by dominated convergence we conclude that

lim
t→0
〈f, ft〉 =

∫
R\{0}

lim
t→0

f(s)(eist − 1)ν(ds) = 0. (5.7)

Taking the limit t→ 0 in Eq. (5.5) and using (5.6) and (5.7) one obtains

lim
t→0
‖W (t)Exp(f)− Exp(f)‖2 = lim

t→0
2
(
e‖f‖

2

−<(e‖f‖
2

)
)

= 0.
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Finally from (4.6) one sees that, for all t ∈ R

W (t)Exp(fx) = exp
(

Ψ(t) + 〈f−t, fx〉
)
Exp(eitqfx + ft)

= exp
(

Ψ(t) + q(−t, x)
)
Exp(fx+t)

= exp
(

Ψ(x+ t)−Ψ(x)
)
Exp(fx+t)

= eitQCP Exp(fx)

�

5.1. Distribution valued operators

In this section we extend the definition of creation, annihilation and preservation

operators to include the case when the images of some vectors in the Fock space are

not vectors of the same space but elements in the algebraic dual of a dense subspace

of it. In this sense we speak of distribution valued operators. Using a variant of the

Hida–Kubo–Takenaka construction it is possible to introduce topologies such that

the action of these operators become continuous, but this construction, not needed

in the present paper, will be discussed elsewhere.

We emphasize, for future use, that all the arguments and constructions in the

present sub–section do not require that q · 1 ∈ L1(ν).

Definition 5.1. A distribution valued operator T on a Hilbert space H with dense

domain D is a linear map from D ⊆ H to its algebraic dual D′.

Remark 5.1. The natural embedding

ξ ∈ H 7→ 〈ξ, · 〉 ∈ H′ ⊂ D′

allows to adopt the language of standard triplets

D ⊂ H ⊂ D′

and to interpret the elements of D′ as vector valued distributions on D.

Let Cν be a total set in K0 with the following properties:

(C.i) Cν is invariant under complex conjugate,

(C.ii) for all g ∈ Cν , the distributions

q · 1 : f 7−→ 〈q · 1, f〉 and q · g : f 7−→ 〈q · g, f〉 = 〈q · 1, f ḡ〉

are well-defined on Lin− span(Cν).
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Definition 5.2. For f ∈ Cν , define the operators A−ν (q · 1) and A−ν (qf) on the

domain Exp(Cν) ⊆ Γ(K0) (the linear subspace of Γ(K0) generated by {Exp(g) :

g ∈ Cν}) by linear extension of:

A−ν (q · 1)Exp(g) := 〈q · 1, g〉Exp(g) ; g ∈ Cν (5.8)

and

A−ν (qf)Exp(g) := 〈q · 1, f̄g〉Exp(g) ; g ∈ Cν (5.9)

respectively.

Define the distribution valued operators A+
ν (q · 1) and Λν(q) on the domain

Exp(Cν) ⊂ Γ(K0) by the prescription that, for each f, g ∈ Cν one has:

〈A+
ν (q · 1)Exp(f), Exp(g)〉 := 〈Exp(f), A−ν (q · 1)Exp(g)〉 (5.10)

〈Λν(q)Exp(f), Exp(g)〉 := 〈Exp(f), A−ν (qf)Exp(g)〉 (5.11)

Remark 5.2. One easily proves that the definition (5.11) of Λν(q) is compatible

with the usual one, as the differential second quantization of q, in the sense that

the two definitions coincide on the set of exponential vectors with test functions in

the domain of q.

5.2. Weak domains

Definition 5.3. Let U(t) = eitA be a strongly continuous one–parameter unitary

group on a Hilbert space H with generator A. Define the weak domain wk–dom(A)

of A as the maximal subspace D of H such that ∀ϕ, φ ∈ D the limit

lim
t→0

〈U(t)− 1

t
ϕ, φ

〉
exists.

Remark 5.3. Clearly the weak domain of A contains the domain of A. In particular

wk–dom(A) is a dense subspace of H and A can be defined as a distribution valued

operator on its weak domain by the prescription:

Aψ := i lim
t→0

〈U(t)− 1

t
ψ, ·

〉
Lemma 5.1. Let Cν := E = {fx, x ∈ R} ⊂ K0. Then Cν is a total set in K0

satisfying conditions (C.i) and (C.ii). Moreover for all f ∈ Cν , the function

F : t 7−→ 〈ft, f〉

is derivable at t = 0 and

F ′(0) = −i〈q · 1, f〉 := −i
∫
R\{0}

tf(t)ν(dt).

Proof. The totality is satisfied by definition of K0.

From relation f̄x = f−x, x ∈ R, we deduce that Cν is invariant under complex
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conjugate. Then condition (C.i) holds.

While the first order moment of ν exists, then (t 7−→ tfx(t)) ∈ L1(ν). In fact

|tfx(t)| ≤ 2|t|. This gives that

〈q · 1, fx〉 :=

∫
R\{0}

tfx(t)ν(dt)

exists for all x ∈ R. Then by a linear extension, the distribution

Cν 3 f 7−→ 〈q · 1, f〉 :=

∫
R\{0}

tf(t)ν(dt)

is well-defined.

From relation fxfy = fx+y − fx − fy, x, y ∈ R, we deduce that Cν is invariant

under multiplication and it is the same for Lin− span(Cν). Then for all g ∈ Cν , the

distribution

Lin− span(Cν) 3 f 7−→ 〈q · 1, f ḡ〉 :=

∫
R\{0}

tf(t)g(t)ν(dt)

is well-defined also which proves that Condition (C.ii) is satisfied.

Let x ∈ R, defining the function

t 7−→ F (t) := 〈ft, fx〉 =

∫
R\{0}

ft(s)fx(s)ν(dt).

First F is well-defined because ft, fx ∈ L2(ν). On the other hand∣∣∣ ∂
∂t

(
ft(s)fx(s)

)∣∣∣ = | − ise−istfx(s)| = |sfx(s)| ∈ L1(ν).

Then F is derivable at any t ∈ R and

F ′(t) = −i
∫
R\{0}

se−itsfx(s)ν(dt),

in particular F ′(0) = −i〈q · 1, fx〉. �

In the remain of this section, we take Cν := {fx, x ∈ R}.

Theorem 5.2. The exponential vectors Exp(Cν) are in the weak domain

wk–dom(Q
CP

) of Q
CP

. Moreover, on the domain Exp(Cν), the operator Q
CP

co-

incides with the distribution valued operator

A+
ν (q · 1) +A−ν (q · 1) + Λν(q) + E(X1)1 (5.12)

Proof. From Theorem (5.1) one knows that Q
CP

is the generator of W (t) and that:〈
W (t)Exp(fx), Exp(fy)

〉
=
〈
eΨ(t)+〈f−t,fx〉Exp(ft + eitqfx), Exp(fy)

〉
= exp

(
Ψ(−t) + 〈fx, f−t〉+ 〈ft, fy〉+ 〈eitqfx, fy〉

)
= eh(t)
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where

h(t) := Ψ(−t) + 〈fx, f−t〉+ 〈ft, fy〉+ 〈eitqfx, fy〉
= Ψ(−t) + 〈ft, f−x〉+ 〈ft, fy〉+ 〈ft, f−xfy〉+ 〈fx, fy〉
= Ψ(−t) + 〈ft, f−x + fy + f−xfy〉+ 〈fx, fy〉
= Ψ(−t) + 〈ft, fy−x〉+ 〈fx, fy〉

Lemma (5.1), proves that the function h is derivable at (t = 0) with

h′(0) = −ψ′(0)− i〈q · 1, fy−x〉

= −i
(
E(X1) + 〈q · 1, fy−x〉

)
= −i

(
E(X1) + 〈q · 1, fx〉+ 〈q · 1, fy〉+ 〈q · 1, fxfy〉

)
.

Then

lim
t→0

〈W (t)− 1

t
Exp(fx), Exp(fy)

〉
=

d

dt

∣∣∣
t=0
〈W (t)Exp(fx), Exp(fy)〉

= h′(0)eh(0)

Therefore for each fx ∈ Cν , Exp(fx) ∈ wk–dom(Q
CP

) i.e., Exp(Cν) ⊂
wk–dom(Q

CP
).

We know that Exp(Cν) is in the domain of the operator valued distributions

A−ν (q · 1), A+
ν (q · 1), Λν(q) and one has:

〈Q
CP
Exp(fx), Exp(fy)〉

= i lim
t→0

〈W (t)− 1

t
Exp(fx), Exp(fy)

〉
= ih′(0)eh(0)

=
(
E(X1) + 〈q · 1, fx〉+ 〈q · 1, fy〉+ 〈q · 1, fxfy〉

)
e〈fx,fy〉

=
〈
E(X1)Exp(fx), Exp(fy)

〉
+
〈
〈q · 1, fx〉Exp(fx), Exp(fy)

〉
+
〈
Exp(fx), 〈q · 1, fy〉Exp(fy)

〉
+
〈
Exp(fx), 〈q · 1, f̄xfy〉Exp(fy)

〉
=
〈
E(X1)Exp(fx), Exp(fy)

〉
+
〈
A−ν (q · 1)Exp(fx), Exp(fy)

〉
+
〈
Exp(fx), A−ν (q · 1)Exp(fy)

〉
+
〈
Exp(fx), A−ν (qfx)Exp(fy)

〉
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=
〈
E(X1)Exp(fx), Exp(fy)

〉
+
〈
A−ν (q · 1)Exp(fx), Exp(fy)

〉
+
〈
A+
ν (q · 1)Exp(fx), Exp(fy)

〉
+
〈

Λν(q)Exp(fx), Exp(fy)
〉

=
〈(

E(X1) +A−ν (q · 1) +A+
ν (q · 1) + Λν(q)

)
Exp(fx), Exp(fy)

〉
�

6. The renormalized quantum decomposition

In this section we assume the non existence of the first order moment of ν, i.e. that

q · 1 /∈ L1(ν).

Comparing the expressions (5.12) and (4.9) one sees that, even if they they should

be understood in different ways, they look formally the same and that the existence

of a finite first order moment is a necessary condition for both expressions to make

sense. Therefore, for random variables not satisfying this condition, one must look

for a notion of quantum decomposition different from the one given by expressions

of the form (4.9).

On the other hand the already emphasized fact, that all the results of section (5.1) do

not require the existence of the first order moment, suggests that all the problems

with the extension of expression (4.9) to random variables without moments is

concentrated on the scalar term in the sense that, after subtracting this term,

which is infinite in the case of random variables without moments, one obtains the

meaningful distribution valued operator

A+
ν (q · 1) +A−ν (q · 1) + Λν(q) (6.1)

In physics the procedure of subtracting infinite constants to some expressions, in

order to transform them into meaningful and physically measurable ones, is well

known and called additive renormalization.

In the present case a mere additive renormalization would not be sufficient because

it would leave open the question of the connection between the resulting expres-

sion (6.1) after additive renormalization and the original random variable without

moments. In other words, we want the renormalized quantum decomposition (6.1)

to be canonically associated to the the random variable Q
CP

or equivalently to the

1–parameter group exp itQ
CP

generated by it.

In the following we prove that such a canonical connection can be established using

a multiplicative renormalization procedure. In mathematical terms this means the

transition from a representation of the additive group R to a projective representa-

tion of the same group.

The idea of the construction of this projective representation is naturally suggested

by the proof of Theorem (5.2). In fact from it one can see that the emergence

of the first moment in the quantum decomposition is due to the derivative of the
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scalar term in the normally ordered form (5.4) of the one–parameter unitary group

exp itQ
CP

, i.e. exp Ψ(t). Therefore the emergence of the ”infinite constant” E(X1) in

the formal expression (5.12) is a manifestation of the fact that, if the first moment

of the random variable X1 is infinite, then the function Ψ is not differentiable.

In order to remove this constant from exp itQCP notice that, if (Wt)t∈R is a unitary

representation of R and t ∈ R 7−→ µt ∈ C is any measurable function, then the

1–parameter family

Vt := e−µtWt

is a projective, in general non unitary, representation of R with multiplier (which

is in fact a 2–co–boundary):

σ̂(s, t) := eµt+s−µs−µt

In other terms:

VsVt = σ̂(s, t)Vs+t ; s, t,∈ R

Now we apply this remark to the case when µt = Ψ(t) and Wt is given by (5.5).

Lemma 6.1. Let p be the orthogonal projection on K0 and C∞c,0 be the dense sub-

space of L2(ν) of the infinitely differentiable functions with compact support non

containing zero. Let

Cν := p(C∞c,0) = {p(ϕ), ϕ ∈ C∞c,0}

be the orthogonal projection of C∞c,0 on K0. Then Cν is a dense sub-space of K0

satisfying properties (C.i) and (C.ii).

Proof.

i Density:

Let f ∈ K0 ⊂ L2(ν), by the density of C∞c,0 in L2(ν), there exists ϕn ∈ C∞c,0
converging to f as n −→ +∞.

But by definition of p, ϕn − p(ϕn) ⊥ p(ϕn)− f ∈ K0 , then

‖ϕn − f‖2 = ‖(ϕn − p(ϕn)) + (p(ϕn)− f)‖2

= ‖ϕn − p(ϕn)‖2 + ‖p(ϕn)− f‖2

and we get

‖p(ϕn)− f‖ ≤ ‖ϕn − f‖ −→ 0 as (n −→ +∞).

Hence f is a limit of a sequence of Cν which proves the density.

ii Condition (C.i):

Let f = p(ϕ) ∈ Cν where ϕ ∈ C∞c,0. While C∞c,0 is invariant under complex

conjugate, then to prove this property for Cν , it is sufficient to prove that
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f̄ = p(ϕ̄).

We have f − ϕ ∈ K⊥0 = {fx, x ∈ R}⊥, then

〈f̄ − ϕ̄, fx〉 = 〈f−x, f − ϕ〉 = 0 ∀x ∈ R.

This gives f̄ − ϕ̄ ∈ K⊥0 . But f̄ ∈ K0. Then f̄ = p(ϕ̄) ∈ Cν .

iii Condition (C.ii):

For f ∈ Cν , let us consider the function F
f
(x) = 〈fx, f〉. Let ϕ ∈ C∞c,0 such that

f = p(ϕ). Then f − ϕ ∈ K⊥0 which gives F
f
(x) = 〈fx, ϕ〉. It is easily checked

that F
f

is derivable at x = 0 and

F ′
f
(0) = −i

∫
R\{0}

tϕ(t)ν(dt) = −i〈q · 1, ϕ〉.

Clearly that 〈q · 1, ϕ〉 dose not depend on the choice of ϕ but only on f . Then

the distribution

f 7−→ 〈q · 1, f〉 := 〈q · 1, ϕ〉 = iF ′
f
(0). (6.2)

is well-defined. Hence the first part of Condition (C.ii) is proved.

Let us proving the second part.

First notice that for all g ∈ K0, fxg ∈ K0. In fact g is a limit in L2(ν) of a

sequence (gn)n ⊂ Lin− span(E), then fxgn ∈ Lin− span(E). Moreover

‖ fxgn − fxg ‖2 =

∫
R\{0}

| fx(t)(gn(t)− g(t)) |2 ν(dt)

≤ 4 ‖ gn − g ‖2−→ 0 (as n −→ +∞).

Hence fxg is a limit of a some sequence of Lin − span(E), then it belongs to

K0.

Let f = p(ϕ) ∈ Cν , where ϕ ∈ C∞c,0. Then by definition of p, (f − ϕ) ⊥ fxg

which gives

〈fx, f ḡ − ϕḡ〉 = 〈fxg, f − ϕ〉 = 0.

Let consider the function

G
g,f

(x) := 〈fx, f ḡ〉 = 〈fx, ϕḡ〉 =

∫
R\{0}

f−x(t)g(t)ϕ(t)ν(dt)

Clearly that G
g,f

is derivable at x = 0 and

G′
g,f

(0) = −i
∫
R\{0}

tg(t)ϕ(t)ν(dt)

Defining

〈q · g, f〉 :=

∫
R\{0}

tg(t)ϕ(t)ν(dt) = iG′
g,f

(0).

Clearly that 〈q · g, f〉 does not depend of the choice of ϕ. Then the distribution

f 7−→ 〈q · g, f〉
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is well defined on Cν .

�

Theorem 6.1. Let W (t) be the one-parameter unitary group defined by (5.5) and

define:

V (t) := e−Ψ(t)W (t) = eA
+(ft)eΛ(itq)eA

−(f−t )

Then {V (t) ; t ∈ R} is a strongly continuous projective representation of R with

multiplier

σ̂(s, t) := eΨ(s+t)−Ψ(s)−Ψ(t)

Its generator Q
Ψ

contains Exp(Cν) in its weak domain and, on Exp(Cν), coincides

with

A+
ν (q · 1) +A−ν (q · 1) + Λν(q)

Proof. Since W (t) is a strongly continuous one–parameter unitary group and Ψ

is continuous, the strong continuity of V (t) is clear because, for any ϕ ∈ K0 and

t0 ∈ R, denoting ϕ0 := V (t0)ϕ one has as s→ 0:

‖V (t0 + s)ϕ− V (t0)ϕ‖ = ‖e−Ψ(t0+s)W (t0 + s)ϕ− ϕ0‖

= ‖e−Ψ(t0+s)+Ψ(t0)W (s)ϕ0 − ϕ0‖

≤ ‖W (s)
(
e−Ψ(s+t0)+Ψ(t0)ϕ0 − ϕ0

)
‖+ ‖W (s)ϕ0 − ϕ0‖

= ‖eΨ(t0)−Ψ(t0+s)ϕ0 − ϕ0‖+ ‖W (s)ϕ0 − ϕ0‖ −→ 0

Let f, g ∈ Cν , we have〈V (t)− 1

t
Exp(f), Exp(g)

〉
=

1

t

(
〈V (t)Exp(f), Exp(g)〉 − e〈f,g〉

)
=

1

t

(〈
e〈f−t,f〉Exp(eitqf + ft), Exp(g)

〉
− e〈f,g〉

)
=

1

t

(
e〈f−t,f〉+〈e

itqf+ft,g〉 − e〈f,g〉
)

=
1

t
(eh(t) − eh(0))

where in the notation of proof of Lemma (6.1)

h(t) = 〈f−t, f〉+ 〈eitqf + ft, g〉
= 〈f−t, f〉+ 〈ftf, g〉+ 〈f, g〉+ 〈ft, g〉
= F

f
(−t) +G

f,g
(t) + F

g
(t) + 〈f, g〉
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But it is clear from above calculations that h is derivable at (t = 0) and

h′(0) = −F ′
f
(0) + F ′

g
(0) +G′

f,g
(0)

= −i
(
〈q · 1, f〉+ 〈q · 1, g〉+ 〈q · 1, fg〉

)
then the lim

t→0

〈V (t)− 1

t
Exp(f), Exp(g)

〉
exist. Hence Exp(f) ∈ wk − Dom(Q

Ψ
)

and

〈QΨExp(f), Exp(g)〉

= i
〈

lim
t→0

V (t)− 1

t
Exp(f), Exp(g)

〉
= ih′(0)eh(0)

=
(
〈q · 1, f〉+ 〈q · 1, g〉+ 〈q · 1, fg〉

)
e〈f,g〉

=
〈
〈q · 1, f〉Exp(f), Exp(g)

〉
+
〈
Exp(f), 〈q · 1, g〉Exp(g)

〉
+
〈
Exp(f), 〈q · 1, fg〉Exp(g)

〉
=
〈
A−ν (q · 1)Exp(f), Exp(g)

〉
+
〈
Exp(f), A−ν (q · 1)Exp(g)

〉
+
〈
Exp(f), A−ν (qf)Exp(g)

〉
=
〈
A−ν (q · 1)Exp(f), Exp(g)

〉
+
〈
A+
ν (q · 1)Exp(f), Exp(g)

〉
+
〈

Λν(q)Exp(f), Exp(g)
〉

=
〈(
A−ν (q · 1) +A+

ν (q · 1) + Λν(q)
)
Exp(f), Exp(g)

〉
.

This gives the statement. �
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