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We present a possible scheme for a scintillating fibre tracker that could be used at the LHC in the central pseudorapidity
region . The experimental environment at the LHC was simulated in detail by a Monte Carlo program using the GEANT
package . We shall discuss the expected performance ofthe proposed tracker, mainly for electron identification. We also report
on the results of laboratory measurements of scintillating fibre characteristics: we measured the time response, the light yield,
the attenuation length and the light propagation speed in individual fibres, looking for the best candidates for the LHC .

1 . Introduction

The experiments which will be performed at future
high energy and high luminosity hadronic colliders
(LHC, SSC) will face severe experimental problems :
the most remarkable ones are a high proton-proton
collision rate and a high radiation level [ 11 . In partic-
ular a tracking detector operating in the central region
(1r11 < 2) should be :
- radiation resistant (-1 Mrad);
- accurate : for momentum and charge measure-

ment up to - 1 TeV;
- granular enough to limit fake track reconstruc-

tion ;
- fast : it should provide signals every bunch-

crossing (15 ns) ;
- transparent to electromagnetic radiation, i .e . to-

tal thickness < 0.1 r.l .
We studied a central tracker made of scintillating

fibers; its main aim is to contribute to identify (at the
first level trigger) events with high pr leptons origi-
nating in a pp collision - as well as to measure the lep-
ton momentum - out of the - 109 events per second
occurring at the LHC (pp collisions at 16 TeV) at the
highest luminosity (1034 CM-2 S- I ) .

0168-9002/93/$ 06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

2 . Monte Carlo simulation of the scintillating fibre
tracker

We propose a scintillating fibre (SciFi, diameter
- 0.5 mm) tracking device aiming to fulfil the above
mentioned requirements, i .e . :

- high radiation hardness;
- very fast time response;
- good space resolution ;
- good transparency .
The tracker performances at the LHC were studied

by a detailed Monte Carlo program providing a full
simulation using the GEANT package [2 ] . The geom-
etry of the SciFi tracker is the following (see fig . 1) :

- The fibres (each one with a diameterof 0.5 mm)
positioned along the beam axis (to provide r, 0 co-
ordinates) are grouped into cylindrical "superlayers" :
a superlayer is made of two series of four fibre lay-
ers each, with a spacing of 4.6 cm (the overall thick-
ness of a superlayer is, therefore, 5 cm) ; a staggering
of 125 urn (1/4 of the fibre diameter) between con-
tiguous layers gives a space resolution rA0 ~ 40um at
full efficiency (fig . 1) . The simulation includes also a
beryllium pipe and suitable carbon fibre supports for
fibres .

- A first SciFi superlayer is positioned 0.5 m and
another one 1 m from the beam axis, with acceptance
Jill < 1 .9 (fig . 2) ; besides, the fibre layers are inter-
rupted at t] = 0 to separate left/right signals.

The detector includes a total of281 600 fibres and
the total thickness at n = 0 is - 5% r.l . The light sig-
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Fig. 1 . Transverse section of a superlayer of the proposed
scintillating fibre detector; possible hits for low pT and high

pr charged particles are represented .

nal is brought far from the central region of the de-
tector, so that the readout electronics are not affected
by the high radiation dose; for this reason, in the pro-

Superlayere

intersection
point

scintillating fibre tracker

posed scheme, each scintillating fibre is prolonged by
using an 8 m long clear light guide . The price to pay
is a low average number of photons arriving at the
far end of the clear fibre ; thus, the readout must be
performed through high efficiency photon detectors .
We assume to use the VLPCs (Visible Light Photon
Counters, produced by Rockwell), which have quan-
tum efficiency ti 85 % in the visible region of the elec-
tromagnetic spectrum [3 ] .

The simulation includes trapping efficiency, at-
tenuation effects (2.5 m in the scintillating fibres,
12 m in the clear fibres) and efficiency factors of
clear/scintillating fibre junctions and VLPC.

The Monte Carlo calculation was performed with
three kinds ofevents (generated in pp collisions at 16
TeV) :

- isolated electrons with energy > 20 GeV;
- QCD jets (E, > 20 GeV) which fake electro-

magnetic clusters in the calorimeter; at the calorime-
ter level the electromagnetic cluster was selected by :

a) Inl < 2 ;
b) Ee�, (Ail x AO

	

0.06 x 0.06) > 20 GeV,
c) Eleak (Arl x AO - 0.06 x 0.06) < 5 GeV,
d) E,,., (Orlx0O-0.1x0.1)< 10 GeV,

providing already a rejection factor - 240 against
QCD jets ;

- minimum bias events .

Fig . 2 . Longitudinal section of the proposed detector ; in this scheme only 1/4 of the whole section is

Beam axle

represented .



D . Autfero et al. / A possible scintillating fibre tracker

	

523

0

wa ~sa
uori~ ooma .m
vwi. o.omo[ .ro

40
o wo~
6M~

n
ros
uuu umooc.m

10 20

Cluster multiplicity for SO

	

Cluster multiplicity for SI-2

Fig. 3. (a) Distribution of cluster multiplicities in superlayers 1 and 2 for electron tracks at low luminosity . (b) Distribution
of cluster multiplicities in superlayers 1 and 2 for QCD jet tracks at low luminosity .
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An "electron" is a charged track with recon-
structed momentum matching the calorimeter energy
and pointing to the electromagnetic cluster of the
calorimeter within an angular fiducial region .

In order to simulate the high LHC luminosity, we
superimpose minimum bias events on both electron
and QCDjet events : at C = 1033 cm-2 s-1 the average
rate is 1 minimum bias event per bunch crossing (rate

10 8 s -1 ) ; at L = 10 34 cm-2 s- I the corresponding
rate is 10 minimum bias events per bunch crossing
(rate - 109 s-1 ) .

By applying a solenoidal magnetic field, it is pos-
sible to reconstruct the transverse momentum of the
charged tracks; in a 2 T magnetic field, the transverse
momentum p-r and the bending radius p of a track are
linked through the following dependence :

pT(GeV/c) = 0.6p(m) .
The PT resolution resulting from the proposed detector
geometry and the applied magnetic field is:
8Pr

	

O.SpT (TeV/c) .
PT

The number of charged particles coming from a min-
imum bias event at the LHC (per unit pseudorapid-
ity) is [4] :

dnch -6 .
dn

Then, we estimate that about 230 charged particles
per bunch-crossing will emerge from the interaction
region at L = 10 34 cm-2 s- ' .

In our simulation of the LHC running conditions
we neither did include the effect of back-splash par-
ticles from the material surrounding the cavity of the
central detector nor the signals produced by neutrons
originated by the outer calorimeters . These effects de-
pend on the configuration of the outer detectors and
they could increase the noise in the fibre tracker. In
the ATLAS experiment at the LHC [5 ] the amount of
back-splash from the cryostat of the magnet coil sur-
rounding the central region was estimated not to ex-
ceed 10% of the total number of the minimum bias
particles . In this experiment the neutron albedo was
also calculated : at the maximum LHC luminosity the
neutron fluence per year is 10' 3 n/cm2 resulting in
about 200 neutrons crossing a layer ofthe fibre tracker
every 15 ns . We estimate an additional number of
about 20 hits in a layer of fibres and this is still negligi-
ble compared to the hits due to the primary particles .

In our detector a stiff track (PT > 10 GeV/c) is
recognized because its hits in a superlayer (8 at full ef-
ficiency) are lined up within one fibre diameter . Due
to the high particle flux, random correlation of hits
coming from minimum bias tracks could also mimic a
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large PT electron : we calculated this contamination to
be < 1 %, provided we know the 0 cone of the electron
(f2.5°) defined by the calorimeter cluster position.

In the Monte Carlo, high pr tracks are selected us-
ing the following algorithm :

- "hits" are searched for within f2.5° around the
electron or jet direction (set by the calorimeter spa-
tial resolution) : the average number ofphotoelectrons
measured for each fibre is about 10 ;

- for each superlayer, >7 fibres lined up with the

Fig. 4 . AO distribution for electron tracks at low luminosity .
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Fig . 5 . AO distribution for QCD jet tracks at low luminosity .
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Fig. 6. (a) Distribution of cluster multiplicities in superlayers 1 and 2 for electron tracks at high luminosity . (b) Distribution
of cluster multiplicities in superlayers 1 and 2 for QCD jet tracks at high luminosity .
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10

interaction vertex within one fibre diameter (pT > 10
GeV) are selected ; average angular coordinates Q01)
in the inner superlayer, (02) in the outer one) are as-
signed to these "clusters" ;

finally, we study the histogram of the quantity
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Fig. 8 . AO distribution for QCDjet tracks at high luminosity .
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Fig. 7 . AO distribution for electron tracks at high luminosity.

I (Y'1) - (02) I : ifthere is more than one possible corre-
lation between clusters in the two superlayers, we con-
sider the pair of clusters for which JA01 is minimum .

This procedure was used first to analyse electron
events and QCD jet events, with one minimum bias
event overlapped (low luminosity) . For the electrons
(fig . 3a), we see that the fibre multiplicity of most
tracks in each superlayer equals 8 (it corresponds to a
track crossing one fibre in each layer) ; from the ~A01
distribution (fig. 4), a clear correlation signal is visi-
ble : setting a cut at AO - 0.8° we get an electron effi-
ciency of 95%.

For the QCD jets (fig. 3b), however, the average
multiplicity of the clusters in each superlayer is only
4 (ajet contains many low energy particles, and their
paths do not cross all the layers in a superlayer within
one fibre diameter) . A similar AO cut in jet events re-
tains - 5%, thus the tracker alone provides a rejection
factor against jets of r� 20 (fig. 5) .
We proceed in an analogous way to analyse events

at high luminosity (- 1034Cm -2s-1 ) ; now the situa-
tion is complicated by the 10 minimum bias events
superimposed to a high pr electron or QCD jet. As
shown in fig . 6a (electron events), most clusters (orig-
inating from low pr particles) have low multiplicity
and are filtered out by the selection criteria, and again,
the electron efficiency at AO < 0.8° is ti 95% (fig. 7) .
A more difficult situation arises in the reconstruction

I D 5000
Entries 70
Mean 0.2880
RMS 0.1632
UDFLW 0.0000E+00
OVFLW 3.000
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Fig. 9 . Longitudinal view of the set-up used in the RIFOS experiment for the measurements of scintillating fibres .
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Fig. 10 . Scheme of the transverse section of the trigger sys-
tem used in the RIFOS experiment .
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Fig . 11 . Example ofan experimental qVt charge distribution
recorded in the RIFOS experiment; the contributions of 1,

2, 3 and 4 photoelectrons are shown .
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Fig . 12 . Poisson distribution fitting the values of the photo
electron peak amplitudes obtained from fig . 11 ; in this case
we get 0.94 for the average number of photoelectrons .

of tracks in the jets: the superlayer clusters (fig . 6b)
still have low multiplicity, on average, but the proba-
bility ofrandom clustering rises due to the large num-
ber ofclusters and statistical fluctuations : now we find
25% ofjet events with X001 < 0.8o, and the resulting
hadron rejection factor is poorer (- 4, see fig . 8) .

To use the information of high PT electron tracks
for event selection at the first level trigger requires an
electron/jet rejection factor of - 10-10 2 provided by
the tracker alone [6] . Therefore the proposed scheme
is adequate at low luminosity ; at high luminosity we
estimate that a third superlayer added to the proposed
detector will provide the required rejection factor .
We recall the parameters used in our simulation :
- fibre attenuation length (at great distance) _

2.5 m; 12 m for clear fibres ;
- clear fibre/ scintillating fibre junction efficiency:

95% ;
- photomultiplier quantum efficiency : 85% ;
- time interval between two readouts of the same

fibre : 15 ns (interval between two bunch-crossings at
the LHC) .
As a result we find an average number ofphotons per
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3 . Measurements of scintillating fibres
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Fig . 13 . Example of an experimental attenuation plot of the RIFOS experiment, in this case we get an attenuation length of
283 cm .

fibre (extrapolated to zero distance) no = 15 . These
values have to be kept in mind as a reference for the
laboratory tests of scintillating fibres .

The RIFOS experiment, performed at the INFN
laboratories in Pisa, aims to assess the performance of
various kinds of scintillating fibres . The scintillation
process is stimulated by a collimated beam of elec-
trons coming from the 6 - decay of a 3.7 MBq 90Sr
source .

Here are the features of the experimental set-up
(fig . 9) :
- a 3 m long fibre is stretched horizontally, 10 cm

above the plane of an optical bench ;
- the source is fixed to a small carriage which can

be moved all along the fibre on a railway by a stepping
motor : a CAMAC module controls the motor move-
ment, and a single step corresponds to a carriage dis-
placement of 0.47 mm;

- the fibre ends are in contact with the input win-
dows of two Hamamatsu R1635-02 photon count-

D. Autiero et al. / A Possible scintillating fibre tracker
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ing photomultipliers, reading the scintillation pulses ;
the photocathode is bialkah, with quantum efficiency

25% for visible light with .l = 420-430 nm, and
-

	

10% for ~ = 530 nm;
- a trigger system is also fixed to the carriage

(fig . 10) : a collimating slit and two small segments of
a scintillating fibre are placed beneath the test fibre ;
each segment is in contact with a photomultiplier;

- the whole set-up is mounted inside a room which
is totally darkened during the measurements .
The following scintillating fibres were measured:

- Pol . Hi . Tech . *1 fibres 0 mm and 0.5 mm
thick) emitting scintillation light at 420, 430, 460,
530, 590, 600 and 650 nm (referred to as al for 1 mm
and as for 0.5 mm diameter) .

- Kuraray 12 fibres (0.8 inm thick) emitting scin-
tillation light at 530 nm (referred to as K3HF) .

x2

Pol. Hi . Tech . s .r.l ., S .P . Turanense km 44.400, 67061
Carsoli (AQ), Italy .
Kuraray Co., Ltd ., Methacrylic Resin Division, Shuwa
Higashi-Yaesu Building 9-1, Hatchobory 2-Chome,
Chuo-ku, Tokyo 104, Japan .
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as0 time response
Fig. 14 . Example of a time response measurement performed in the RIFOS experiment .
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On each fibre, the following measurements have been
performed :

- average number of produced photoelectrons ;
- attenuation length ;
- time response ;
- light propagation speed in the fibre .

3 .1 . Attenuation length and average number of
photoelectrons

The attenuation length is computed by measuring
the average number of photoelectrons produced by
the photocathode of a photomultiplier placed at one
end of the fibre, as a function of the source distance
from the photocathode. If the source is far enough (>
0.5 m) from the photocathode, the following formula
may be used :

Npe = No exp (-X/Aatt) ,

where Aatt is, by definition, the fibre attenuation
length ; No is the number of photoelectrons extrapo-
lated to zero distance . We extract the average num-
ber of photons produced by the fibre by dividing
No by the photocathode quantum efficiency for that
scintillation light wavelength .

For this measurement, a q Vt module, used in q
mode and gated by the trigger system, receives the
signal from the photomultiplier . Fig . 11 shows an ex-
ample of a q Vt charge spectrum collected at a given
position of the source along the fibre : the experimen-
tal distribution receives contributions from the noise
(pedestal) and from the signals originated by 1, 2, . . .
photoelectrons, smeared out by the statistical fluctua-
tions in the multiplication process (we assume Gaus-
sian distributions) . Thus the qVt histogram was fit-
ted by the following expression :

2

f (X) =

	

typed

	

exp [- (X

_

2azpe
d)	]

�,/f27TUped ped
M

M is the number of Gaussian photoelectron peaks
contributing to the measured spectrum ; Xped and Uped
are the pedestal position and width respectively, z,
and U, are the parameters ofthe ith photoelectron con-

tribution . We assume z,+ , - X, =constant and U, =

f U t ; Xped, Uped, X,, U t were determined in special runs
with low light yield ; w,, weed are the peak areas, to be
determined through the fitting procedure . The peak
areas w, reasonably match a Poisson distribution with
mean value u :

e-uh
~

w,(i;p) = K

	

,

	

,
i .

where K is a normalization factor ; a is the average
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number ofphotoelectrons produced by the photocath-
ode and it is obtained by a fit of the experimental pa-
rameters w, with the Poisson distribution (see fig . 12
as an example of this computation) . We also tried a
more complicated parameterization of the spectrum,
allowing for Landau tails too : the differences in the
results are not larger than 10%; therefore we estimate
the final uncertainty on the determination of 1t to be
f 10% . As a matter of fact we performed this proce-
dure only at a few points of the attenuation curve to
obtain absolute normalization : the attenuation curve
was obtained simply by measuring the anode current
as a function ofthe source position . An example ofan
attenuation plot is shown in fig. 13 .

3 .2 . Time response

The time characteristic of a fibre is evaluated by
using a LeCroy qVt module in t mode : the time
behaviour of the scintillation pulse produced as the
source is placed 5 cm away from the fibre end is
measured . The start is given by the trigger system,
and the stop by the first photon arriving at the photo-
multiplier . A high photon rate can lead to misleading
results . For this reason, it is necessary to use filters
in order to decrease the light yield seen by the photo-
multiplier to the level of a single photon per trigger,
especially for blue scintillation light (420-430 nm) .
As foreseen by the theory [8], the scintillation pulse
rises quite fast (it reaches its maximum value in
about 1-2 ns), it then decreases exponentially owing
to the fluorescence decay time of the dye contained
in the fibre ; more precisely, the observed behaviour
can be parameterized by the sum of several expo-
nential functions, depending on the nature of dyes in
the fibre. We estimate the electronic time resolution
contributing to the time measurement to be < 0.6 ns .
An example of this measurement is shown in fig. 14 .

3 .3. Light propagation speed

The light propagation speed in each fiber is com-
puted by moving the source along the fibre and per-
forming 25 measurements of arrival time at each po-
sition . Moreover, we can measure the time spread of
the arriving signals at each position : this time reso-
lution is dominated by the fibre time response, and,
together with the light propagation speed, it sets an
ultimate limit to the "promptness" of the signals ob-
tained by the fibre system . An example of these mea-
surements is shown in fig . 15 .

3 .4 . Photomultiplier quantum efficiency

The quantum efficiency of the photomultipliers
used in our tests was measured as follows (fig. 16) . A



Fig. 16 . Schematic representation of the experimental set-up used for measuring the quantum efficiency ofthe photomultiplier
used in the RIFOS experiment .

laser beam crosses two polarimeters, before imping-
ing onto either a photodiode or a photomultiplier ;
the axis of the first polarimeter was fixed, while the
axis of the second one is rotated in order to increase
or decrease the photon flux reaching the photon de-
tector. IfNo is the photon rate coming out ofthe first
polarimeter, the number of photons per unit time
reaching the photodiode is No (cost 0 + k), where 0
is the angle between the two polarimeter axes, and k
is a constant to be determined ; we chose 0 = n/4 so
that the photon beam reaching the photodiode was
intense enough for a reliable measurement of the cur-
rent in the photodiode . If ep is the photodiode quan-
tum efficiency (60% ± 5%), we get the photodiode
current :

Table 1
Experimental values for the main parameters of the scintillating fibres used for the RIFOS experiment

D. Autiero et al. /A possible scintillating fibre tracker

1- bw.

I=eeN 1p o(2 + k) .

If k is negligible (and in fact it is - 10-7 ) we can
extract the photon flux No.

Afterwards, the photodiode was replaced by a pho-
tomultiplier ; the second polarimeter axis was rotated
so that the final photon flux reached a minimum
around 0 = n/2, and the resulting photoelectron rate
N (epm is the photomultiplier quantum efficiency)
was measured around the minimum value as a func-
tion of 0 :
N(0) = epm No(COS Z 0 + K) .

K is another experimental constant. The values of Epm

531

No . - A,,,, [nm] Fibre characteristics
General
Diam . [mm] Aatt [Cm] No

Luminescence
r [ns]

Propagation
v - t [ns/m] a [ns]

all - 650 1 91 < 0 .3 6 .0 ± 0.3 6 .2 ± 1 .1 1 .3 ± 0.4
a12 - 600 1 83 0 .3 3 .2 ± 0.2 6 .0 ± 0 .9 0 .5 ± 0.2
al3 - 590 1 133 0.3 5 .7 ± 0 .1 6 .1 ± 0 .1 0 .9 ± 0.3
a10 - 530A 1 368 0.9 15.9±0.2 6.1±0.4 2.9±0.5
a15 - 530 1 354 1 .0 14.9±0.3 6.0±1 .8 2.6±0.5
al51 - 530/1 1 195 3 .0 8 .5 ± 0 .1 5 .8 ± 0 .5 0 .6 ± 0.2
a14 - 460 1 148 7.0 3 .5 ± 0 .1 6 .6 ± 0.4 0 .3 ± 0.2
al6 - 430 1 174 6.0 2 .3 ± 0 .1 6 .6 ± 0.5 0.3 ± 0.2
a17 - 420 1 204 5 .9 2 .6 ± 0 .2 6 .6 ± 0.5 0.2 ± 0 .1
al71 - 420A 1 161 6.0 2 .9 ± 0.1 6 .5 ± 0.5 0.3 ± 0 .2
K3HF - 530 0.8 349 3.6 8 .3 ± 0.1 6 .5 ± 1 .3 0.3 ± 0 .2
as l - 650 0.5 283 0.1 6 .5 ± 0.3 5 .8 ± 0.5 1 .5 ± 0 .4
as2 - 600 0.5 55 0.2 2 .8 ± 0.2 5 .8 ± 0.5 1 .5 ± 0 .4
as3 - 590 0.5 54 0.3 4 .8 ± 0.2 6 .5 ± 0.5 1 .0 ± 0 .3
as0 - 530A 0.5 283 0.4 15 .0 ± 1 5.5,± 1 .7 3 .2 ± 0.6
as51 - 530/1 0.5 214 1 .3 4 .8 ± 0.2 6 .6 ± 0.5 1 .0 ± 0.3
as52 - 530/2 0.5 221 0.5 17.2±0.3 5 .9±1 .6 3.1±0.5
as4 - 460 0.5 142 1 .1 3 .5 ± 0.2 6.4 ± 1 .2 0 .7 ± 0.3
as6 - 430 0.5 142 3 .3 2 .3 ± 0 .1 6 .9 ± 0 .5 0 .4 ± 0.2
as7 - 420 0.5 188 4.3 2.59±0.05 6.6±0.5 0.3±0.2
as71 - 420A 0.5 177 2.7 2.78 ± 0.05 6 .7 ± 0 .5 0 .4 ± 0.2
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and K are given by a fit of N(¢) : e,m is 5% f 1%
for green light (530 nm) lasers, in agreement with the
nominal value for a photomultiplier with a bialkali
photocathode [7 ] .

3.5 . Experimental results

The experimental parameters for 1 mm, 0.8 mm
and 0.5 mm diameter fibres are reported in table 1.
Column 1 shows the conventional abbreviation and
the emission wavelength of each sample ; column 2
shows the diameter of each fibre; columns 3 and 4
show the experimental values of Aatt and No, respec-
tively . Column 5 shows the results of the measure-
ments of the luminescence decay time of each fibre .
Finally, column 6 shows the experimental values of
the inverse of the propagation speed of light in each
fibre, andcolumn 7 shows the statistical standard de-
viation of v - ~ . These results will be discussed in sec-
tion 4.

4. Concluding remarks

Looking at table 1 we see that several commercially
available fibres have an attenuation length greater
than 2.5 m (value taken as a guideline from the Monte
Carlo simulation) even for 0.5 mm fibres . In partic-
ular, let us consider the as51, as52 and as0, emitting
green scintillation light (530 nm) : for these fibres,
given a PM quantum efficiency of - 5%, the number
of photons extrapolated to 0 (No' ) is -15-20, again
in agreement with the Monte Carlo requirements .

From table 1 we see that the decay time for green
fibres is generally longer than for blue fibres, but the
spread of the arrival time is always - 3 ns . The in-
verse of light propagation speed is - 6 ns/m for all
the fibres ; this speed, together with the arrival time
spread, would limit the sensitive length of the fibres
to - 2 m if the detector is to be ready at each bunch-
crossing (every 15 ns) .

In conclusion, this investigation shows that the al-
ready commercially available fibres (0.5-1 mm) in
diameter are almost adequate for a tracker detector at
future hadron colliders. Also the radiation resistance
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of these fibres to the radiation doses expected at the
LHC seems adequate [ 9 ] .

On the other hand, due to the relatively low num-
ber of produced photons, a photon detector with
high quantum efficiency (> 50%) and very low noise
is necessary, and future efforts should be addressed
mainly in this direction.
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