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a b s t r a c t

Detecting abnormally low bids in procurement auctions is a recognized problem, since their acceptance
could result in the winner not being able to provide the service or work awarded by the auction, which is
a significant risk for the auctioneer. A rank-and-compare algorithm is considered to detect such anoma-
lous bids and help auctioneers in achieving an effective rejection decision. Analytical expressions and
simulation results are provided for the detection probability, as well as for the false alarm probability.
The suggested range of application of the detection algorithm leaves out the cases of many tenderers
(more than 20) and quite dispersed bids (coefficient of variation larger than 0.15). An increase in the
number of tenderers leads to contrasting effects, since both the false alarm probability and the detection
probability are reduced. If the bids are spread over a large range, we have instead a double negative effect,
with more false alarms and less detections. The presence of multiple anomalous bids worsens the perfor-
mance of the algorithm as well. On the other hand, the method is quite robust to the presence of courtesy
bids.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Auctions are a widespread tool for the assignment step in the
procurement process (Dimitri et al. 2006, Banker and Mitra 2007,
Sardinha et al. 2009). Traditionally, procurement is accomplished
primarily through electronic means, and represents now a major
example of B2B e-commerce activities (Davila et al. 2003,
Subramaniam and Shaw 2002). Electronic procurement auctions
can boast advantages that go beyond mere cost savings and include
improvements in the cycle time, enhancement of quality, and
rationalization of the supply base (Amelinckx et al. 2008), which
can be further enhanced by incorporating quality negotiations in
the procurement mechanism (Huang et al. 2011). In procurement
auctions, a customer (e.g., the government or a company) asks po-
tential suppliers to submit their own bids to provide some speci-
fied goods and services. Each bid comes with the price the
supplier will charge the customer for the provision of those goods
and services. Procurement auctions represent an instance of re-
verse auctions, since we have a single buyer and multiple sellers.
In direct auctions the seller manages the auction and seeks to max-
imize its profit by choosing the buyer submitting the highest bid;
in procurement auctions the buyer manages the auction and seeks
ll rights reserved.
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to minimize its expense by choosing the seller submitting the low-
est bid. It is generally assumed that each prospective seller submits
a bid as small as possible, but compatible with its own costs and
expected rate of return.

However, bidders may deviate from this rational behavior, and
submit bids termed in the literature as anomalous. Namely, they
may submit bids that are either too small or too high when com-
pared to the bidders’ costs and expected rate of return.

The former case is known as the phenomenon of abnormally low
bids; it has been recognized since long and has spurred the Euro-
pean Union to signal it (EUWG 1999). A number of reasons may ex-
ist for such anomalous behavior: the bidder may be in desperate
need of a contract, though it may turn into a financial loss; it
may lack experience in auctions; it may miscalculate its costs
and the rate of return needed to repay its funding sources (Gunduz
and Karacan 2009). In other cases, it may deliberately submit a
low bid to oust a competitor, either to protect its position in the
market or to enter a new market (Alexandersson and Hultén
2006, Alexandersson and Hultén 2007). Such a behavior is known
as predatory bidding, and represents an instance of the well known
phenomenon of predatory pricing (Kobayashi 2008), applied to the
context of auctions.

At the same time, bidders could submit bids that are too high
with respect to what is expected to win the auction. Such phenom-
enon has been known for a long time as well (McCaffer 1976,
Whittaker 1970). Again, a number of reasons may be considered
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for this behavior: the buyer may have little interest in the contract
for sale, or lack the resources and skills to properly submit a suit-
able bid, or submit just to remain considered for future sales (Skit-
more 2002). The resulting bids are often named courtesy bids.

Though both courtesy bids and abnormally low bids represent an
anomalous behavior, the assignment and pricing procedures in pro-
curement auctions are actually altered just by the latter. In fact,
since the contract is awarded to the lowest bid, and courtesy bids
are not expected to be the lowest ones, their presence does not
change the final outcome of the auction. On the other hand, abnor-
mally low bids will often result the lowest in the set of submitted
bids and declared winners. Since abnormally low bids are associ-
ated, either deliberately or not, to slashed rates of return or even
to prices lower than costs, the business deriving from winning an
auction through submitting an abnormally low bid may not be sus-
tainable, and the awarded contract may not be honored in the end.

Some mechanisms have been proposed in the literature to pre-
vent the manipulation of auctions. For example, in Porter et al.
(2008) an assignment mechanism is proposed that offers a contract
to the winning tenderer, but the payment is contingent on whether
the task is completed, so reducing the risk for the auctioneer. An-
other mechanism is proposed by Ramchurn et al. (2009) that takes
into account the probability that the contractor actually completes
the project and its reputation. In Chen et al. (2010), the assignment
includes a penalty to be paid by the contractor if the project does
not meet the requirements, and that penalty, proposed by each
bidder, is used to rank the tenders. On the other hand, the notion
that bidders may cheat may alter the strategies followed by other
bidders; the resulting equilibrium strategies have been studied by
Porter and Shoham (2005).

Here we consider the case where a plain first price (in this case,
the lowest price) mechanism is in place. And, rather than through a
preventive mechanism, anomalous bids are detected when they
take place. Even in the case of assignment mechanisms aiming at
avoiding the probability of success of anomalous tenders, a subse-
quent phase where surviving anomalous tenders are detected may
help in further reducing the risk associated to anomalous behavior.

For those reasons, abnormally low bids should be detected, and
the reasons behind them investigated to assess whether they
derive from a true competitive advantage or just from situations
such as those described above. It is commonly accepted that the
rejection of bids cannot be performed in an automated way, but
an algorithm is needed to detect suspicious bids and submit them
to a thorough investigation. The detection algorithm has therefore
to act in the framework of a decision support system, an estab-
lished tool to aid the auctioneer in auction operations such as this
(Papazoglou and Tsalgatidou 2000).

In Statistics, observations that stand outside the bulk of data (i.e.,
either too small or too large) are named outliers. Hence, both abnor-
mally low bids and courtesy bids could be classified as outliers.
Many tests have been proposed in the statistical literature to iden-
tify and remove outliers. An excellent book on outliers detection is
that by Barnett and Lewis (1994), and good surveys are in Beckman
and Cook (1983) and Tietjen (1986); prominent techniques are also
described in the seminal paper by Grubbs (1950). In addition, some
tests have been devised for the specific purpose of detecting bids
due to cover pricing (McCaffer and Pettitt 1976, Skitmore 2002). A
number of specific schemes, typically different from the ones above
mentioned, have been introduced in public documents for the
detection of abnormally low bids. Examples are the national regula-
tions in Spain (Ministerio de Hacienda de España 2000, Ministerio
de Hacienda de España 2001), Italy (Presidente della Repubblica
Italiana 2006), Germany, and Turkey (Zanza 2004). The introduction
of such schemes has not been generally accompanied by a proper
evaluation of their performances, namely, of their capability to
detect anomalous bids without declaring as anomalous otherwise
regular bids (which we may name a false alarm). However, a special
class of such schemes, adopted in Spain and Italy, and based on the
deviation of the abnormally low bid from the average bid, has been
evaluated by Conti and Naldi (2008). It has been shown that its per-
formance heavily depends on the number of tenderers and on the
dispersion of bid values, therefore calling for caution in the use of
that average-bid criterion, and for a careful choice of the parameter
setting the detection threshold.

A new class of detection algorithms has been proposed for
abnormally low bids, based on a preliminary sorting of the bids
and on the comparison of the lowest bid with the second lowest
bid. A particular instance of this algorithm has been incorporated
in the German law (Zanza 2004). We name the general form of this
class the rank-and-compare algorithm; the single instances of the
class differ for the value assigned to a single parameter (the Maxi-
mum Allowed Deviation), which acts as a scaling factor for the
detection threshold. Though applied in a real context, this class
of algorithms has not been examined thoroughly, to the best of
the authors’ knowledge. In Engel (2005), the criterion has been dis-
missed through the qualitative consideration that bidders antic-
ipating to be excluded would raise their bids to alter the
auction’s outcome. On the other hand, in Decarolis (2009), an alter-
native assignment scheme has been proposed to solve the problem
of anomalous bids without resorting to statistical detection
algorithms. No quantitative evaluation of the rank-and-compare
algorithm has been accomplished so far. It can appear strange that
a procedure found its way in the national legislation without
having been thoroughly examined. However, a detection algorithm
based on order statistics, such as the one we examine in this paper,
could be expected to be robust with respect to outliers, certainly
more than average-based algorithms. That may have been the ratio-
nale for its adoption. After its adoption, the German Federal Procure-
ment Agency (BESCHA) has not released data on the effectiveness of
that procedure. So, we miss both a theoretical and an empirical eval-
uation of rank-and-compare algorithms. We aim to fill that gap, by
providing a quantitative evaluation of its performance.

In this paper, we examine this new class of rank-and-compare
algorithms. The main results we provide are listed below.

(a) Analytical expressions for both the false alarm probability
and the detection probability, when a single abnormally
low bid is present;

(b) Simulation results for the detection probability under multi-
ple abnormally low bids;

(c) Simulation results for the false alarm and detection probabil-
ity when courtesy bids are present in addition to abnormally
low bids.

On the basis of the above mentioned results, we show that:

(i) the false alarm probability is unaffected by the presence of
multiple abnormally low bids;

(ii) the Maximum Allowed Deviation has to be controlled to
very low values (e.g., 10%) to have acceptable values of the
detection probability;

(iii) the detection performance degrades gradually as the num-
ber of participants grows;

(iv) the algorithm is relatively robust with respect to the pres-
ence of courtesy bids.

The paper is organized as follows. In Section 2, we define the
probability model for abnormally low bids. The algorithm we are
going to examine is described in Section 3. Its evaluation is
accomplished in Section 5, after defining both the performance
parameters and the evaluation scenarios in Section 4. The evalua-
tion framework follows that already established in Conti and Naldi
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(2008). In Section 6, we provide some hints on the application of
the detection criterion in a real world context. The treatment of
abnormally low bids after their detection is dealt with in Section 7.

2. Probability models for bids

In order to evaluate the rank-and-compare method to detect
abnormally low bids, we need specific probability models for the
regular bids, the abnormally low bids, and the courtesy bids. We
follow here the approach already adopted in Conti and Naldi
(2008) for the same purpose. In this section, we briefly review
the literature on probability models for bids in auctions, and recall
the models we adopt in this paper.

The most widely adopted model for the probability distribution
of bids (regular bids in our case) is the Gaussian one, used by
McCaffer and Pettitt (1976) in the context of procurement con-
tracts for buildings and roads, by Pin and Scott (1994) for
refurbishment works, and by Skitmore (2002) and Conti and Naldi
(2008) for the specific purpose of identifying anomalous bids. Less
used models are the Log-normal distribution, adopted by Brown
(1966) for leasing contract in the oil business, and the Weibull
distribution employed by Oren and Rothkopf (1975) for sequential
auctions. In Naldi and D’Acquisto (2008), a different approach is
taken: rather than adopting one model, a wide range of models
is considered, including the uniform, the triangular, the Gaussian,
the exponential, and the Pareto distribution.

In this paper, we adopt the widespread Gaussian model, so that
any regular bid is considered as a random variable with probability
density function

fXðxÞ ¼
1

r
ffiffiffiffiffiffiffi
2p
p exp �ðx� lÞ2

2r2

( )
; ð1Þ

where l and r are respectively the expected value and the standard
deviation of the bids.

For abnormally low bids, we again follow the approach taken in
Conti and Naldi (2008), and assume that they have the same distri-
bution as regular bids, although with a rebated mean value to
account for a slashed rate of return on the investment. The probabil-
ity density function for abnormally low bids is therefore

gXðxÞ ¼
1

r
ffiffiffiffiffiffiffi
2p
p exp �ðx� blÞ2

2r2

( )
; ð2Þ

where 0 < b < 1 is the rebating factor. Expected values for the rebat-
ing factor can be estimated from an analysis of profits in the indus-
trial sector of interest: the rebating factor could be so low as to zero
out the company’s expected rate of return on the investment. In a
sample case concerning maintenance of public housing, the bids
were reported to be 25–33% higher than the suspected bid, imply-
ing a rebating factor in the 0.75–0.8 range (Beresford-Jones 2010).

Finally, for courtesy bids, which are fake bids expected to mimic
regular bids (but with an expected value so high not to be compet-
itive), we again follow in the steps of Conti and Naldi (2008) and
consider the same distribution as regular bids, although with a
(considerably) larger mean value, so that the probability density
function is

hXðxÞ ¼
1

r
ffiffiffiffiffiffiffi
2p
p exp �ðx� clÞ2

2r2

( )
; ð3Þ

where c > 1 is the overbidding factor.

3. The rank-and-compare criterion

In this section, we describe the rank-and-compare detection
algorithm.
Let {X1,X2, . . . ,XN} be a set of N bids. We can rank them in
ascending order, and obtain the ordered set {X(1),X(2), . . . ,X(N)}, with
X(i) 6 X(i+1), and i = 1, 2, . . ., N � 1. The lowest bid X(1) in this set is
declared to be abnormally low if the inequality

Xð1Þ < ð1� aÞXð2Þ ð4Þ

holds, where 0 < a < 1, and X(2) is the second lowest bid. Since the
criterion embodied by Eq. (4) is tantamount to setting a limiting
threshold on the maximum deviation from the second lowest bid,
we will refer to a as the Maximum Allowed Deviation (MAD). This
criterion has been adopted by the Central Purchasing Body of Ger-
many (Zanza 2004), with a = 0.2.

The rationale behind this criterion is that the lowest bid (which
represents the best bid in procurement auctions) is the obvious
candidate for investigation of anomalies, and that the degree of
anomaly is larger the larger the deviation of the suspected bid from
the other bids. With respect to the deviation-from-average crite-
rion investigated by Conti and Naldi (2008), Eq. (4) has the advan-
tage of making the detection threshold insensitive to the
abnormally low bid itself: in the deviation-from-average criterion
the abnormally low bid influences the average (hence, the detec-
tion threshold), by pulling it down.

4. Performance criteria

The problem of detecting an abnormally low bid can be ex-
pressed as a statistical hypothesis testing problem, where the null
hypothesis to be tested is the absence of abnormally low bids. In
order to evaluate the detection capability of the rank-and-compare
algorithm, we have to introduce a proper set of performance
parameters. In this section, we define the performance evaluation
problem and the parameters we are going to use, and set the sce-
narios employed in the evaluation.

4.1. Performance parameters

By using the rank-and-compare algorithm, a decision is made
whenever a set of bids is submitted to the auction. The outcome
of the algorithm is that either the presence of an abnormally low
bid is declared or all bids are declared as regular. The nature of
the bids can be similarly represented by two alternative situations.
Either all bids are regular, or there is at least an abnormally low
bid. We can therefore formulate two alternative hypotheses on
the nature of bids, denoted by H0 (all the bids are actually regular)
and H1 (there is at least an abnormally low bid). It is to be stressed
that hypothesis H1 is simply the complement of H0. In this sense,
and exactly as in outlier detection problems, H1 is not crisp, since
it contains several possible alternative models for the presence of
anomalous bids. At any rate, in evaluating the performance of
the detection algorithm considered in the present paper, the model
under H1 will be precisely specified (Scenarios B-E in Section 4.2).

Accordingly, we can make two different decisions, denoted by
D0 (all bids are declared regular on the basis of available data)
and D1 (the presence an abnormally low bid is declared), respec-
tively. The combination of hypotheses and decisions leads to five
alternative cases. We are right in two of them:

c1. all bids are regular (H0 true), and no anomalous bid is
detected (D0 correct);

c2. some bids are anomalous (H1 true) and one of them is cor-
rectly identified as anomalous (D1 correct).

Hence, D1 means that the lowest bid X(1) satisfies Eq. (4) and is
identified as an abnormally low bid. Instead, the notation D1 correct
means the bid X(1) satisfying Eq. (4) is actually an abnormally low
bid, so that it is correctly identified. In fact, the abnormally low
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Fig. 1. Impact of the spread of bids on false alarms.
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bid may not be the minimum in the set of submitted bids, while a
regular bid accidentally is the minimum and lies below the thresh-
old, so that the presence of an abnormally low bid is declared (right),
but a regular bid is identified as the anomalous one (wrong).

Similarly, we can make wrong decisions in the following three
cases:

w1. all bids are regular (H0 true) and one of them is detected as
anomalous (D1 wrong);

w2. some bids are anomalous (H1 true), but all bids are declared
regular (D0 wrong);

w3. some bids are anomalous (H1 true) but a regular bid is
detected as anomalous (D1 wrong).

In order to evaluate the performance of the rank-and-compare
algorithm in this framework, it is enough to use two parameters,
related to two of the five situations defined above, namely the
detection probability Pdet ¼ P½D1jH1� (whose complement to 1 pro-
vides the probability of a wrong decision in the presence of anom-
alous bids), and the false alarm probability Pfa ¼ P½D1jH0� (whose
complement to 1 provides with the probability of correctly declar-
ing the absence of abnormally low bids).

4.2. Evaluation scenarios

In Section 5, we will evaluate the performance parameters in
five scenarios, labeled in the following by the capital letters A
through E, representing different characteristics of the set of bids.

We consider first Scenario A, where all bids are regular: the N
bids follow the same normal distribution, and are mutually inde-
pendent. In symbols, we have X1; X2; . . . ; XN � Nðl;rÞ. The choice
of the Gaussian distribution to represent the bids is well grounded
in the literature; a review of the alternative hypothesis and a justi-
fication of the choice is reported in Conti and Naldi (2008). We use
Scenario A to evaluate the false alarm probability.

In Scenario B, we assume that all bids but one are regular. The
mean value of the single abnormally low bid is lower than that of
the regular bids by a rebating factor b: the smaller the rebating fac-
tor, the more aggressive the rebating behavior of the participant
submitting the abnormally low bid. Without loss of generality, we
label the anomalous bid as X1. We have then the single abnormally
low bid X1 � Nðbl;rÞ, and N � 1 regular bids X2; . . . ; XN � Nðl;rÞ.
We employ Scenario B to evaluate the detection probability when a
single abnormally low bid is present.

The case of multiple abnormally low bids is considered through
Scenario C. In this case, there are M abnormally low bids and N
�M regular bids, namely, X1; X2; . . . ; XM � Nðbl;rÞ and
XMþ1; XMþ2; . . . ; XN � Nðl;rÞ. We have set up a different scenario
than that of a single abnormally low bid, since the presence of mul-
tiple abnormally low bids changes the nature of the comparison
embodied in the detection criterion: the algorithm now compares
an abnormally low bid to other abnormally low bids rather than to
regular bids. Scenario C is used to evaluate the detection probabil-
ity under multiple abnormally low bids, while the false alarm
probability is still evaluated under Scenario A.

Scenarios D and E are devoted to analyze the case of courtesy
bids. Since courtesy bids are submitted not to win, but just to show
interest, their value is expected to be larger than the regular ones. As
stated in Section 2, we assume here, as in Conti and Naldi (2008),
that a courtesy bid follows a Gaussian distribution with the same
standard deviation as the regular bids, but with a larger expected
value, because of the presence of an overbidding factor c > 1. In Sce-
nario D, we have Nc such courtesy bids, so that the set of bids is sub-
divided into the set fX1; . . . ;XN�Ncg of courtesy bids, where
Xi � Nðcl;rÞði ¼ 1;2 . . . ;N � Nc), and the set fXN�Ncþ1; . . . ;XNg of
regular bids, where Xj � Nðl;rÞðj ¼ N � Nc þ 1; . . . ;N). Scenario D
is used to evaluate the false alarm probability when courtesy bids
are present. In order to evaluate the detection probability when
courtesy bids are present, we consider instead Scenario E, where
both abnormally low and abnormally high bids are present. In such
a scenario we have M abnormally low bids, Nc courtesy bids, and
N �M � Nc regular bids; of course, this scenario is set so that the
condition M + Nc < N holds. We have then X1; . . . ; XM � Nðbl;rÞ;
XMþ1; . . . ; XN�Nc � Nðl;rÞ, and XN�Ncþ1; . . . ; XN � Nðcl;rÞ.

5. Performance analysis

5.1. False alarm probability

In Section 4, we have defined the false alarm probability as the
probability of declaring an abnormally low bid when all the bids
are actually regular. In this section, we report the expression for
the false alarm probability, and examine its dependence on the
auction parameters.

According to Scenario A described in Section 4.2, we assume
that there are N regular bids {X1,X2, . . . ,XN}, i.i.d. and following a
Gaussian distribution with mean l and standard deviation r. We
sort them in ascending order, obtaining an ordered set of variables
{X(1),X(2), . . . ,X(N)}. We obtain the false alarm probability by com-
bining the expressions defined in Section 4.1 and Eq. (4):

Pfa ¼ P½D1jScenario A� ¼ P½Xð1Þ < ð1� aÞXð2ÞjScenario A�; ð5Þ

where Scenario A (equivalent to the null hypothesis H0) is that all
bids are regular.

The full derivation of the false alarm probability is reported in
Appendix A. We obtain the final expression

Pfa ¼ NðN � 1Þ
XN�2

k¼0

N � 2
k

� �
ð�1ÞN�2�k ½FZð�l=rÞ�N�k

N � k

þNðN � 1Þ
Z 1

FZ ð�l=rÞ
ð1� vÞN�2FZ ½ð1� aÞF�1

Z ðvÞ � al=r� dv; ð6Þ

where the standard Gaussian distribution function FZ(�) has been
used.

We can now use the formula for the false alarm probability to
examine its dependence on the parameters involved. We first exam-
ine its dependence on the relative spread of the bids (embodied in
the coefficient of variation of the distribution of bids), and the num-
ber N of participants (typical values range from 3 to 12 participants
(Albano et al. 2006)). In Fig. 1, where the value a = 0.2 is used, we see
that the maximum tolerable value for the coefficient of variation is
approximately 0.1–0.15; otherwise, the false alarm probability
becomes too large and makes the detection criterion unreliable. As
expected, the detection criterion is less prone to false alarms as
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the number of participants gets larger, as long as the spread of bid
values is limited. However, the improvement is practically negligi-
ble as N becomes large: there is a very small difference between
the curve for N = 20 participants and that for N = 100, when the coef-
ficient of variation is smaller than 0.2. Instead, when both the disper-
sion of bids gets large and there are a large number of participants
(roughly more than 10), the false alarm probability tends to increase
with the number of participants.

We can exploit our expression of the false alarm probability to
set the correct value for the single parameter involved in the detec-
tion criterion, the Maximum Allowed Deviation a. In fact, in Fig. 2,
plotted for r/l = 0.1, we see how the value of a influences the false
alarm probability. As we could expect, the greater the value of a
the smaller the false alarm probability, since Eq. (4) is less likely
to be satisfied. After setting the desired value for the false alarm
probability, we can read the value for the detection threshold on
Fig. 2: for any desired value of the false alarm probability, the
threshold can be made tighter (allowing just a small deviation
from the second lowest bid) when the number of participants gets
larger.

5.2. Detection probability

After having examined the false alarm probability, we now turn
to the capability of the detection algorithm to determine the pres-
ence of an anomalous bid. In order to evaluate the detection proba-
bility, we consider Scenario B, as set in Section 4.2. We assume that
there is a single abnormally low bid. Without loss of generality, we
further assume that the abnormally low bid is represented by the
random variable X1, so that the random variables Xis are mutually
independent, with X1 � Nðbl;rÞ and X2;X3; . . . ;XN � Nðl;rÞ. Our
goal is to compute the probability of a D1 decision under Scenario
B (detection probability).

The detection probability, denoted by Pdet, is:

Pdet ¼ P½D1 correctjScenario B� ¼ P½X1 < ð1� aÞY� ð7Þ

where Y = min{X2, . . . ,XN}.
The full derivation of the detection probability is provided in

Appendix B. We obtain the final expression

Pdet ¼
Z 1

0
FZ ð1� a� bÞl

r
þ ð1� aÞF�1

Z 1� ð1� vÞ
1

N�1

� �h i
dv: ð8Þ

Eq. (8) provides that probability that an abnormally low bid is
correctly detected and identified. However, as stated in Section
4.1, the straightforward application of the criterion may lead to a
regular bid being declared as anomalous in the place of the present
truly anomalous bid. In Appendix C, we show that we can be safe
with the assumption that the anomalous bid, when present, is
actually the lowest one (X1 < Y), since the opposite case has a very
low probability. Namely, we show that the probability of declaring
a regular bid as abnormally low, while the truly anomalous bid is
unidentified, is very small.

We can now exploit Eq. (8) to compute the detection probability
in a number of cases, examining the influence of the parameters in-
volved: the number of participants, the Maximum Allowed Devia-
tion (determining the detection threshold), the spread of bids, and
the rebating factor.

We note first that, when the sum of the Maximum Allowed
Deviation and the mean rebating factor is a + b = 1, the spread of
bids, represented by the coefficient of variation r/l, does not affect
the detection probability.

We examine then the influence of the number of participants in
this special case. The resulting detection probability is plotted in
Fig. 3. As expected, the detection probability lowers when the
number of participants grows. In fact, in Scenario B we have a sin-
gle anomalous bid and a growing number of regular bid. When the
number of regular bids grows, the minimum among them de-
creases, so that it becomes closer and closer to the anomalous bid.

For the same reason, the detection probability gets smaller as
the standard deviation of the bids increases. This conclusion is evi-
dent from Fig. 4, where the detection threshold is set at 20% less
than the second lowest bid, and the rebating factor of the abnor-
mally low bid is 30%. Again, the effect is stronger when the number
of participants increases.

The single abnormally low bid is easier to detect if it is much
smaller than regular bids. This feature of the abnormally low bid
is expressed through its rebating factor b: the smaller the rebating
factor b, the smaller the mean value of the abnormally low bid. The



0.7 0.75 0.8 0.85 0.9
Rebating Factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
D

et
ec

tio
n 

Pr
ob

ab
ilit

y

3
5
10
20
100

No. of participants

Fig. 5. Impact of the rebating factor on the detection probability (a = 0.2, r/l = 0.1).
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behavior of the detection algorithm in this case is described by the
curves in Fig. 5. The detection probability decreases as the rebating
factor grows. The trend is practically linear when the number of
participants is small, but it is still roughly linear for a large range
of values of the rebating factor even when there are twenty
participants.

Finally, let us consider the effect of the only design parameter,
the Maximum Allowed Deviation, driving the detection threshold.
Here we set r/l = 0.1 and consider two different values for the
rebating factor in Figs. 6 and 7. Being more tolerant, by setting a
smaller detection threshold through a larger a, has the obvious
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Fig. 6. Impact of the detection threshold (r/l = 0.1, b = 0.8).
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Fig. 7. Impact of the detection threshold (r/l = 0.1, b = 0.7).
effect of lowering the detection probability. However, the shape
of the curves is quite different from the other detection curves seen
so far, since the trend is roughly linear in most cases.

5.3. Detection of multiple abnormally low bids

We have considered so far the case of a single abnormally low
bid. However, it may happen that multiple abnormally low bids
are submitted. In this subsection we analyze how the rank-and-
compare algorithm performs in those situations, by evaluating
both the false alarm probability and the detection probability.

As far as the false alarm probability is concerned, nothing
changes with respect to the single abnormally low bid case, since
the false alarm probability is evaluated under Scenario A, where
all bids are regular.

On the other hand, the detection probability is expected to
change, since multiple abnormally low bids may contribute to
move the detection threshold. We consider now Scenario C, where
we have M abnormally low bids and N �M regular bids, with
2 6M < N. Because of its very definition, the rank-and-compare
algorithm can detect at most a single abnormally low bid. In fact,
in the rank-and-compare algorithm, the lowest bid is compared,
through Eq. (4), to the second lowest bid, which is then excluded
from the number of possible abnormally low bids, though it would
be the second best candidate after the lowest bid.

We confine ourselves to the case of (correctly) detecting one
abnormally low bid among the existing M, namely the minimum
among them. If we indicate such minimum by W = min{X1,
X2, . . . ,XM}, the probability of detecting an abnormally low bid is
then

Pdet ¼ P½D1 correctjScenario C� ¼ P½W < ð1� aÞXð2Þ�;

where the order statistics X(2) is drawn among all the N bids (includ-
ing both the regular ones and the abnormally low ones), and could
be either an abnormally low bid, or a regular one. We do not assume
here the condition maxðX1;X2; . . . ;XMÞ < minðXMþ1; . . . ;XNÞ that all
the abnormally low bids are lower than the regular bids, although
that would simplify the analysis. Here, the detection probability
could in principle be computed by an approach similar to that of
Section 5.2, but we prefer to resort to Monte Carlo simulation. A
sample result is shown in Fig. 8, where the curve obtained for a sin-
gle abnormally low bid is also reported. The detection probability
decreases as the number of abnormally low bids increases, but just
when the rebating factor is sufficiently small. When the abnormally
low bids are not considerably lower than the regular ones (roughly,
when the rebating factor is larger than 0.8), the presence of multiple
abnormally low bids slightly increases the probability of detecting
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Fig. 8. Detection of multiple abnormally low bids (r/l = 0.1, a = 0.2, N = 20).
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Fig. 9. Detection of three abnormally low bids (r/l = 0.1, a = 0.2, N = 20).
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one of them. Since 105 simulation runs have been performed for
each point of the curve, the relative standard error is 1.38% when
the true detection probability is 0.05 and 0.63% when the true
detection probability is 0.2, which can be considered as virtually
negligible over the whole range of cases examined.

A possible way to overcome this problem consists in using the
rank-and-compare algorithm iteratively, by comparing the lowest
bid with the second lowest bid to detect the first abnormally low
bid, and then, if that first detection takes place, comparing the sec-
ond lowest bid to the third lowest bid to detect a possible second
abnormally low bid, and so on, till the first negative comparison.
We have evaluated the performance of this iterative approach, again
by simulation. We report in Figs. 9 and 10 the results obtained,
when there are respectively three and two anomalous bids, under
the same conditions adopted for Fig. 8. We see that the capability
to detect anomalous bids is quite negligible beyond the first one.

5.4. Impact of courtesy bids

As recalled in the Introduction, bids can be anomalous because
they are either too high or too small. Bids that are too high are of-
ten called courtesy bids. Their presence alters somewhat the cor-
rect behavior of auctions. In this section, we evaluate their
impact on the false alarm and detection probability.

We consider first the false alarm probability. Courtesy bids may
act on the false alarm probability by modifying the detection
threshold. In the deviation-from-average criterion studied by Conti
and Naldi (2008), courtesy bids directly contribute to the average
of the bids submitted (and therefore to the detection threshold).
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Fig. 10. Detection of two abnormally low bids (r/l = 0.1, a = 0.2, N = 20).
Instead, in the rank-and-compare algorithm, a courtesy bid may di-
rectly alter the false alarm probability only if it is either the lowest
bid or the second lowest one, which are both events with a negli-
gible probability: courtesy bids are unlikely to directly influence
the false alarm probability. However, since the presence of cour-
tesy bids in the set of N submitted bids reduces the number of reg-
ular bids, the range covered by the sample of regular bids is
smaller, and the detection threshold may result to be a bit higher.
We examine this effect separately for the cases of a single courtesy
bid and multiple courtesy bids.

We adopt Scenario D, as defined in Section 4. When there is a
single courtesy bid (Nc = 1), and its mean value is significantly lar-
ger than that of regular bids (c� 1), we can assume that the cour-
tesy bid is anyway larger than the regular bids. If we label the
single courtesy bid by XN, we have max{X1, . . . ,XN�1} < XN. The
detection threshold is then actually set through the second lowest
value in a set of N � 1 regular bids, and we can exploit the expres-
sion derived in Section 5.1 for the false alarm probability in the ab-
sence of courtesy bids, namely, Eq. (6), by using N � 1 instead of N.
The resulting false alarm probability Pfac is

Pfac¼ðN�1ÞðN�2Þ
XN�3

k¼0

N�3
k

� �
ð�1ÞN�3�k ½FZð�l=rÞ�N�k�1

N�k�1

þðN�1ÞðN�2Þ
Z 1

FZ ð�l=rÞ
ð1�vÞN�3FZ ð1�aÞF�1

Z ðvÞ�al=r
h i

dv : ð9Þ

In order to evaluate the impact of courtesy bids, the ratio Pfac/Pfa

(ratio of the false alarm probability in the presence of a single cour-
tesy bid to the false alarm probability when all the bids are regular)
is plotted in Fig. 11. The false alarm probability is expected to in-
crease, because of the presence of the courtesy bid, which raises
the detection threshold; the impact is larger for auctions with a
small number of participants. As it appears from Fig. 11, when there
are just five participants (and one of them submits a courtesy bid)
the false alarm probability grows by more than 25%. However,
when there are several courtesy bids, or the expected value of the
single courtesy bid is not significantly larger than that of the regular
bids, we cannot use Eq. (9). The latter case can be dealt with by con-
sidering that Eq. (9) represents an upper bound for the false alarm
probability when there is a single courtesy bid: when the overbid-
ding factor approaches 1, we fall back to the case of all regular bids.

In order to analyze the case of multiple courtesy bids, we resort
to Monte Carlo simulation. In Fig. 12, the false alarm probability is
shown, when there are 20 participants, of which up to five submit
courtesy bids. Even in this case (the number of courtesy bids is
very large, making up 1/4 of the overall number of participants),
the false alarm probability increases by no more than roughly
20% with respect to the case of all regular bids.
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Fig. 11. Increase of false alarms due to a single courtesy bid (r/l = 0.1, a = 0.2).
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Fig. 12. False alarm probability under multiple courtesy bids (r/l = 0.1, a = 0.2,
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We can therefore conclude that the influence of courtesy bids
on the false alarm probability is quite limited, and that the rank-
and-compare algorithm, since it is based on order statistics, pro-
vides a built-in robustness against such anomalous behavior.

We now turn to the detection probability, for which we employ
Scenario E, as defined in Section 4.2. As in the case of the false
alarm probability, the presence of courtesy bids could increase
the detection probability. In order to evaluate the extent of this ef-
fect, we have resorted again to Monte Carlo simulation, with a
sample of 105 elements. Four sample curves are shown in Figs.
13 and 14. In those cases, we have set a large number of partici-
pants (N = 20), a single abnormally low bid, a typical value for
the Maximum Allowed Deviation a = 0.2, and have observed how
the detection probability behaves when the overbidding factor
grows (the overbidding factor c = 1 corresponds to the case of no
courtesy bids). We expect the detection probability to grow with
the overbidding factor, since a larger overbidding factor pulls the
detection threshold up. When the rebating factor is quite small
(b = 0.7), as in Fig. 13, the effect is quite limited: over the range
considered for the overbidding factor (c 2 [1,1.3]) the detection
probability grows by 12.4% with 5 courtesy bids, but just by 2.6%
when there is a single courtesy bid (the standard error due to sim-
ulation is anyway lower than 0.5%, and that the range examined for
the overbidding factor amounts to an increase of 30%, from c = 1 to
c = 1.3). In addition, the increase in the detection probability is
reached quite early; for large overbidding factors (say, larger than
1.15), the detection probability is largely independent of the exact
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Fig. 13. Detection probability under courtesy bids (r/l = 0.1, a = 0.2, b = 0.7,
N = 20).
value of the overbidding factor. This effect becomes more evident
as the rebating factor grows. When the abnormally low bids are
close to the regular ones (e.g., when b = 0.9 as in Fig. 14), the detec-
tion probability increases by 9.7% even when there is a single cour-
tesy bid, but by a significant 26.8% when there are 5 courtesy bids
(here the increase is roughly equal to that imposed on the overbid-
ding factor). In those cases, the standard error due to simulation is
around 2%. We note that the case represented in Fig. 14 is an ex-
treme case, since the rebating factor is quite close to 1, and the
detection probability would anyway be very low, even in the ab-
sence of courtesy bids.

We can then conclude that the detection algorithm is relatively ro-
bust to courtesy bids, since the impact on the detection probability is
significant just when there are at the same time abnormally low bids
very close to the regular ones (the rebating factor b is close to 1), mul-
tiple courtesy bids, and large overbidding factors (roughly c > 1.15).

6. Practical application of the criterion

In Section 5, we have evaluated the performance of the rank-
and-compare criterion. The performance analysis tells what hap-
pens when the statistical characteristics of the set of bids are
known and the detection threshold is set through the Maximum
Allowed Deviation. For the practical application of the criterion,
we must however set the value of a (the only parameter that needs
to be set in this criterion). In this section, we provide some rules of
thumb on the basis of the results of the performance analysis.

We have seen that the performance of the algorithm depends
strongly on the coefficient of variation of the bids. As the disper-
sion of the bids gets larger, it becomes progressively difficult to dis-
tinguish the abnormally low bids from the regular ones, since a
regular bid may exhibit a very small random value. In Section
5.1, we have seen that the false alarm probability becomes so large
to make the algorithm unusable, when the coefficient of variation
is larger than 0.15. That value can therefore be set as a threshold to
determine whether to apply this detection criterion at all. How-
ever, we do not know in advance the coefficient of variation of
the bids. We may estimate its typical values by examining past
auctions, or what may be reported in the literature, but those typ-
ical values may be different from the case at hand. A first rule of
thumb is therefore to preliminarily estimate the coefficient of var-
iation, by computing the sample mean and standard deviation of
the bids submitted to the auction of interest. If the estimated coef-
ficient of variation lies above 0.15, the rank-and-compare criterion
should not be applied.

For a similar reason, we should not apply this detection crite-
rion, when the number of participants is too large. Figs. 6 and 7 tell
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us that the detection probability gets progressively lower as the
number of participants increases. We should aim at a detection
probability not lower than 50%, so that it may not be worthwhile
to apply the criterion if there are more than 10–20 participants.

After this preliminary decision, the auctioneer has to set the
detection threshold through the Maximum Allowed Deviation a.
Now, we can set the desired values for false alarm probability
and the detection probability, and obtain a suitable range of values
for a by plotting curves similar to those shown in Sections 5.1 and
5.2, but for the values of r/l and N at hand. From the results shown
so far, it appears that the Maximum Allowed Deviation should be
confined to values smaller than 0.15.

7. Treatment of abnormally low bids

So far, we have considered how abnormally low bids can be de-
tected through a statistical test. However, as stressed in the Intro-
duction, the detection task has to be followed by the decision on
the fate of the bid suspected to be abnormally low. In this section,
we review the possible strategies, their pros and cons, and the
direction of the legislation.

After detecting an abnormally low bid, whatever the detection
method, the auctioneer may take one of two decisions:

1. Rejection.

2. Quarantine.

Before examining the two options in greater detail, we note that
a private auctioneer is completely free to adopt either strategy 1 or
strategy 2. On the other hand, a public auctioneer may be con-
strained by the laws of its country on public procurement.

In case of rejection, the auctioneer excludes the anomalous bid
from the set of candidates that can win the contract, just on the ba-
sis of the results of the automatic detection mechanism. This is the
usual choice in a number of public procurement contexts, as in
Italy, China, Florida (see sub-article 3–2.1 of the rules set by the
Florida Department of Transportation (1997)), and some local gov-
ernments in Japan (Akai et al. 2009) (a more complete list is con-
tained in Decarolis (2009)). Automatic rejection is a fast decision
(and contributes to keep procurement procedures short), and can
be the only choice when the auctioning institution has not enough
staff to investigate the tenders more thoroughly. Automatic rejec-
tion is also considered as a viable choice, even overriding the leg-
islation, when there is a large number of tenders and their
detailed examination would be a burden on the contracting
authority, as established by the European Court of Justice Cases
(2008).

Instead of automatically rejecting the anomalous bid, the auc-
tioneer may decide to examine the tender more closely. In fact,
as shown in this paper, the automatic detection mechanism does
not completely guarantee that the bid declared as abnormally
low is actually anomalous. During the scrutiny, the suspected ten-
der is put into quarantine, and the contract assignment procedure
is suspended. For instance, this is the procedure adopted in the
European Union (2004), though it may be overridden under special
conditions, as stated in the Court of Justice statement recalled
above. Several elements of the tender may be considered to justify
the low bid, for example:

� the economics of the construction method, the manufacturing
process or the services provided;
� the technical solutions chosen and/or any exceptionally favor-

able conditions available to the tenderer for the execution of
the work and for the supply of the goods or services;
� the originality of the work, supplies or services proposed by the
tenderer;
� compliance with the provisions relating to employment protec-

tion and working conditions in force at the place where the
work, service or supply is to be performed;
� the possibility of the tenderer obtaining State aid.

If the tender is abnormally low because the tenderer has
obtained State aid, the Directive 2004/18/EC set by the European
Parliament Directive (2004) states that the tender can be rejected
on that ground alone only after consultation with the tenderer,
where the latter is unable to prove, within a time period fixed by
the contracting authority, that the aid was legally granted.

A clear advantage of the quarantine solution is that, on the aver-
age, it leads to fairer and cheaper procurement, because regular
tenders are not unduly rejected, and the resulting prices are lower
than those obtained after rejecting the lowest bid. However, it
should also be considered that the examination phase may be
costly and lengthens the procurement procedure.

8. Conclusions

A rank-and-compare method has been evaluated to detect
abnormally low bids in procurement auctions. Two performance
indices have been selected for its evaluation: the detection proba-
bility and the false alarm probability. Their dependence on the
number of tenderers, the dispersion of bids, and the rebating factor
of the anomalous bid has been investigated.

A large number of tenderers does decrease the detection prob-
ability, with a negative effect on the performance of the method. A
larger spread of bids as well contributes to reduce the detection
probability. This effect is more evident when the number of ten-
derers is large. The effect of the rebating factor is similar: the high-
er the rebating factor (which means that the anomalous bid is
closer to the regular ones), the smaller the detection probability.
Some guidelines for the practical applications of the detection
algorithm have been provided, which suggest to perform a preli-
minary estimation of the dispersion of bids and restrict the appli-
cation range of the algorithm to the cases where the coefficient of
variation of bids is smaller than 0.15 and the number of tenderers
is not larger than 20.

We notice that the rank-and-compare method has been de-
signed to detect a single abnormally low bid, but we have also
evaluated its performance when used iteratively to detect multiple
anomalous bids. Though its performance is not encouraging, its
employment in a multiple detection scheme deserves to be further
explored in the future, since the detection of bidders bidding con-
sistently low across different auction would represent a hint of col-
luding behavior.

The impact of courtesy bids (either a single courtesy bid or mul-
tiple ones) has also been investigated. When a single courtesy bid
is present, both the false alarm probability and the detection prob-
ability increase, though the effect is quite moderate. The same ef-
fect essentially holds when multiple courtesy bids are present.

Appendix A. Derivation of the false alarm probability

In this appendix, we derive the expression of the false alarm
probability.

We first recall the probability integral transformation (see Th.
2.1.4 in Casella and Berger (1990)), which is used in the following.
If FX(x) is the (continuous) cumulative distribution function (c.d.f.)
of the random variables (r.v.s) Xis, and if the set of ordered r.v.s
{X(1),X(2), . . . ,X(N)} is transformed according to FX(�), then an ordered
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sample {U(1),U(2), . . . ,U(N)} from a uniform distribution in obtained.
We can now start the computation of the false alarm probabil-

ity. Using the probability integral transformation and exploiting its
monotonicity, which preserves ranking, we get

Pfa ¼ P½Xð1Þ < ð1� aÞXð2ÞjScenario A�

¼ P F�1
X ðUð1ÞÞ < ð1� aÞF�1

X ðUð2ÞÞ
h i

¼ P FXF�1
X ðUð1ÞÞ < FX ð1� aÞF�1

X ðUð2ÞÞ
� �h i

¼ P Uð1Þ < FX ð1� aÞF�1
X ðUð2ÞÞ

� �h i
: ðA:1Þ

We consider next the joint probability density fUð1ÞUð2Þ ðu; vÞ of the two
ordered variables U(1) and U(2). Let {Y(1),Y(2), . . . ,Y(N)} denote the order
statistics of a random sample {Y1,Y2, . . . ,YN} from a continuous r.v. Y,
with c.d.f. FY(y) and density function fY (y). The joint density function
of Y(i), Y(j), 1 6 i < j 6 N is (cfr. Casella and Berger (1990)).

fYðiÞYðiÞ ðu;vÞ ¼
N!

ði� 1Þ!ðj� i� 1Þ!ðN � jÞ! fY ðuÞfY ðvÞ

� FY ðuÞi�1½FY ðvÞ � FY ðuÞ�j�i�1½1� FYðvÞ�N�j
: ðA:2Þ

Since the sample is drawn from a uniform distribution in (0,1),
Yi = Ui, i = 1, . . ., N. Taking further into account that i = 1, j = 2, from
Eq. (A.2) we obtain

fUð1ÞUð2Þ ðu;vÞ ¼ NðN � 1Þð1� vÞN�2 ðA:3Þ

From Eq. (A.3), and taking into account that the constraint
U(1) < U(2) has to be satisfied, Eq. (A.1) becomes

Pfa ¼
Z 1

0

Z min½FX ðð1�aÞF�1
X ðvÞÞ;v �

0
fUð1ÞUð2Þ ðu;vÞdudv

¼
Z 1

0

Z min½FX ðð1�aÞF�1
X ðvÞÞ;v �

0
NðN � 1Þð1� vÞN�2dudv

¼ NðN � 1Þ
Z 1

0
ð1� vÞN�2

Z min½FX ðð1�aÞF�1
X ðvÞÞ;v �

0
dudv :

¼ NðN � 1Þ
Z 1

0
ð1� vÞN�2 min FX ð1� aÞF�1

X ðvÞ
� �

;v
h i

dv: ðA:4Þ

At this point, Eq. (A.4) can be numerically evaluated to get the false
alarm probability. However, we can further simplify that expression
to get a clearer picture of the relationship between the false alarm
probability and the scenario parameters.

In order to find the minimum involved in (A.4), we have to solve
the following inequality

FX ð1� aÞF�1
X ðvÞ

� �
< v : ðA:5Þ

By introducing the standard Gaussian cumulative distribution func-
tion FZ(z), using its monotonicity, and defining the quantity
zv ¼ F�1

Z ðvÞ we have first

FX ð1� aÞF�1
X ðvÞ

� �
¼ FXð1� aÞðlþ rzvÞ

¼ FZ
ð1� aÞðlþ rzvÞ � l

r

� �

frow which the chain of inequalities

FX ð1� aÞF�1
X ðvÞ

� �
< v () FZ

ð1� aÞðlþ rzvÞ � l
r

� �
< FZðzvÞ

follows, provided that l + rzv > 0, which is of course equivalent to
v > FZ(�l/r).

The integral in Eq. (A.4) can be then split into two parts, one of
which can be easily solved via the binomial theorem, while the
other can be computed numerically. In symbols, we have
Pfa ¼ NðN � 1Þ
R 1

0 ð1� vÞN�2 min FX ð1� aÞF�1
X ðvÞ

� �
; v

h i
dv

¼ NðN � 1Þ
R 1

0 ð1� vÞN�2 min FZ ð1� aÞzv � al=rð Þ; v½ � dv

¼ NðN � 1Þ
R FZ ð�l=rÞ

0 vð1� vÞN�2 dv

þNðN � 1Þ
R 1

FZ ð�l=rÞ
ð1� vÞN�2FZ ½ð1� aÞzv � al=r� dv

¼ NðN � 1Þ
PN�2

k¼0

N � 2
k

� �
ð�1ÞN�2�k ½FZ ð�l=rÞ�N�k

N�k

þNðN � 1Þ
R 1

FZ ð�l=rÞ
ð1� vÞN�2FZ ð1� aÞF�1

Z ðvÞ � al=r
h i

dv :

ðA:6Þ

Appendix B. Derivation of the detection probability

In this appendix, we derive the expression of the detection
probability.

In order to find out a closed form expression for Eq. (7), let us
introduce two auxiliary variables: U1 ¼ FX1 ðX1Þ, and UY = FY(Y). By
the probability integral transformation recalled in Appendix A, both
U1 and UY do have uniform distribution on [0,1]. Their use allows us
to express the abnormally low bid and the minimum among the
regular bids as X1 ¼ F�1

X1
ðU1Þ and Y ¼ F�1

Y ðUYÞ, respectively. In the
latter expression, we need the inverse distribution of the minimum
among the N � 1 regular bids. Since FY(y) = 1 � [1 � FX(y)]N�1(FX(�)
being the common probability distribution function of the regular

bids), the inverse expression we need is Y ¼ F�1
X 1� ð1� UY Þ

1
N�1

h i
.

We can now go back to Eq. (7) and obtain

Pdet ¼ P½X1 < ð1� aÞY �

¼ P F�1
X1
ðU1Þ < ð1� aÞF�1

X 1� ð1� UY Þ
1

N�1

h ih i
¼ P FX1 F�1

X1
ðU1Þ < FX1 ð1� aÞF�1

X 1� ð1� UYÞ
1

N�1

� �h in o
¼ P U1 < FX1 ð1� aÞF�1

X 1� ð1� UYÞ
1

N�1

� �h in o
; ðB:1Þ

where the monotonic transformation FX1 ð�Þ has been used. Since
both the auxiliary variables U1 and UY are uniformly distributed in
(0,1), and independent as well, their joint probability density func-
tion is uniform on (0,1)2. The detection probability is then

Pdet ¼ P U1 < FX1 ð1� aÞF�1
X 1� ð1� UYÞ

1
N�1

� �h in o

¼
Z 1

0

Z FX1
ð1�aÞF�1

X 1�ð1�vÞ
1

N�1
� �	 


0
fU1UY ðu;vÞ dudv

¼
Z 1

0
FX1 ð1� aÞF�1

X 1� ð1� vÞ
1

N�1

� �h i
dv

¼
Z 1

0
FZ

ð1� aÞ lþ rF�1
Z 1� ð1� vÞ

1
N�1

� �h i
� bl

r

2
4

3
5 dv

¼
Z 1

0
FZ ð1� a� bÞl

r
þ ð1� aÞF�1

Z 1� ð1� vÞ
1

N�1

� �h i
dv ;

ðB:2Þ
where the standard Gaussian distribution function FZ(�) has been
used.

Appendix C. Correct identification of the anomalous bid

In Scenario B, we can take the decision D1 in either of two cases
(see Section 4.1): the bid detected as anomalous is the truly anom-
alous bid (case c2) or a regular bid (case w3). We show here that
case w3 need not be considered, since its probability is very low.

The minimum bid X(1) is declared to be anomalous if the follow-
ing comparison with the second lowest bid holds true

Xð1Þ < ð1� aÞXð2Þ; ðC:1Þ



0.7 0.75 0.8 0.85 0.9
Rebating factor

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

D
et

ec
tio

n 
pr

ob
ab

ilit
y

Declaration

Fig. C.16. Probabilities of declaration and correct identification (N = 100).
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The probability Pdec of declaring the presence of anomalous bid,
when it is actually present, is

Pdec ¼ PðXð1Þ < ð1� aÞXð2ÞjScenario BÞ; ðC:2Þ

which can be decomposed, by the total probability theorem, in the
sum

Pdec ¼
Xn

k¼1

PðXð1Þ < ð1� aÞXð2ÞjXð1Þ ¼ XkÞPðXð1Þ ¼ XkÞ ðC:3Þ

Now we observe that

PðXð1Þ ¼ XkÞ ¼ PðX1;X2; . . . ;Xk�1;Xkþ1; . . . ;Xn > XkÞ

¼
Z 1

�1
PðX1;X2; . . . ;Xk�1;Xkþ1; . . . ;Xn > XkjXk

¼ xÞPðXk ¼ xÞ
¼ EXk

PðX1;X2; . . . ;Xk�1;Xkþ1; . . . ;Xn > XkjXk ¼ xÞ½ �

¼ EXk

Yn

j¼1j–k

PðXj > xÞ
" #

ðC:4Þ

The computation of (C.4) is different for the two cases k = 1 and
k P 2.

For k = 1, it holds

EXk

Yn

j¼1j–k

PðXj > xÞ
" #

¼ 1
r
ffiffiffiffiffiffiffi
2p
p

�
Z 1

�1
1� FZ

x� l
r

� �h in�1
e�
ðx�blÞ2

2 dx ðC:5Þ

For k P 2, it holds

EXk

Yn

j¼1j–k

PðXj > xÞ
" #

¼ 1
r
ffiffiffiffiffiffiffi
2p
p

Z 1

�1

�
½1� FZ

x�l
r

� �
�n�2½1� FZ

x�bl
r

� �
�

e
1
2ðx�lÞ2

dx ðC:6Þ

Though we could now evaluate the term P(X(1) = Xk) numerically
to show that it is quite close to 1 when k = 1, but negligible other-
wise (so that the case w3 can be practically neglected), we turn to
simulation to show the same result in a number of cases.

Namely, we evaluate by simulation the probability of declaring
the presence of an anomalous bid PðXð1Þ < ð1� aÞXð2ÞÞ and the
probability of correctly identifying the anomalous bid itself
PðX1 < ð1� aÞXð2ÞÞ. The difference between the two is just the
probability of occurrence of case w3.

We report here the results obtained with 105 simulation runs,
a = 0.2 and r/l = 0.1. The curves are shown in Figs. C.15 and C.16
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Fig. C.15. Probabilities of declaration and correct identification (N = 10).
for 10 and 100 bidders respectively. As can be seen, the curves
are almost coincident for most values of the rebating factor, so that
the declaration of the presence of an abnormally low bid is practi-
cally tantamount to its correct identification. The probability of
declaration with wrong identification (case w3) becomes signifi-
cant just when both the rebating factor and the number of partic-
ipants are very high. But such combination is likely to lead us not
to use the detection criterion anyway.

We can therefore safely conclude that the probability of decla-
ration of the presence of an anomalous bid without its correct
identification is practically negligible.
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