Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Applied Soft Computing 13 (2013) 4303-4319

journal homepage: www.elsevier.com/locate/asoc

Contents lists available at ScienceDirect

Applied Soft Computing

A traffic-based evolutionary algorithm for network clustering

@ CrossMark

Maurizio Naldi®*!, Sancho Salcedo-Sanz -2, Leopoldo Carro-Calvo”?, Luigi Laura® !,

Antonio Portilla-Figueras®?, Giuseppe F. Italiano® '

3 Universita di Roma “Tor Vergata”, Dipartimento di Ingegneria Civile e Ingegneria Informatica, Via del Politecnico 1, 00133 Rome, Italy

b Department of Signal Theory and Communications, Universidad de Alcald, Madrid, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 27 September 2012

Received in revised form 23 April 2013
Accepted 19 June 2013

Available online 5 July 2013

Keywords:
Clustering

Traffic matrices
Genetic algorithms

Network clustering algorithms are typically based only on the topology information of the network. In
this paper, we introduce traffic as a quantity representing the intensity of the relationship among nodes
in the network, regardless of their connectivity, and propose an evolutionary clustering algorithm, based
on the application of genetic operators and capable of exploiting the traffic information. In a compara-
tive evaluation based on synthetic instances and two real world datasets, we show that our approach
outperforms a selection of well established evolutionary and non-evolutionary clustering algorithms.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Clustering, organizing a collection of items into groups on the
basis of their similarity, is a well known problem in many different
areas. Its applications span fields as different as image segmenta-
tion, object and character recognition, customer classification for
marketing, and genomic, just to name a few. In the two survey
papers by Jain, written more than ten years apart, we can recognize
the expansion of clustering, both in methods and in applications
[1,2].

Graphs also can be clustered into groups of nodes, each cluster
including vertices that are strongly interconnected among them:
there should be many edges within each cluster and relatively few
between clusters [3]. Graphs can represent a number of interrelated
entities. For example, when a graph represents a social network,
the vertices are individuals, and the edges represent relationships
among them. The problem of detecting communities of individuals

* Corresponding author. Tel.: +39 0672597269.

E-mail addresses: naldi@disp.uniroma2.it (M. Naldi), sancho.salcedo@uah.es
(S. Salcedo-Sanz), Leopoldo.Carro@uah.es (L. Carro-Calvo), laura@dis.uniromal.it
(L. Laura), antonio.portilla@uah.es (A. Portilla-Figueras), italiano@disp.uniromaz2.it
(G.F. Italiano).

1 The work of Maurizio Naldi, Luigi Laura, and Giuseppe F. Italiano has been
partially supported by the Italian Ministry of Education, University, and Research
through the ALGODEEP Project, and by the European Union under the EuroNF Net-
work of Excellence.

2 The work of Sancho Salcedo-Sanz, Leopoldo Carro-Calvo, and José Antonio Por-
tilla has been partially supported by the Spanish Ministry of Science and Innovation,
under a project number ECO2010-22065-C03-02.

1568-4946/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.as0c.2013.06.022

within the whole society is itself a clustering problem. In the case of
a communications network, the vertices represent network nodes
(routers or other switching devices), and the edges represent trans-
mission links. In the following, we refer to nodes and links rather
than vertices and edges.

In spite of its importance, the problem of network clustering has
been approached so far mainly by considering topology informa-
tion only. The criterion employed is then based on the number of
links lying respectively inside a cluster and among different clus-
ters: the relation between two nodes is entirely embodied by their
sharing a link. Adding a weight to each link (so that the relation
between two nodes may be stronger or weaker) recognizes the rel-
evance of the intensity of the relationship, but, even in weighted
networks, two nodes are related only if they are connected by a
direct link. Variations of this approach consider the energy con-
sumption (related to the physical distance) to minimize the total
consumption in a wireless network [4,5].

In [6], we put forward the use of traffic information to cluster
the nodes of a network. Such information is contained in the traffic
matrix of a network, and represents the actual intensity of the com-
munication between two nodes, regardless of the network topology
and the route employed to get the messages from the sender to
the receiver: the more two nodes communicate between them, the
larger their traffic is. The range of applications in which adding
traffic information should lead to improvements is very wide:
basically all networks in which traffic does not flow exclusively
between neighboring nodes. For example, that’s been shown in [7]
for telephony traffic. Another example is given by social networks
in which many relationships are indirect, and an individual is used
as a transfer means to convey information (or any other mode of

4304 M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

relationship, so that traffic is meant here in a broad sense as
anything that is exchanged by two nodes) between two other
parties (see, e.g., [8] for the discovery of hidden relationships and
[9] for gossip networks). In [6], we adapted two quality metrics
from the context of topology-based clustering algorithms, to make
them applicable in a traffic-based approach, namely the Traffic-
aware Scaled Coverage Measure and the Modularity measure.In[10],
we proposed a preliminary version of an evolutionary clustering
algorithm, and performed a first comparison against the Spectral
Filtering algorithm, a major non-evolutionary clustering algorithm.

In this paper we fully embrace the traffic-based approach for
network clustering, and propose a novel evolutionary algorithm
based on the use of genetic operators, which we name EC (Evolu-
tionary Clustering). We embed the quality metrics recalled above
in the fitness function of the evolutionary procedure, so that our
algorithm aims at maximizing the quality of the clustering solu-
tion as evaluated through those metrics. We have tested our
approach against four competing topology-based clustering algo-
rithms and against an existing evolutionary approach (EvoCluster
[11]) on synthetic and real world datasets. We fully describe our
evolutionary algorithm and report the results of that comparative
evaluation. We compare the first two statistical moments of the
two metrics (which represent a measure of central tendency and
dispersion), while in previous works the comparison was limited
to the scatterplot of the metrics. In this paper, we also compute
the percentage of success of the Evolutionary Algorithm against
its non-genetic competitors. The comparison performed in this
paper is completed by a thorough analysis of the computational
cost. The key results obtained in this work are: (1) We show that
our evolutionary algorithm achieves better values of both quality
metrics than the topology-based alternative clustering algorithms;
(2) We provide an analysis of the computational cost of the EC
algorithm; (3) we show that its computational cost is lower than
that of the topology-based competitors (excepting K-means). We
have also performed a comparison with the above selection of
non-evolutionary algorithms and the evolutionary algorithm Evo-
Cluster, using a synthetic dataset with larger traffic matrices. Also
in the case of synthetic matrices, our EC algorithm outperforms all
the other algorithms, with the only exception of Newman'’s and K-
means for the larger traffic matrices when the modularity metric is
used.

The rest of the paper is organized as follows. In Section2 we
recall the notion of traffic matrix and its use in the context of
network clustering. In Sections3 and 4 we describe respectively
our traffic-based Evolutionary algorithm and the topology-based
competitors employed in our comparative evaluation. Sections 5.1
and 5.2 are devoted to set the performance evaluation context,
respectively through the definition of the quality metrics and the
description of the real world datasets. Finally, in Sections 5.3-5.5,
we describe the results of the comparison, under the two view-
points of the quality of the clustering solutions (for the real
world datasets and the synthetic one) and the computational
cost.

2. Traffic information and clustering

Network clustering is traditionally performed on the basis of
topology information. Roughly speaking, two nodes belong to the
same cluster if they are strongly interconnected. In this paper, we
advocate instead the use of traffic information to partition the net-
work into clusters. In this section, we review the tools that gather
respectively the topology information used for clustering in the tra-
ditional approach, and the traffic information employed in ours;
we compare them, and provide motivations for the use of traffic
information.

When we cluster a network on the basis of the connectivity
information only, we employ the adjacency matrix A. The generic
element A; of that matrix equals 1 if the nodes i and j are con-
nected by a link, and 0 otherwise. When links are bidirectional
(which is usually the case in communications networks), the adja-
cency matrix is symmetric. Though two nodes may be considered
strongly related if they are directly connected, clustering based on
the adjacency matrix fails to consider the case where two nodes
have a strong relationship even if they are topologically distant.

For this reason, we introduce traffic matrices as the basis for
network clustering. Traffic represents the intensity of the rela-
tion between two nodes, regardless of the way those nodes are
connected. Nodes that communicate heavily between them, as
indicated by the traffic matrix, should be put into the same cluster,
though they are not directly connected. In a traffic matrix X, the
element X;; provides the traffic originated by node i and destined
for node j. Despite the use of the term traffic, there are several pos-
sibilities as to the actual quantity used to represent traffic. In [12],
a two-level taxonomy of traffic matrices is proposed, based on the
spatial representation of network traffic used and the aggregation
level for the sources and destinations engaging in traffic exchanges.
In addition, we may consider either intensity values (averages over
a measurement time window, typically an hour long) or volume
values (accumulated over a typically much longer observation win-
dow, e.g., over a month), depending on the purpose of the traffic
matrix [13]. The resulting matrix is generally asymmetric, even
for a network with all bidirectional links. Their asymmetry makes
methods employed for weighted networks unsuitable, since they
typically assume a symmetric weight matrix [14]. Traffic matrices
are dense, usually complete, as opposed to the usually sparse struc-
ture of adjacency matrices. The elements of traffic matrices are real
numbers, rather than Boolean values. In addition, they often vary
considerably even over small time frameworks, while the topology
is much stabler, with changes due typically to failures or planned
interventions. Contrary to adjacency matrices, traffic matrices are
independent of the internal topology of the network. Moreover,
when the nodes i andj are supposed to be respectively the ultimate
source and destination of that traffic, the traffic matrix is also insen-
sitive to routing changes, which represents a further advantage in
their use and a spur to estimate them as accurately as possible
[15,16].

3. The evolutionary clustering algorithm

The main objective of this paper is to introduce a new evolu-
tionary algorithm to perform a partitional clustering of a network
on the basis of traffic matrices and a fitness function that describes
the quality of the clustering solution. By partitional clustering we
mean an approach where each node is assigned to a single cluster:
clusters do not overlap and represent a partition of the network. In
this section, we describe that algorithm.

A primary issue in any clustering algorithm is the choice of the
number of clusters. Some algorithms need it to be defined a priori,
while others include the number of clusters as a variable to be opti-
mized during the clustering process, jointly with the composition of
each cluster. The review in [17] adopts that feature to classify clus-
tering algorithms into two classes: algorithms with either a fixed
or a variable number of clusters.

Our algorithm does not require the number of clusters to be
decided a priori. Rather, the candidate solutions can be composed of
different numbers of clusters, so that it can be considered to belong
in the latter class. Nevertheless, our algorithm requires the maxi-
mum number k* of clusters to be set, so that the candidate solutions
can be made of any number of clusters in the range between one
and that maximum. The number of clusters k < k* is therefore an
outcome of the algorithm.

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319 4305

In order to obtain a partition of the network into k clusters, our
algorithm goes iteratively through the steps listed in Algorithm 1
and described in detail in the following. The algorithm stops when
there has been no change in the clustering solution in the latest 20
iterations. The steps followed by the algorithm may be arranged
into the classical phases of evolutionary algorithms [18]: an initial-
ization phase, followed by the repeated application of operators
(Selection, Crossover, and Mutation) and the evaluation of the fit-
ness function. In the following, we define the format of candidate
solutions (the encoding) and describe in detail the three evolution-
ary operators. We postpone the description of the fitness function
to Section 5.1.

Algorithm 1 (Evolutionary Clustering (EC)).
Input: A set of n x n traffic matrices X
Output: A partition of the n nodes into k clusters.

1: Define an initial set of candidate solutions.

2: repeat

3: Compute the fitness function for all candidate solutions.
4: Compute the average value of the fitness function.

5: Count the number Njss of candidate solutions with

lower-than-average values of the fitness function and remove

them.

6: forj=1to Njss do

7: Select randomly two parent solutions among the survived
ones.

8: Copy the matrix of the parent A in the child solution.

9: Select randomly 50% of the elements of parent B and keep only
the non empty elements.

10: Find in the child matrix the selected nodes in B and replace
them with —1.

11: Add the selected nodes to the child in the same cluster they
belong to in parent B.

12: end for

13: Select all the children generates in Steps 6-12.

14: Swap two random positions in two different clusters in each
candidate solution identified in Step 13.

15: until Convergence

16: Select the candidate solution exhibiting the largest value of the

fitness function.

3.1. Encoding

The first issue to be solved is the encoding used to represent each
candidate solution (or genotype), i.e., the assignment of nodes to
clusters. A number of alternatives are indicated in [17]. We have
opted for an integer encoding, where each possible assignment of
the n nodes to k clusters is represented as a k x n matrix. In our
encoding approach, each cluster in a genotype is represented indi-
vidually and is described by a string of n integers taking values on
the alphabet {1, ..., n} U{—1}. The values in the former set repre-
sent the node ID. The string representing a cluster shows therefore
the nodes belonging to that cluster through their ID. Since a clus-
ter can include at most n — 2k +2 nodes (if we exclude both empty
and singular clusters), each row of the encoding matrix will have
at least 2k — 2 empty positions (i.e., not assigned to a node), which
are filled by the —1 value. This encoding approach employs k x n
positions, while other more efficient approaches can use n (e.g., the
label-based encoding where the position i in a string of length n
provides the cluster to which node i belongs). In addition, it is of
the one-to-many type (each candidate solution can be represented
in k!n! equivalent ways). However, it has the advantage of showing
immediately the composition of each cluster. An example is shown
in Fig. 1, where a candidate solution with 3 clusters for a network
of 8 nodes is shown, with Cluster 1 being composed of nodes 1 and
8. Since our clustering has to represent a partition of the network,
each node has to appear in a single position over the whole k x n
matrix, and there have to be n(k —1) empty positions (i.e., filled
with —1 values).

Candidate solution
81-1-1-1-1-1-1
4 356-1-1-1-1
2-1 7-1-1-1-1-1

Fig. 1. Example of solution encoding.

3.2. Selection

The first evolutionary operator to be applied to the population of
candidate solutions is the selection one, which preserves a fraction
of the current group of parents and children to be used as parents
for the next generation of the algorithm. Several procedures have
been proposed in the literature for that purpose [17]. Here we have
opted for the truncation selection method. This method employs
the fitness function and applies a deterministic procedure, by sav-
ing for the future steps just the candidate solutions exhibiting the
highest fitness. Namely, in the truncation selection approach we go
through the following steps: (1) the fitness function is computed
for each candidate solution; (2) the candidate solutions are ordered
according to their value of fitness from the largest (best fit) to the
smallest (worst fit); (3) the top t candidate solutions are retained.
These steps corresponds to Steps 3-5 of Algorithm 1. The trun-
cation selection method is known to reduce strongly the variance
of the population’s fitness [19], but, when employed with a large
value of 7, guarantees at the same time that the population is wide
enough and that the best individuals are preserved. Here we have
employed a variant of truncation selection where the value of 7 is
not set a priori, but is rather such that just the individuals exhibit-
ing a larger-than-average value of the fitness function are retained.
When the distribution of values of the fitness function over the set
of candidate solution is symmetric, this is tantamount to setting T
equal to 50% of the population, as in [20].

3.3. Crossover

Inorder toreplenish the set of candidate solutions after the trim-
ming due to the selection phase, we replace the missing candidates
through the crossover operator. With crossover, two candidate solu-
tions (parents, which hereafter we call respectively Parent A and
Parent B) produce one new candidate solution (child), which is
added to the set of candidate solutions. The parents are chosen at
random among the individuals in the population of survivors after
the selection operator, using a simple sampling-with-replacement
scheme: a couple of parents are selected from an ideal urn and
returned to the urn before the next extraction. Such sampling
scheme is uniform over the set of candidate solutions, and allows
for multiple instances of any candidate solution in the mated cou-
ples. The number of children generated at this step is exactly equal
to the number of individuals eliminated in the selection phase. In
Fig. 2, we show an example of the application of our crossover oper-
ator as described through Steps 6-12 of Algorithm 1. The child is
first generated as a copy of Parent A (Step 1), but 50% of the locations
inside Parent B are then chosen randomly, and the nodes appearing
in the non-empty locations (i.e., filled with values in the {1, ..., n}
set) are retained (Step 2). In the first version of the child, the loca-
tions containing the nodes identified in Step 2 are then emptied, i.e.,
filled with —1 values (Step 3). At this point the child contains all the
nodes excepting those identified in Step 2 (coming from Parent B),
which are then reinserted in the clusters to which they belonged
in Parent B (Step 4).

4306 M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

Parent solution A Parent solution B

Cluster 1 81-1-1-1-1-1-1 4-1-1 23-1-1-1
Cluster 2 4356-1-1-1-1 -1-11-1-1-1 6-1
Cluster 3 2-17-1-1-1-1-1 -1-157-1-18-1
Step 1
Parent solution A Child solution

I O 81-1-1-1-1-1-1
4356-11-1-1 M 43561111
\2-1 7=l =il =il =il <1l 2-1 7-1-1-1-1-1/
Step 2
/ Parent solution B Parent solution B \
4D 2 @DED-1 4-1-12@-1-1-1
-1D16-1-1©-1 -1-11-1-1-1@®-1

1900 714 84D 1-1@7-1-18-1
N 4
Step 3 Step 4
Child solution Child solution
81-1-1-1-1-1-1 B} Al =il =l =il <l
£ =11, =11 =11 =11 <, <11 1) A (&=l =il =1l =1l =l il
2-17-1-1-1-1-1 P25 7 N R

Fig. 2. Example of crossover.

Note that the application of the crossover operator (precisely,
Steps 3 and 4 in Fig. 2) may result in a candidate solution with
a number of clusters strictly lower than the maximum (k<k*). In
fact, in Step 3 a cluster may get completely empty, while the subse-
quent reinsertion of nodes at Step 4 takes place on other clusters. An
example is provided in Fig. 3, where the candidate solution result-
ing after crossover is made of just two clusters, Cluster 1 having
been emptied. This represents an opportunity to explore candidate
solutions with a lower number of clusters, so that the search space
is significantly enlarged with respect to algorithms employing a
fixed number of clusters.

3.4. Mutation

After the crossover operator, a mutation operator is applied to
generate more diversity in the population and avoid that the algo-
rithm remains stuck in local minima of the objective function. A
swap-type operator is used (see Fig. 4): each candidate solution
among the children generated in the Crossover phase is selected
in turn, and two nodes of that solution are swapped (each one is
assigned to the cluster of the other) to generate a mutated indi-
vidual. In the example of Fig. 4, node 7 is moved from Cluster 3 to
Cluster 2. In the process, Cluster 3 remains as a degenerate cluster,
made of a single node.

4. Alternative algorithms

The performance of our evolutionary algorithm has to be com-
pared against alternative algorithms. In this section we provide a

Parent solution A Parent solution B

Cluster 1 81-1-1-1-1-1-1 4-1-123-1-1-1
Cluster 2 4356-1-1-1-1 -1-11-1-1-16-1
Cluster3 2-17-1-1-1-1-1 -1-157-1-18-1
Step 1
Parent solution A Child solution
8 1-1-1-1-1-1-1)
43561111 P 4356-1-1-1-1
2=l 7 =0 =1l -2 =, il 2fl 7 =il il =, il el
Step 2
Parent solution B Parent solution B
4EDD 2 3€D-1-1 4-1-12 3-1-1-1
-1@.@116@‘-1-1.-1-1161
-1€D 5 7€DD@D 1-157-1-1@-1
Step 3 Step 4
Child solution Child solution
S A 0 1 -1-1-1-1-1-1-1-1
4356-1-1-1-1 43561-1-1-1
2 =il 7 =il <l =1 =il =1L 287-1-1-1-1-1

Fig. 3. Example of solution with a lower number of clusters.

brief description of all those algorithms we have considered in our
comparative evaluation. We have considered the same algorithms
asin [6]:

e K-means;

e Fast Singular Value Decomposition;
e Newman;

e Spectral Filtering.

4.1. The K-means algorithm

The K-means algorithm is probably the best-known clustering
algorithm [21,22]. Each item to be clustered is represented by a
vector of attributes, each cluster has a centroid (whose vector of
attributes is the average of the vectors pertaining to the items
belonging to that cluster), and each item is assigned to the cluster
according to the distance from its centroid.

In our case, the items to be clustered are the nodes. The vector
of attributes for each node is obtained as the corresponding row
vector of the two-way traffic matrix M=X+ X', whose element m;;

Candidate solution Mutated solution
81-1-1-1-1-1-1 8 1-1-1-1-1-1-1
4356111.‘ 4356-1-1-17
2-1@1-1-1-1-1 2-1-1-1-1-1-1-1

Fig. 4. Example of mutation.

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319 4307

represents the overall traffic exchanged between the two nodes i
and j. For a network of n nodes, the vector of attributes is made of
n components. The distance between any two nodes can be com-
puted as the Euclidean distance between their vectors of attributes,
excluding from the computation the elements containing the traffic
exchanged between the two nodes.

For each cluster, a clusterhead can be determined, which is the
node having the least average distance from the other nodes in its
cluster (a.k.a. the centroid). The aim of the K-means algorithm is to
assign nodes to clusters so that the within-cluster sum of distances
to the clusterhead is minimized. The algorithm is carried out in an
iterative fashion, since each assignment modifies the clusterhead.
The algorithm stops when no cluster changes are needed: each node
is assigned to the cluster whose clusterhead is the nearest to it.

The pseudo-code of the K-means algorithm is provided as
Algorithm 2.

Algorithm 2 (The K-means algorithm).
Input: A traffic matrix X
Input: The number of clusters k
Output: A partition of the n nodes into k clusters.
1: Compute the two-way traffic matrix M =X+X"
2: Randomly choose k nodes and make them the k clusterheads
3: repeat
fori=1tondo
Compute the Euclidean distance from node i to each of the clusterheads
Assign node i to the nearest clusterhead
end for
forj=1to kdo
Compute the centroid for cluster j and make it the new clusterhead
10: end for
11until Convergence

©RND U

4.2. Derandomized fast singular value decomposition

Drineas et al. proposed the use of Singular Value Decompo-
sition as a clustering tool in[23], through the relaxation of the
original discrete problem. The aim is to minimize the sum of the
squared distance from each point to its cluster center (equivalent
to minimizing the variance of clusters). While the discrete version
is known to be AMP-hard, the latter can be solved efficiently using
a projection onto the top k left singular values, obtained by com-
puting the Singular Value Decomposition (SVD) of the adjacency
matrix. As the computation of SVD for large matrices can be time
and space consuming, Drineas et al. proposed a heuristic, called Fast
SVD, to speed up this algorithm by calculating the SVD only on a
random column-sampled submatrix.

We considered a derandomized version of Fast SVD (hence DF-
SVD) where the column sampling just selects the top c columns
with largest weights. The pseudo-code is given in Algorithm 3.

Algorithm 3 (Deterministic and Fast SVD (DF-SVD)).

Input: A traffic matrix X for a network of n nodes, an integer c <n, an integer k <c.
Output: A partition of the n nodes into k clusters.

{ Phase 1: Column Sampling }

fori=1tondo

2:Compute the column weights w; = X2 /|X]||2

énd for

Shrt the weights w;

%t B be the matrix consisting of the c columns of X with the largest weights

{ Phase 2: Build Clusters }

Gompute the SVD of matrix B

Find the top k left singular vectors uy, .. ., Uy

I8t C be the matrix whose jth column is given by u;, i.e., the first k columns of U
Blace row i in cluster j if Cj; is the largest entry in the ith row of C

4.3. Newman'’s algorithm

Newman and Girvan have proposed an algorithm specifically
devoted to find communities within a network [24].

Their algorithm falls into the class of hierarchical divisive ones,
where clusters are identified starting with the network as it is, and

progressively removing links, one at a time. Removing links reduces
the original network to a set of connectivity islands, which rep-
resent the clusters (though the removal of a single link does not
necessarily alter the connectivity of the network, the overall effect
of a sequence of removals is just that).

The links to be removed are chosen according to their between-
ness. Though different definition of betweenness are possible,
Newman and Girvan have opted for the shortest-path between-
ness: the betweenness of any particular link is computed by
identifying the shortest paths for each couple of nodes in the
network, and counting how many times (i.e., on how many short-
est paths) that link appears. The rationale is that a link with a
large betweenness connects a large number of nodes, and proba-
bly serves as a bridge between different communities: its removal
exposes the communities it connected. At any step in the process,
the links are therefore ranked by their betweenness, and the link
exhibiting the largest value is removed.

The process could go on till the removal of all the links, which
reduces the network to its nodes, but this is of course not the pur-
pose of clustering. In order to properly stop the process, Newman
and Girvan employ the modularity metric (defined in Section 5.1.2)
as a quality indicator for the clustering process. They have shown
that, during the divisive procedure, the modularity first increases
as links are removed, and then decreases with further removals.
Link removal is stopped when the modularity stops increasing.

The algorithm is described in full as Algorithm 4.

Algorithm 4 (Newman).

Input: A two-way traffic matrix X+ XT

Output: A partition of the n nodes into k clusters.
1: while Modularity increases do

2 Calculate betweenness scores for all links in the network.

3 Find the link with the highest score and remove it from the network.
4: Compute the modularity

5 end while

6 Identify the connected portions of the network

4.4. Spectral filtering

In [25] a network decomposition method has been proposed to
analyze Internet topology at the Autonomous System level. Here we
consider that method to perform clustering among the alternatives
to our EC algorithm, with the modifications introduced in [6] to
consider the actual traffic exchanged by nodes rather than just the
connectivity.

The entry at location (i, j) of a symmetric matrix can be said to
represent the correlation between the entity at row i and the entity
at column j of the matrix (which in our case are both nodes of the
network). At the same time, every real symmetric matrix of size
n has a spectrum of n orthonormal eigenvectors. Such spectrum
is related to the graph connectivity, as thoroughly studied, e.g., in
[26]; the eigenvectors associated to the largest eigenvalues of the
matrix of interest can be examined to infer the cluster decompo-
sition. Such spectral filtering has been applied to cluster nodes in
a network by working on the adjacency matrix [25]. A rationale
for the use of the spectral method is that it represents an efficient
heuristic to maximize the following clustering efficiency metric,
given by the ratio between the number of edges within a cluster
and the number of edges incident on that cluster:

E=zk: (i) : Ay =130, j € G 0
|{(i,j) : A= LiieCje(l,....m)

When considering traffic matrices instead of adjacency matri-
ces, there are however a number of differences with respect to the
basic problem:

4308 M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

e In a traffic matrix the entries are generally different from either
Oorl;
¢ Traffic matrices are generally asymmetric.

We have therefore to apply some modifications to the basic spectral
filtering to make it suitable for traffic matrices. Such modifications
aim at removing the asymmetry and reducing the large range of
traffic values to the basic unitary interval. The resulting procedure
goes through the following steps:

. Apply the symmetry transformation;

. Apply stochastic normalization;

3. Extract the k largest eigenvalues and their corresponding eigen-
vectors;

. Select one of the eigenvalues identified at Step 3;

5. Build clusters of nodes by using the K-means algorithm.

N =

N

The first step consists of making the matrix symmetric, so that we
can work with a spectrum of orthonormal eigenvectors. We employ
the following symmetry transformation

We prefer this transformation to the more widely deployed
M=X-XT since the transformation (2) maintains the same dimen-
sionality as the original traffic matrix and has a specific physical
meaning. In fact, after the transformation, the element m; of
the resulting matrix simply contains the overall traffic exchanged
between the two nodes i and j. At this point, we have a symmetric
matrix but possibly with a wide range of values. It has been noted
that spectral filtering applied to adjacency matrices deteriorates
rapidly when the frequency of nonzero elements in the adjacency
matrix varies widely (an occurrence related to the varying degrees
of the nodes) [27]. We expect similar problems to appear with the
traffic matrix, given the wide imbalance existing in traffic between
different nodes. Stochastic normalization has been proposed to
avoid such problems [25]. In stochastic normalization each matrix
element m; is divided by the sum Z}L] my; of all the elements in the
same row. After this normalization, all the elements in a row sum
up to 1, making the matrix a stochastic one. In addition we set all
the diagonal elements of the traffic matrix equal to 1/2 and multiply
all other elements by 1/2. The effect of that operation is to shift the
range of the eigenvalues to (0, 1). Now we have an n x n real sym-
metric matrix M’ that exhibits n eigenvalues and the corresponding
eigenvectors. We consider the largest eigenvalues and extract the
weights present in the eigenvectors. Each weight is associated to a
node of the network. The weights (hence the corresponding nodes)
can then be grouped into clusters containing weights of similar
value. For such purpose, we use the well-known K-means algo-
rithm in its unidimensional version, which is described in detail,
e.g.,in[22].

The Spectral Filtering algorithm is described through the
pseudo-code reported in Algorithm 5.

Algorithm 5 (Spectral filtering).

Input: A traffic matrix X

Input: The number of clusters k

Output: A partition of the n nodes into k clusters.

1: Compute the two-way symmetric traffic matrix M=X+XT

2: Perform the stochastic normalization m;; = mi]‘/zi'jmij.

3: Extract eigenvalues and eigenvectors of M’

4: Sort eigenvalues

5: Select one of the largest eigenvalues and the corresponding
eigenvector

6: Cluster nodes according to the eigenvector weight through a

unidimensional K-means algorithm

5. Performance analysis
5.1. Performance metrics

In Sections 3 and 4 we have defined respectively the evolution-
ary algorithm we propose for clustering and a number of alternative
algorithms established in the literature. In order to compare their
performance, we have to define a performance metric. Several such
metrics have been defined in the past. Unfortunately, performance
indices defined in the context of topology-based clustering may be
inapplicable. In fact, in a topology-based approach the information
employed for clustering is just the adjacency indicator, embodied
by a Boolean variable. Instead, in a traffic-based approach the vari-
ables employed for clustering are traffic volumes or intensities,
represented by real non-negative values. However, the concepts
embodied by metrics defined for a topology-based approach may
be transferred with some adaptations to the new context. In [6]
we have adapted two of such topology-based metrics to a traffic-
based context. In this section, we define those performance indices,
namely the Traffic aware Scaled coverage metric (hereafter referred
to as TS) and the Modularity metric. In addition to the performance
metrics used to evaluate the algorithms, we also define the fit-
ness function employed by our EC algorithm to progress toward
the solution.

5.1.1. Traffic aware scaled coverage measure

In the context of topology-based clustering the Scaled Coverage
Measure (SCM) had been defined in [28]. The basic idea of SCM is
that each node should be clustered only with its neighbors, mini-
mizing the number of non-neighboring nodes within its cluster as
well as the neighboring nodes excluded from its cluster. That met-
ric relies on the concept of neighboring node, defined through a
binary variable taking the values 1 or 0 (two nodes are neighbors
iff they share a link). Here, we consider instead the Traffic aware
Scaled coverage metric, defined in [G], where the concept of neigh-
bor node is replaced by that of close node, represented by a variable
(the degree of closeness) taking values in the [0,1) range, to repre-
sent a relation between any two nodes, which is not as sharp as that
defined by adjacency but rather continuous as that defined by traf-
fic. However, the value of the adjacency indicator could be directly
evaluated on the network graph, while traffic matrices provide traf-
fic values, which must be converted into values for the degree of
closeness. For that purpose, we employ a logistic transformation,
which maps values in the [0, co) semi-infinite range into values in
the [0, 1) finite co-domain. We define Vj;, the degree of closeness
of node j to node i, as a variable in the [0, 1) range, derived from
a logistic transformation of the traffic intensity Xj;, the traffic sent
from node i to node j:

2

o - Xij

=—— 1. 3
1+e” ®

Vij
The degree of closeness of node j to node i is O iff node i sends no
traffic to node j, and is a growing function of traffic:

V,'j =0 < XU =0,
lim V; =1.)
Xl-j—>oo

We note that, in general, Vj; # Vj;, since the traffic flows are
generally asymmetrical. The coefficient o« may be set to match the
corresponding values of X;; and Vj;. In fact, by inverting the defini-
tion (3), we obtain

1 1+V;
oa=—1In . (5)
X; <1v,.j>

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319 4309

For example, if we set the degree of closeness V;;=0.7 when the
traffic is X;; =10 erl, the value of the coefficient « is «~0.173. We
employ the concept of close node in the clustering metric, since
we want to put into the same cluster nodes that exchange most
of the traffic with one another, while we don’t want to include in
the same cluster nodes that exchange little or no traffic with one
another. In the TS metric, we pursue that goal by employing two
error indicators. Clustering can err in two ways: by including in the
cluster nodes that are not close to the node at hand, or by excluding
from the cluster those nodes that are close to the node at hand. If we
introduce the set C; as the cluster to which node i is assigned, we can
define for a generic node i two quantities representing respectively
the inclusion error and the exclusion one:

Wi= Y (1-Vy), (6)
jeCpi#i

Zi=> V. (7)
J#G

In fact, the inclusion error W; grows if we include in C; nodes that
have a low degree of closeness to node i. And the exclusion error Z;
grows if we exclude from C; nodes having a large degree of closeness
to node i. Since the number of terms in the sums defining W; and Z;
isrespectively |C;| — 1 and n — |G|, the two errors are upper bounded
as follows

W <IGl-1

(8)
Zi <n-— |C1|

The upper bound for the inclusion error is achieved if all the nodes

belonging to cluster C; (excluding node i) send no traffic to node i.
At this point, we can consider an overall clustering error as given

by the sum of the inclusion error and the exclusion one, and define

the local TS for node i as

_ Wi + Z,' i (9)

IS =1-——

where the clustering error is normalized to 1 by dividing it by the
sum of the upper bounds derived from the inequalities (8), since
W;+Z;<n—|C]| +|Cij| —1=n-1. We obtain therefore that the local
TS obeys the constraint 0<TS; < 1. The global TS is computed as the
average of the TS of the single nodes

n
1
TS = EZTSi, (10)
i=1

and lies therefore again in the [0, 1) range.

5.1.2. Modularity

The Modularity metric has been introduced by Newman and
Girvan [24] to evaluate the quality of community structure in
networks. Since we deal with traffic matrices, which are weighted
and represent directed (and, therefore, generally asymmetric)
networks, we refer to the definition of modularity given by New-
man in [14] for the case of weighted matrices, and extend it
naturally to asymmetric matrices. Since weights are represented by
non-negative real numbers (like the entries of the traffic matrix),
we can simply re-use that modularity definition by replacing the
weights with the traffic matrix entries. By introducing the sum of
the traffic matrix elements m=>_;X;;, the modularity Q is given by

1 > XD Xii

Q=—>" {x] - S =G G) (11)
ij

where the §-function 8(C;, Gj) equals 1 if nodes i and j belong in the

same cluster (i.e., G;=C;), and 0 otherwise. The modularity metric

takes values in the [—1,1] range. It takes the value O if the parti-
tion has no more traffic than one would expect from the random
distribution of traffic over all possible origin-destination pairs.

5.1.3. The fitness function

The EC algorithm employs a fitness function to measure the
goodness of the candidate solutions. Since we have defined two
performance metrics, it is natural to adopt a fitness function that
reflects them. As a fitness function, we consider the linear combi-
nation of the two metrics:

F=yTS+(1-y)Q. (12)

The results reported in Section 5.3 have been obtained with a bal-
anced mix where y =0.5. Note that we have decided to deal with a
single-objective formulation of the problem to compare our evolu-
tionary approach with other existing algorithms in the literature,
which are also thought to be implemented as single-objective
solvers. Thus, we have chosen a value of y that balances both
metrics. A multi-objective formulation of the problem is of course
possible, but it is out of the scope of the present study. Related
to this point, in [29] a multi-objective formulation of a software
module clustering problem is proposed. Though the application is
different, the authors introduce several new metrics to solve the
problem, some of them similar to the ones used in this paper. The
interested reader can consult details about that multi-objective
approach to clustering in graphs in [29].

5.2. The dataset

In Sections 3 and 4, we have described respectively the evolu-
tionary algorithm we propose and the alternative non-traffic-based
algorithms for network clustering. In order to compare our pro-
posal with the set of competing algorithms, we have carried out
an extensive performance analysis of them all, by employing the
two performance metrics defined in Section 5.1 on two large real
world datasets. These datasets are made of a large number of traffic
matrices gathered respectively on two networks, both of continen-
tal size: Géant and Abilene. In this section, we describe the two
datasets.

5.2.1. The Géant network dataset

Géant is the pan-European research network, serving Europe’s
research and education community. It was co-founded in 2000 by
the European National Research & Education Networks (NRENSs)
and the European Community. Over the years, it has progres-
sively grown, reaching over 50,000 km of network infrastructure
in 2010, including 12,000 km of optical/dark fiber across Europe,
with an overall NREN partner access capacity to the network of
258 Gbit/s. A traffic measurement campaign was conducted on
Géant for four months in 2004. The result of that campaign is a full
set of traffic matrices, built by employing several traffic engineering
algorithms and using full IGP (Interior Gateway Protocol) and BGP
(Border Gateway Protocol) routing information, with sampled Net-
flow data. Such traffic matrices provide the traffic volume (in bytes)
for each origin/destination router, collected at 15 min intervals. At
the time of the measurement campaign, Géant was composed of
23 routers interconnected using 38 links, and the average degree of
routers was 3.3. Amap of the topology at that time is shown in Fig. 5,
where it can be seen that a number of PoPs (Points of Presence), i.e.,
stub nodes, were present in addition to the routers. Both the dataset
and the measurement procedure are publicly available [30]. The
whole dataset is made of 11460 traffic matrices. We selected the
first batch of 1000 for our performance comparison.

4310 M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

-

}i
=9

allr
=
[
"o

¥
-

— o, b W
1 Ay
— - AT

Fig. 5. Topology of the GEANT network at the time of measurements (2004).

5.2.2. The Abilene network

Abilene (now known as Internet2 Network) is the U.S.
high-performance backbone network created by the Internet2
community (more than 220 member institutions, mostly universi-
ties and some corporate institutions). The data were collected over
6 months in 2004 with a resolution of 5min, and concerned 12
routers interconnected by 30 links, with an average degree of 5. A
picture of the topology at the time of the measurement campaign is
shown in Fig. 6, where Atlanta hosts two nodes. The whole Abilene

Dst
KA 3161 Los Angeles

3500 Denver

dataset is made of 11425 matrices. We selected the first batch of
1000 for our performance comparison.

5.3. Performance comparison

After having described the clustering algorithms under compar-
ison (in Sections 3 and 4), the performance metrics (in Section 5.1),
and the datasets (in Section5.2), we can now provide the result
of the performance analysis. In the case of the EC algorithm, we

Fig. 6. Topology of the Abilene network at the time of measurements (2004).

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

0.06 0O
0.055 F Newman
c
S
© 0.05F
-% SF-4
© 0.045F s
g DSF 3
§ 004F O
o] [J svD
% 0.035F SF-2
|U_3 EC-local
0.03F K-means EC-global a
1 1 1 1 1 1 1

0.48 0.5 052 0.54 0.56 0.58 0.6 0.62 0.64
Average TS

(a) Abilene

4311
OJ

008F []SF3

§ 007F SF-4 Newman

B |

S 006

o [JSF-2

g 0.05F S&D

E 0.04

(2]

® 003f ol

[

0.02 K-means EC-global
0.01 1 1 1 1 1 1

04 045 05 055 06 065 07 075
Average TS

(b) Geant

Fig. 7. Comparison under the TS metric.

report the results for two alternative cases. In fact, our evolution-
ary algorithm can provide an individual clustering solution for each
traffic matrix; we label this case as Local Optimization (syntheti-
cally indicated in the following as EC-local). Alternatively, we can
go for Global Optimization (EC-global), where our evolutionary
algorithm provides a single clustering solution, optimized over the
whole set of traffic matrices. The EC-local is expected to outper-
form EC-global, since it provides an individual solution tailored to
each traffic matrix. It is to be noted that, in the non-evolutionary
algorithms, a clustering solution is provided individually for each
traffic matrix. For a fair comparison, we should therefore consider
the local version of EC.

We conduct a three-fold analysis. First, we report the first two
statistical moments of the two metrics, which provide an overall
picture of how the algorithms perform. Second, we go into more
depth by performing a matrix-by-matrix comparison of the results.
Third, we take alook at the distribution of values of the performance
metrics.

5.3.1. Moment analysis

We consider the first two statistical moments of the quality
metrics for the two networks, namely the average value and the
standard deviation. A good clustering algorithm should provide a
large average quality metric. On the other hand, a small standard
deviation of the quality metrics is also a desirable feature, since it
shows that the algorithm’s performance is quite stable and doesn’t
depend on the dataset instance. In order to consider these two
characteristics at the same time, we plot for each algorithm (and
for each combination of network dataset and quality metric) the
standard deviation of the metric vs. its average value. Since the
analysis concerns the whole dataset, we obtain a single couple
of values for each algorithm. For Spectral Filtering, we report the
results obtained by selecting the second, third, and fourth largest

O
c -
§ o1l sF2 [] O
5 SF-3
S SF-4
a
o 0.08 -
% Newman
5
& 0.06 [
> SVD
£ 0
E 0.04 O EC-local
s K-means
= EC-global
002b vy B

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Average Modularity

(a) Abilene

eigenvalue (labeled respectively as SF-2, SF-3, and SF-4). Symbols
appearing in the lower right-hand corner of the picture represent
the best algorithms (high average and low variability). Instead,
symbols appearing in the higher left-hand corner represent the
worst algorithms (low average and large variability).

We report the results in Figs. 7 and 8 for the TS metric and
modularity respectively.

For the Abilene network, we see that the TS metric is very
low for all the non-evolutionary algorithms, with the exception of
Newman's algorithm, which, however, exhibits a large standard
deviation as well. The evolutionary algorithms perform best in
both its versions (Local and Global Optimization). As expected, the
Local Optimization version achieves better average performances,
though with a slightly larger standard deviation.

The results for the Géant network shown in Fig. 7(b) mimic those
obtained for Abilene: the EC algorithm scores quite better than all
the rest, in both the local and the global version, with Newman'’s
algorithm in a distant second place. With respect to the Abilene
network, the SVD algorithm performs slightly better, progressing
from 0.516 to 0.566.

Under the Modularity metric, the performances are more scat-
tered. In the Abilene network, we see again that the EC algorithm
exhibits the largest average values and the lowest standard devi-
ation at the same time. Now, however, the Spectral Filtering, in
the version with the fourth largest eigenvalue, is the best competi-
tor, though with a large standard deviation. Newman'’s algorithm is
however a good runner-up in the group of non-evolutionary algo-
rithms, with a lower average modularity, but also a lower standard
deviation.

A slight surprise comes when comparing the modularity values
obtained for Géant. Here, though the local version of the EC algo-
rithm is the absolute best, Newman’s algorithm exhibits an average
value larger than the global version of the EC algorithm. However,

0.08
5 [OJsF-2
kS
< 007
[0}
(a)
T 0.06F
(]
2
< 005F sF.3 SF-4
n 0O o
> Newman
E 0.04 SVD K-means O
>
3 o.03fF EC"°°D3'
=))) EC-gIobelll O

0 0.05 0.1 0.15 0.2

Average Modularity

(b) Geant

Fig. 8. Comparison under modularity.

4312

EC-local

0.4

04 045 05 055 06 065 0.7
Newman

(a) Abilene

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

0.8
0.75
0.7
0.65
0.6

EC-local

045 05 055 06 065 07 075
Newman

(b) Geant

Fig. 9. Individual comparison for the traffic-aware scaled coverage.

its variability is much larger than that scored by the global EC.
And we remind that a fair comparison should be carried out with
the local version of EC, since all the non-evolutionary algorithms
provide an individual clustering solution for each traffic matrix.

Summarizing, on the basis of the average results shown so far,
we can conclude that the proposed EC algorithm outperforms the
non-evolutionary approaches. The best runner up is Newman'’s
algorithms for all cases, except in the Abilene network when the
Modularity metric is employed, in which case Spectral Filtering is
the best competitor.

5.3.2. Individual comparison

The moment analysis performed in Section5.3.1 tells us that
the proposed EC algorithm is the best algorithm among all those
compared, in average, and also that it has the lowest dispersion (as
represented by the standard deviation). However, the variability
of the obtained results may make some other algorithm better for
some traffic matrix. In order to perform a thorough comparison, we
now analyze the results obtained matrix by matrix. In this section,
we provide such comparison between the local version of our EC
algorithm and the best competitor, which is the one exhibiting the
largest average value of the metric in the group of non-evolutionary
algorithms, identified at the end of Section 5.3.1.

We report on a graph a square dot for each traffic matrix.
Each dot represents the metric value for that matrix: its x- and
y-coordinates are given respectively by the value of the metric
obtained by the best competitor and by the local EC. We do that
again for each of the four cases given by the combination of dataset
and metric. On each graph, we also plot the bisectrix line. If the
square dot lies above the bisectrix, the EC algorithm achieves a
larger value of the metric for the traffic matrix represented by that
dot. We compute the percentage of EC success as the percentage of

041

02r

EC-local

0.1

1 1
0 0.1 0.2 0.3 0.4
Spectral Filtering-4
(a) Abilene

Table 1
Percentage of EC success.
TS Modularity
Abilene 97.7% 63.3%
Géant 100% 52.7%

traffic matrices for which the EC algorithm scores better than the
best competitor.

We report the results in Figs. 9 and 10 for the TS metric and
modularity respectively. We see that in one case (the Géant dataset
analyzed through the TS metric) the EC algorithm is better for any
single traffic matrix. In the remaining three cases, the best competi-
tor achieves better scores in some cases (but very few in the case of
the Abilene network with the TS metric). But we remind that the EC
algorithm also boasts a much smaller variability of results, so that it
is quite more reliable than its competitors. In Figs. 9 and 10(a), this
is self-evident through the elongated nature of the cloud of square
dots.

We report the percentage of EC success in Table 1, where we see
that the EC algorithm achieves a striking dominance under the TS
metric, while it scores worse in a significant fraction of the dataset
under the Modularity metric. We have to remind two relevant
conditions: (1) the fitness function employed in EC is a balanced
combination of the two metrics (if tuned for the Modularity metric
only, it would achieve much better scores for that metric); (2) New-
man’s algorithm has been specifically devised to achieve a good
Modularity value.

Though Table 1 and Figs. 9 and 10 give us respectively an
aggregate and an individual (for each traffic matrix) performance
measure, our comparison still considers the two performance
measures separately. We can gain a further insight into the relative
merits of our EC algorithm if we identify where it is better than the

0.32

0.3
0.28
0.26
0.24
0.22

0.2 L
0.18
0.16
0.14

EC-local

1
0.15 0.2 0.25 0.3
Newman

(b) Geéant

Fig. 10. Individual comparison for modularity.

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319 4313

0.05 -

A Modularity

-0.05 [

Fig. 11. Pareto dominance analysis for the Géant network.

competing algorithms on both quality metrics. By borrowing the
concept of Pareto dominance from game theory [31], we say that
the EC algorithm dominates (resp. is dominated by) an algorithm Z
if both the Modularity and the Traffic-aware Scaled Coverage val-
ues achieved by EC are higher (resp. lower) than those achieved by
algorithm Z. Since the EC algorithm performs worse in the Géant
case, we report the results of the Pareto dominance analysis just
for this worst case. As said above, the strongest competitor in that
case is Newman'’s algorithm, and we limit ourselves to comparing
EC with Newman’s. Precisely, we compute the quantities AM and
ATS, given by the differences between the values achieved by EC
and by Newman'’s algorithm for the two quality metrics, and plot
AM vs. ATS. If AM is positive, the EC algorithm performs better
than Newman'’s algorithm under the Modularity metric; the same
can be said for ATS under the Traffic-aware Scaled Coverage. The
results are reported in Fig. 11, where each square represents a sin-
gle traffic matrix. In order to analyze those results, we resort to
the usual classification of the regions of the Cartesian system into
four quadrants. When a square falls into the first quadrant (ATS >0
and AM > 0), the EC algorithm is better for both metrics. The reverse
takes place when a square falls into the third quadrant (ATS <0 and
AM<0), where Newman'’s algorithm is the clear winner. The first
and the third quadrants represent regions of Pareto dominance.
Instead, in the second and fourth quadrant the EC algorithm is bet-
ter under just one of the two quality metrics. If we now look at
Fig. 11, we see that a large proportion of squares falls in the first
quadrant, but none in the third one: the EC algorithm dominates
Newman’s for a large fraction of the traffic matrices, and is never
dominated.

After this final comparison of the EC algorithm against its com-
petitors, we can safely conclude that EC, through its fitness function,
is capable of achieving the best results not just on a single metric,
but in a multi-criterion context.

5.3.3. Distribution of values

The analysis of the variance of the performance metrics allows
us to evaluate the dispersion of values around the average. We
want to examine the distribution of values. We limit ourselves
to an exploratory analysis, through a non-parametric estimation
method. We estimate the probability density function by using the
kernel method, with a Gaussian kernel [32]. The bandwidth h of the
kernel is set using the empirical formula provided in Section 4.3.2
of [32]:

h=1.060 d9, (13)

where d is the number of data points used for the estimation, and
o is the standard deviation of those data. We report in Fig. 12 the

Probability Density Function

Modularity

Fig. 12. Empirical probability density function of Modularity for the Abilene net-
work.

curves obtained for the Modularity with the Abilene dataset; sim-
ilar curves are obtained for the other combinations of dataset and
metric.

We see that all the curves exhibit a bimodal nature, which
is slight for the EC algorithm, Newman'’s, and singular Value
Decomposition, but becomes more pronounced for the K-means
and Spectral Filtering (where the two modes are of nearly equal
amplitude). The presence of two modes is associated to the time
variability of the traffic matrices. We have a dataset made of 1000
consecutive matrices, sampled at 15 min interval. The two peaks in
the probability density function pertain to two different times of
the day.

5.4. Synthetic traffic matrices and an alternative evolutionary
approach

In order to further evaluate the capabilities of the proposed EC
approach, we have carried out an additional experimental analy-
sis of the algorithm. We have focused on comparing the proposed
approach in larger networks, including a comparison with an alter-
native evolutionary algorithm for clustering, EvoCluster, presented
in [11]. First of all, we propose a model for generating new network
clustering problems in larger networks, starting from the Géant
network previously analyzed in this paper. The main characteris-
tics of the EvoCluster algorithm in [11] are presented next. Finally,
we show the results obtained in these new experiments.

5.4.1. Modeling synthetic networks to generate larger instances
In order to obtain a realistic modeling of synthetic networks,
we start considering the Géant network used in the performance
evaluation of our EC algorithm. First, it can be observed that the
traffic in Géant network follows approximately a Weibull distribu-
tion. This can be seen by plotting the traffic among every pair of
nodes in the network, in this case for the 1000 traffic matrices of
the Géant network considered above. Fig. 13 shows two examples
of traffic distribution, respectively between nodes 5 and 13, and
between nodes 22 and 12. We show the histogram obtained with
1000 traffic matrices as well as the fitted Weibull distribution.
The Weibull probability density function has the following
expression:
foea k) =X (f)k e xs o, (14)
A\A
where A is the scale parameter and k is the shape parameter (both
have to be positive). Note that the Weibull distribution can take
quite different shapes, and both the exponential and the Rayleigh

4314 M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

0.12
>
o
c
[
=]
o
(4]
<
[T
[
=
©
[5]
i
d 1
0 1x10° 2x10° 3¢10° 4x10°
Traffic [bytes]
(a)
>
o
=
(]
=]
o
(4]
<
'
[
=2
5 [
: I
D: |H
1 1 1 1 . 1 1

0 1x10° 2x10° 3x10° 4x10° 5x10°
Traffic [bytes]

(b)

Fig. 13. Two examples of traffic between nodes in the Géant network: (a) traffic
between nodes 5 and 13; (b) traffic between nodes 22 and 12.

model are special cases of the Weibull one. Back to our example of
the traffic matrices from the Géant network, once we have estab-
lished the Weibull distribution as the statistical reference to model
the traffic of this network, we can estimate both A and k from the
Géant network’s traffic. After estimating both parameters, we can
see in Fig. 14 (which reports the values obtained for 1000 traffic
matrices) that a relation exists between them. This curve can be
approximated as:
)

k=5 -09 (15)

Our best fit curve is plot as a solid line in Fig. 14.

0.5

Log (Shape parameter)
o
T

Log (Scale parameter)

Fig. 14. Relation between Weibull parameters and best fit approximation for the
Géant network.

Log (Shape parameter)
T

Log (Scale parameter)

(a)

05

Log (Shape parameter)

R 0 2 4 6 s
Log (Scale parameter)

(b)

Fig. 15. Weibull parameters in the synthetic traffic matrices for a 100-node net-
work: (a) nodes belonging to the same cluster; (b) nodes belonging to different
clusters.

We can exploit Eq. (15) to generate realistic couples of (k, A)
values. Thus, we can propose the following synthetic model to gen-
erate larger network clustering problems. We assign each node of
the network to one of 5 different groups (clusters). Then, for any
two nodes of a network i, j, we assume the scale parameter of the
Weibull distribution to be normally distributed, precisely A*=N(7,
4) if i and j belong to the same cluster, whereas A*=N(3, 4) if i
and j belong to different clusters. Note that this procedure can be
applied to networks of any number of nodes. We restrict the val-
ues of A in the interval [0, 8] (negative values of A are censored,
whereas values above 8 represent cases of extremely high traffic).
By using this simple model, we can randomly generate values of A*
for each pair of nodes i and j in a given network, and then calculate
the corresponding value of k* using Equation (15). We have applied
this synthetic model to the generation of network clustering prob-
lems of size 30, 40, 50, 75, and 100 nodes, producing 1000 different
matrices for each size, to carry out experiments similar to the ones
run for Abilene and Géant networks above. Fig. 15 shows an exam-
ple of A* vs. k* figure obtained between two nodes belonging to
the same cluster (Fig. 15(a)) and between two nodes belonging to
different clusters (Fig. 15(b)), for the case a 100 nodes synthetically
generated traffic matrix.

5.4.2. An alternative evolutionary clustering algorithm

In[11] an interesting evolutionary-based algorithm is proposed
for clustering problems (EvoCluster). That approach has several
adaptations to improve the evolution of solutions in clustering
problems. First, the algorithm uses a grouping-based encoding,
where each chromosome (solution to the cluster problem) includes
a variable number of clusters, and each cluster is formed by the

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319 4315

Table 2
Modularity and TS measures of the predefined clusters for the synthetically gener-
ated networks.

Network Objective clusters
Mod TS
30 0.5452 0.8337
40 0.5449 0.8228
50 0.4893 0.8037
75 0.4822 0.8125
100 0.5013 0.8066

labels of elements associated to it. Reproduction in EvoCluster con-
sists in the application of crossover and mutation operators. Two
different crossover operators are defined: guided and unguided.
In the guided crossover operator, the exchange of grouping infor-
mation is not totally random, but some information about the
best clusters is preserved during the crossover process. On the
other hand, in the unguided crossover operator, the exchange
of the grouping information between clusters is performed ran-
domly. In EvoCluster, six different mutation operators have been
defined, since guided and unguided mutation are considered, and
the mutation process may involve either just the removal and
reclassification of labels in clusters or the merge and split of the
whole cluster. The objective function used in EvoCluster is based on
a statistical study of the clusters encoded in each chromosome. The
chromosome’s fitness is indeed evaluated in two steps. A first step
attempts to discover statistically significant association patterns in
the clusters. A subset of records from different clusters encoded
in a chromosome is randomly selected to form a training set for
pattern discovery. In a second step, those records not selected in
the first step are reclassified into one of the clusters based on the
discovered patterns, to determine the reclassification accuracy of
the chromosome. This measure can be used as the fitness value
for each chromosome. Further information and implementation
details about the EvoCluster algorithm can be found in [11].

5.4.3. Results for synthetic traffic matrices

Here we present the new results obtained by the proposed EC
approach in the larger synthetically generated network clustering
problems, compared to all the alternative algorithms considered
so far, including the EvoCluster approach. First, Table 2 shows the
Modularity and TS measures of the synthetic problems according
to the cluster assignment procedure adopted in the generation pro-
cess (note that this is only possible in synthetic problems, where
we know the correct classification of each node in a given cluster).
These measures can be taken as a reference of the algorithm'’s accu-
racy when tackling these synthetic network clustering problems.

Tables 3 and 4 show the results obtained by the proposed EC
in the larger synthetically generated network clustering problems
(Modularity and TS metrics, respectively). A comparison with the
previously considered algorithms for network clustering, includ-
ing the EvoCluster algorithm, is also presented in these tables.
There are several interesting points to highlight after this round
of experiments. First, the proposed EC approach outperforms the

Table 3
Modularity results in synthetic instances of different sizes.
Network EC EvoCluster FastSVD K-means SF Newman
Abilene (12) 0.2077 0.0745 0.0578 0.1366 0.1688 0.1450
Géant (23) 0.2276 0.0187 0.0570 0.1474 0.0543 0.2226
30 0.5555 0.0150 0.0281 0.0088 —0.0260 0.4071
40 0.5162 0.0349 0.0306 0.0464 -0.0143 0.3812
50 0.4601 0.1599 0.0011 0.0211 -0.0105 0.4121
75 0.4513 0.1002 0.0101 0.2672 —0.0034 0.4580
100 0.4793 0.2756 0.0011 0.3316 —0.0214 0.4788

Table 4
TS results obtained in synthetic instances of different sizes.
Network EC EvoCluster FastSVD K-means SF Newman
Abilene (12) 0.6499 0.5540 0.5167 0.5174 0.5060 0.5702
Géant (23) 0.7399 0.6843 0.5660 0.4548 0.4546 0.6032
30 0.8227 0.6911 0.7155 0.4752 0.6669 0.8013
40 0.8146 0.7299 0.7233 0.5611 0.6391 0.8346
50 0.7999 0.7424 0.7212 0.5354 0.6354 0.7836
75 0.8091 0.7327 0.7239 0.5409 0.5653 0.7969
100 0.8036 0.7695 0.7151 0.6213 0.6642 0.7729

compared approaches in the network clustering problem. When
using the modularity metric as objective, the EC approach obtains
better values than the rest of approaches, excepting the instance
of 75 nodes, where Newman'’s algorithm obtains slightly better
values, precisely better by 1.5% (but we recall that Newman'’s algo-
rithm has been specifically devised to optimize modularity). In the
case of the TS metric, the EC algorithm obtains better results than
all the other methods under comparison. In this case the Newman
approach seems to be the second best option. The comparison of
the proposed EC algorithm with the existing EvoCluster algorithm
also exhibits interesting features. Note that the EvoCluster algo-
rithm is quite competitive under both metrics, outperforming other
approaches to network clustering. In fact, using the TS metric, the
EvoCluster approach is the third best option, after the proposed EC
and the Newman approach. Note also that the EvoCluster algorithm
improves its performance in larger networks. There is a good expla-
nation to this behavior of the algorithm: the EvoCluster is based on
a statistical model of the clustering provided by each solution (by
means of a training and validation sets), so this statistical model
will be better for large networks, and worse when there are few
nodes in the network, as in Abilene or Géant.

5.5. Computational cost analysis

In Section 5.3 we have compared the quality of the clustering
solutions obtained through our EC algorithm with the alterna-
tive algorithms. That comparison was based on the quality metrics
defined in Section 5.1. Another dimension that has to be considered
in the comparison is the computational cost associated to those
algorithms. In this section we provide an asymptotic analysis of
the computational cost of all the algorithms described in Section 4
and of our EC algorithm. We recall that, in the following, we con-
sider a network with m links and n nodes, which are grouped into
k clusters.

5.5.1. Newman

In the same paper in which they describe their algorithm, New-
man and Girvan provide an indication of its computational cost
[24], which is O(m?n). This value depends on the connectivity of
the network. We can obtain lower and upper bounds for that value.
In fact, the minimum number of links for a network of n nodes is
n—1,and corresponds to a network with linear topology. The oppo-
site extreme case corresponds to a fully meshed network, where the
number of links is n(n — 1)/2. Correspondingly, the lower and upper
bounds for the computational cost are respectively O(n3) and O(n?),
with the cost growing with the nodes’ average degree. We recall
that, in the networks we have considered, the average node degree
was respectively 3.3 for Géant and 5 for Abilene. As examples of
other networks, we can mention Skitter, with an average degree
of 6.34 [33], and the AS inter-domain topology, with an average
degree ranging between 2.67 and 2.99 [34]. These examples show
that there is not a direct relation between the size of the network
and the degree of nodes. In turn, that means that the number of links
can be deemed to be roughly proportional to the number of nodes,
as in the linear topology rather than in the full mesh topology. And

4316 M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

the computational cost of Newman'’s algorithm is therefore nearer
to its lower bound (O(n3)) than to its upper one (O(n>)).

5.5.2. K-means

The general expression for the computational cost of the mul-
tidimensional K-means algorithm to find the global optimum in a
deterministic way, when each node has d attributes, is O(n%*1 log n)
[35]. However, we have used a standard iterative heuristic, so that
we can evaluate the computational cost in a straightforward way.
Most of the time is spent by computing distances. Each distance
computation requires a cost O(n), since the number of attributes of
each node equals the number of nodes. When reassigning each node
to a cluster, we compute its distance to each centroid, so that the
overall cost of reassignment is kn times the cost of a single com-
putation, i.e., O(kn?). Finally, the association of a group of nodes
to a centroid has a cost O(n2). The overall cost is therefore O(kn?)
for each iteration, which, in our case, can be simplified to O(n?2).
Though it has been shown that, in the very worst case, the algo-
rithm requires an exponential number of iterations [36], it has been
recognized since long that the performance of the K-means algo-
rithm exhibits a stark contrast between practical observations and
theoretical bounds [37]. In our case, we have observed an approxi-
mately constant number of iterations, so that we can safely assume
that the overall cost of the K-means algorithm is O(n?).

5.5.3. Singular value decomposition

In the case of the Fast SVD, Drineas et alii show that the compu-
tational cost is O(k3 + k2r/€4), where r is the maximum number of
non-zero entries in the adjacency matrix, and € >0 is a given error
parameter [38]. The worst case corresponds to a network with a full
mesh topology, whose adjacency matrix is full excepting its diago-
nal. In that case, the number of non-zero entries is n(n — 1) and the
computational cost becomes O(k3 +k2n2/e%).

5.5.4. Spectral filtering

As to the computational cost of Spectral Filtering, its proposers
have not provided it. Here, we provide an evaluation based on the
decomposition of tasks required by that algorithm. Namely, for
the purpose of evaluating the computational cost, we consider the
following sequence of tasks:

. Computation of the two-way traffic matrix;

. Stochastic normalization;

. Eigen-decomposition of the normalized two-way traffic matrix;

. Sorting of the eigenvalues and selection of one of the top eigen-
values and the corresponding eigenvector;

5. Application of the K-means algorithm to the group of eigenvector

weights.

AW N =

The first step consists in the sum of the traffic matrix and of its
previously computed transpose. Both the transposition and the
sum are operations whose cost is O(n?), since it is proportional
to the number of matrix elements. Stochastic normalization con-
sists in summing all the elements of each row in the matrix and
dividing each element of the matrix by the row sum pertaining
to the row that element belongs to, again a task of cost O(n?).
The cost of the eigen-decomposition depends on the accuracy
we aim for. For an approximation within 2, the computational
cost has been shown to be O(n3+n2log2nlogh) [39]. As to sor-
ting, no algorithm that sorts by comparing elements can do better
than O(nlogn), but the worst case result for most algorithms is
O(n?) [40]. Finally, the determination of k clusters through the
application of the unidimensional K-means algorithm to the n
weights of the selected eigenvector requires a cost of O(n**! logn).
The costs of all the tasks are reported in Table 5. The over-
all cost is then due to eigen-decomposition and K-means, i.e,

Table 5

Computational cost of spectral filtering.
Task Computational cost
Two-way traffic matrix 0o(n?)
Normalization 0o(n?)
Eigen-decomposition 0o(n®+n?log?nlogh)
Sorting 0o(n?)
K-means o(n*k*! logn)

0(n3 +n?log2nlogb)+0(n**1 log n). However, when the number of
clustersis atleast 3 (a condition almost surely satisfied for networks
larger than a few tens of nodes), the dominant cost is that due to
the final application of the K-means algorithm.

5.5.5. EC algorithm

We now turn to the EC algorithm. As for the Spectral Filtering
algorithm, we identify the following sequence of computational
tasks:

1. Initialization;
2. Iteration of the following tasks till convergence
(a) Computation of the fitness function
(b) Application of the Selection operator
(c) Application of the Crossover operator
(d) Application of the Mutation operator

The initialization consists in assigning randomly the n nodes to
the clusters, and setting all the remaining elements of the encod-
ing matrix to —1. This can be done by first setting the encoding
matrix of size k x n, and then setting the values of the n elements
different from —1. The cost of setting the matrix elements equal
to —1 in the first place is O(kn). We have to generate N, candi-
date solutions (which, though random during the iterative process,
fluctuates around the pre-set value, which is independent of the
number of nodes), so that the overall computational cost of initial-
ization is O(kn).

The fitness function is a linear combination of the TS metric and
of the Modularity; its computation requires therefore the compu-
tation of both quality metrics. We now derive the computational
costs pertaining to them.

As to the TS, the combination of Eqs. (10) and (9) give us the
following overall expression:

n n
1 Wi+Z\ 1 L
s EZ(I_ n-1)—“mnq)Z(Wﬁzﬂ
i=1 i=1

n

1
T 1611 D0 Vit D v
i=1 jeGj#i G
n
n Zi:l (Zjec,-,j;eivij - ZjéCiVij_ IG |)

:n—1+ nn-1)

(16)

The first term of this sum can be computed once and for all. The
term involving the elements Vj; consists of summing all the extra-
diagonal elements of the matrix V with a sign which is 1 if the
nodes i and j belong to the same cluster and —1 otherwise. This
is tantamount to multiplying term by term the matrix V and the
matrix C obtained by the following rule, and then summing all the
elements:

1 if nodesiand jbelong to same cluster
¢j =< —1 ifnodesiandjbelong to different clusters
0 ifi=j

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319 4317

Table 6
Computational cost of modularity.
Task Computational cost
Row sums of traffic matrix o(n?)
Overall sum of traffic matrix O(n)
Identification of cluster composition O(kn)
Terms pertaining to all couples 0o(n?)

All the operations involved require a cost O(n?). Instead, the last
term is equal to the sum of the squared cardinalities of all the clus-
ters. The cardinality for each set can be obtained by scanning the
encoding matrix and counting the number of elements different
from —1 in each row, which has a cost O(kn). Squaring each cardi-
nality has a cost linear in the number k of clusters. And summing all
the squared cardinalities has again a cost O(k). The computational
cost for this termis then O(kn). Since the number of clusters is lower
than the number of nodes, the dominant cost is that due to the term
involving the V matrix: the cost of computing the TS metric is then
o(n?).

For the Modularity, we go back to the definition (11). We see that
the definition involves considering for each cluster just the terms
in the double sum concerning the nodes belonging to that cluster.
Most of the terms can be computed beforehand, since they are used
repeatedly in the double sum. Namely, the terms ijij and Z,»Xﬁ
represent just the row sums pertaining to nodes i and j in he traffic
matrix. There are just n rows in the traffic matrix matrix, so that
there are just n such terms. Computing the modularity requires the
following tasks

1. Computation of the sums » ;X;; for each node

2. Computation of the overall sum m=3 ;> iX;

3. Identification of the nodes belonging to each cluster

4. Computation of the sum Xj; — > ;X;; > "iX;i/(2m) for each couple
of nodes belonging to the same cluster

We now examine separately each step. In the first step, we need to
scan the traffic matrix row by row and compute a sum of n terms
for each row. The computational cost is then O(n?). Once we have
all the row sums, computing the overall sum m (Step 2) consists in
summing the n row sums, and has then a computational cost O(n).
The nodes belonging to each cluster have already been identified
when computing the TS metric; anyway their cost is O(kn) as shown
above. Finally, the computation involved in Step 4 has to be carried
out for all the clusters and a number of times equal to the number
of couples of nodes belonging to each cluster. If we indicate by |€,~|
the cardinality of the ith cluster, the number of couples of nodes
in cluster i is |G;|(1C;| — 1)/2, so that the overall number of terms

to be summed in Step 4 is upper bounded by ZLUCDZ < n?,

since ZL |C;| = n. The computational cost of Step 4 is then safely
upper bounded by O(n2). In Table 6, we summarize the computa-
tional costs of the tasks involved in computing the modularity. The
dominant cost is O(n?).

The application of the Selection operator requires the com-
putation of the average value of the fitness function, and the
identification and removal of all the candidate solutions whose fit-
ness function is lower than that average. The former task requires
N0 — 1 additions and a division. The identification of the candidate
solution requires Ny, comparisons. The computational cost of both
tasks doesn’t depend on the size of the problem and can therefore
be considered as running in constant time.

We recall that the Crossover operator consists in the following
tasks:

1. Duplication of encoding matrix of Parent A

1200 | —O— Average
—{F— Maximum
""""""" Fit-average
1000 | =====—-~" Fit-maximum

Number of iterations
[}
3
T

R aEEED—0—0—0

I RS E (AR NI RS
0 20 40 60 80 100

Number of nodes

Fig. 16. Iterations to convergence in the EC algorithm.

2. Random selection of half of the elements of the encoding matrix
of Parent B

3. Identification of those elements different from —1

4. Localization in the encoding matrix of the child of the elements
identified in Step 3

5. Addition of the elements removed in Step 4

All the above tasks act on a matrix of size kn, by accessing, writing,
or comparing a fraction of the elements of the encoding matrix, and
are therefore of complexity O(kn).

Even simpler is the case of the Mutation operator, which acts
by just swapping two elements of two encoding matrices, and is
therefore running in constant time.

After comparing the costs of the Selection, Crossover, and Muta-
tion operators, we see that the dominant cost for each iteration
of the genetic algorithm is O(n?). However, the number of itera-
tions needed for convergence may be large, and we expect it to
be dependent on the size of the network. In order to evaluate the
order of dependence, we have extracted subnetworks of different
size from the Géant topology, and applied the genetic algorithms
to those subnetworks with the corresponding dataset of traffic
matrices. In Fig. 16 we have plotted the average and the maxi-
mum number of iterations over the dataset of 1000 traffic matrices.
We see that the number of iterations grows with the size of the
network, embodied by the number of nodes, in a sublinear fash-
ion, though we are aware that we cannot draw conclusions on the
asymptotic behavior from such a limited data sample. We hypoth-
esize that the number of iterations Nj.; grows with the number of
nodes according to a power law

Nior = an®. 17
iter

By a least-squares fitting procedure, we find the values of the
two fitting parameters reported in Table 7. In the same Fig. 16
we see the two best-fitting curves. The fit is nearly perfect for the
average number of iterations, and quite good for the trend of the
maximum value, though the latter shows significant oscillations
around the trend, and larger values than the trend when the num-
ber of nodes is high (but the shape of the trend is preserved). If
we consider the worst case, given by the maximum number of

Table 7

Best fit parameters for the number of iterations.
Statistic Factor a Exponent b
Average 40411 0.293
Maximum 48.027 0.677

4318 M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319

Table 8
Computational cost.

Algorithm Computational cost
Newman 0(m?n)

K-means o(n?)

Fast SVD o(n+28)

o(n**! logn)
O(n2.677)

Spectral Filtering
Evolutionary

iterations, the overall computational cost of the EC algorithm is
then 0(n2*?)=0(n2677).

The computational costs of all the algorithms are summarized
in Table 8. They do not appear to be directly comparable, since
some of them depend on other factors (additionally to the num-
ber of nodes), which are the number of links and the number of
clusters. However, we see straight that the cost of K-means grows
with the square of the number of nodes. Instead, the cost of Fast
SVD grows faster than the cube of the number of nodes. The cost
of Spectral Filtering is again faster than that cube as soon as the
number of clusters is larger than two, a situation so frequent to
be certain, excepting very small networks. As to the cost of New-
man’s algorithm, it depends on the relation between the number
of links and that of nodes. Since the number of links grows at least
proportionally to the number of nodes, Newman'’s algorithm also
has a computational cost which grows as £2(n3), i.e., at least as fast
as 0(n3). Hence, all those algorithms, excepting K-means, exhibit a
computational cost larger than our EC algorithm.

6. Conclusions

We have proposed a new evolutionary algorithm to cluster
networks, based on traffic matrices, where existing clustering algo-
rithms rely just on topology information, though augmented with
link weights.

We have compared the performance of our EC algorithm with a
different evolutionary algorithm (EvoCluster) as well as a selection
of non-evolutionary algorithms well established in the literature:
K-means, Spectral Filtering, Newman'’s, and Fast SVD. In the com-
parison we have considered both the aspects of the quality of
the solution and the computational cost. Two metrics have been
considered for the quality evaluation: the Traffic-aware Scaled
Coverage Measure (deriving from the Scaled Coverage Measure,
which we have adapted to work in a traffic-based context), and
the Modularity measure. The comparison has been conducted on
two real world datasets (pertaining to two networks of small
size) and on a synthetic dataset (with larger size traffic matri-
ces).

Our EC algorithm outperforms all the competing algorithms
under all the aspects considered for the real world datasets. It
exhibits a larger average score under both quality metrics, accom-
panied by a standard deviation lower than all the competitors,
which means that its performance are quite stable. In the synthetic
datasets, it outperforms all other methods for all sizes and under
both metrics, with the only exception of Newman’s algorithm when
the modularity is used and the network is made of 75 nodes (and
by just 1.5% even in that case). The computational cost, evaluated
through an asymptotic analysis, is lower than all the competitors,
excepting K-means.

References

[1] AK. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Computing
Surveys 31 (1999) 264-323.

[2] AK. Jain,Dataclustering: 50 years beyond K-means, Pattern Recognition Letters
31(2010) 651-666.

[3] S.E. Schaeffer, Graph clustering, Computer Science Review 1 (2007)
27-64.

[4] H. Ali, W. Shahzad, F.A. Khan, Energy-efficient clustering in mobile ad-hoc
networks using multi-objective particle swarm optimization, Applied Soft
Computing 12 (2012) 1913-1928.

[5] B.A. Attea, E.A. Khalil, A new evolutionary based routing protocol for clustered
heterogeneous wireless sensor networks, Applied Soft Computing 12 (2012)
1950-1957.

[6] L. Laura, M. Naldi, G.F. Italiano, Traffic-based network clustering, in: A. Helmy,
P. Mueller, Y. Zhang (Eds.), Proceedings of the 6th International Wireless Com-
munications and Mobile Computing Conference, IWCMC 2010, June 28-July 2,
2010, Caen, France, ACM, 2010, pp. 321-325.

[7] M. Sinclair, Improved model for European international telephony traffic, Elec-
tronics Letters 30 (1994) 1468-1470.

[8] T. Crnovrsanin, C.D. Correa, K.-L. Ma, Social network discovery based on sen-
sitivity analysis, in: 2009 International Conference on Advances in Social
Network Analysis and Mining, ASONAM 2009, 20-22 July 2009, Athens, Greece,
2009, pp. 107-112.

[9] M.-]. Lin, K. Marzullo, Directional Gossip: Gossip in a Wide Area Network,
Springer, 1999.

[10] S. Salcedo-Sanz, M. Naldi, L. Carro-Calvo, L. Laura, A. Portilla-Figueras, G.F. Ital-
iano, An evolutionary algorithm for network clustering through traffic matrices,
in: Proceedings of the 7th International Wireless Communications and Mobile
Computing Conference, IWCMC 2011, 4-8 July, Istanbul, Turkey, 2011, pp.
1580-1584.

[11] P.C.H.Ma, K.C.C. Chan, X. Yao, D.K.Y. Chiu, An evolutionary clustering algorithm
for gene expression microarray data analysis, IEEE Transactions on Evolution-
ary Computation 10 (2006) 296-314.

[12] A. Medina, C. Fraleigh, N. Taft, S. Bhattacharyya, C. Diot, Taxonomy of IP
traffic matrices, in: V.F.Z.-L. Zhang (Ed.), Society of Photo-Optical Instru-
mentation Engineers (SPIE) Conference Series, vol. 4868 of Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2002,
pp. 200-213.

[13] G. Fiche, G. Hébuterne, Communicating Systems & Networks: Traffic & Perfor-
mance, Kogan Page Science, 2004.

[14] M.E]. Newman, Analysis of weighted networks, Physical Review E 70 (2004)
056131.

[15] P.Conti, L.D. Giovanni, M. Naldi, Blind maximum likelihood estimation of traffic
matrices under long-range dependent traffic, Computer Networks 54 (2010)
2626-2639.

[16] P. Conti, L. De Giovanni, M. Naldi, Estimation of traffic matrices in the presence
of long memory traffic, Statistical Modelling 12 (2012) 29-65.

[17] E.R. Hruschka, RJ.G.B. Campello, A.A. Freitas, A.C.P.L.F. de Carvalho, A survey
of evolutionary algorithms for clustering, IEEE Transactions on Systems, Man,
and Cybernetics, Part C 39 (2009) 133-155.

[18] A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing (Natural Com-
puting Series), Springer, 2008.

[19] E.Cant-Paz, Order statistics and selection methods of evolutionary algorithms,
Information Processing Letters 82 (2002) 15-22.

[20] H. Miihlenbein, D. Schlierkamp-Voosen, Predictive models for the breeder
genetic algorithm, I: Continuous parameter optimization, Evolutionary Com-
putation 1 (1993) 25-49.

[21] M. Kantardzic, Data Mining, Wiley-Interscience, 2003.

[22] J. Hartigan, Clustering Algorithms, Wiley, New York, 1975.

[23] P. Drineas, A.M. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering large
graphs via the singular value decomposition, Machine Learning 56 (2004)
9-33.

[24] M.EJ. Newman, M. Girvan, Finding and evaluating community structure in
networks, Physical Review E 69 (2004) 026113.

[25] C. Gkantsidis, M. Mihail, E\W. Zegura, Spectral analysis of internet topolo-
gies, in: INFOCOM 2003, San Francisco,30 March-3 April 2003, vol. 1,
pp. 364-374.

[26] F. Chung, Spectral Graph Theory (CBMS Regional Conference Series in Mathe-
matics No. 92) (Cbms Regional Conference Series in Mathematics), American
Mathematical Society, 1997.

[27] P. Husbands, H. Simon, C. Ding, On the use of the singular value decom-
position for text retrieval, in: Computational information retrieval, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001,
pp. 145-156.

[28] S.V.Dongen, A Cluster Algorithm for Graphs, Technical Report INS-R0010, CWI,
National Research Institute for Mathematics and Computer Science, 2000, 31
May.

[29] K. Praditwong, M. Harman, X. Yao, Software module clustering as a multi-
objective search problem, IEEE Transactions on Software Engineering 37 (2011)
264-282.

[30] S. Uhlig, B. Quoitin, J. Lepropre, S. Balon, Providing public intradomain traf-
fic matrices to the research community, SIGCOMM Computer Communication
Review 36 (2006) 83-86.

[31] F. Vega-Redondo, Economics and the Theory of Games, Cambridge University
Press, 2003.

[32] B. Silverman, Density Estimation, Chapman & Hall, 1986.

[33] H. Haddadi, M. Rio, G. lannaccone, A.W. Moore, R. Mortier, Network topolo-
gies: inference, modeling, and generation, IEEE Communications Surveys and
Tutorials 10 (2008) 48-69.

[34] R.Govindan, A. Reddy, An analysis of internet inter-domain topology and route
stability, in: INFOCOM, 1997, pp. 850-857.

M. Naldi et al. / Applied Soft Computing 13 (2013) 4303-4319 4319

[38] P.Drineas, A.M. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering large graphs
via the singular value decomposition, Machine Learning 56 (2004) 9-33.

[35] M.Inaba, N.Katoh, H.Imai, Applications of weighted Voronoi diagrams and ran-
[39] V.Y.Pan,Z.Q. Chen, The complexity of the matrix eigenproblem, in: STOC, 1999,

domization to variance-based-clustering (extended abstract), in: Symposium

on Computational Geometry, 1994, pp. 332-339.
[36] A.Vattani, K-means requires exponentially many iterations even in the plane, pp. 507-516.
[40] G.T. Heineman, G. Pollice, S.M. Selkow, Algorithms in a Nutshell - A Desktop

Discrete & Computational Geometry 45 (2011) 596-616.
[37] D. Arthur, B. Manthey, H. Roglin, Smoothed analysis of the K-means method, Quick Reference, O'Reilly, 2009.

Journal of ACM 58 (2011) 19.

