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Some remarks on the seismic behaviour of embedded cantilevered
retaining walls

R. CONTI�, G . M. B. VIGGIANI† and F. BURALI D’AREZZO‡

This paper is a numerical investigation of the physical phenomena that control the dynamic behaviour
of embedded cantilevered retaining walls. Recent experimental observations obtained from centrifuge
tests have shown that embedded cantilevered retaining walls experience permanent displacements even
before the acceleration reaches its critical value, corresponding to full mobilisation of the soil strength.
The motivation for this work stems from the need to incorporate these observations in simplified
design procedures. A parametric study was carried out on a pair of embedded cantilevered walls in
dry sand, subjected to real earthquakes scaled at different values of the maximum acceleration. The
results of these analyses indicate that, for the geotechnical design of the wall, the equivalent
acceleration to be used in pseudo-static calculations can be related to the maximum displacement that
the structure can sustain, and can be larger than the maximum acceleration expected at the site. For
the structural design of the wall, it is suggested that the maximum bending moments of the wall can
be computed using a realistic distribution of contact stress and a conservative value of the pseudo-
static acceleration, taking into account two-dimensional amplification effects near the walls.
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INTRODUCTION
In the recent literature several cases are reported of damage
or failure of gravity and cantilevered retaining walls during
earthquakes (Fang et al., 2003; Madabhushi & Zeng, 2007;
Koseki et al., 2012). Following the pioneering works by
Okabe (1926) and Mononobe & Matsuo (1929), several
studies have tackled the problem of computing dynamic
earth pressures on retaining structures with a theoretical
(Steedman & Zeng, 1990; Lancellotta, 2007; Mylonakis et
al., 2007; Kim et al., 2010), experimental (Atik & Sitar,
2010) or numerical approach (Gazetas et al., 2004; Evange-
lista et al., 2010). In the last decade, following the seminal
works by Newmark (1965) and Richards & Elms (1979),
more and more works have been devoted to the computation
of wall displacements, in the light of a performance-based
design (Ling, 2001; Huang et al., 2009; Basha & Babu,
2010).

In recent years, new performance-based strategies have
been proposed in the literature and included in current codes
of practice (PIANC, 2001; CEN, 2003; NTC, 2008) for the
seismic design of retaining structures. Although charac-
terised by different levels of complexity, all these methods
rely on the idea that the structure may experience permanent
displacements during the earthquake, provided the behaviour
of the system is ductile.

The simplest way to embody the performance-based phil-
osophy in the seismic design of retaining structures is by an
appropriate choice of the equivalent acceleration to be used
in pseudo-static calculations, which has to be proportional to
the maximum acceleration expected at the ground surface,

either provided by the technical codes or obtained by one-
dimensional seismic response analyses.

If the permanent displacement at the end of the earth-
quake is taken as a performance indicator, the choice of the
equivalent acceleration should be related to the maximum
displacements that the structure can sustain, with respect to
different levels of design earthquake motion. The reliability
of the choice of an equivalent acceleration depends crucially
on the ability to predict the displacements experienced by
the wall during the earthquake.

Permanent displacements of retaining walls are usually
computed through Newmark (1965) rigid-block analysis
(Richards & Elms, 1979). According to this method

(a) the critical (yield) acceleration of the wall, ac – that is,
the acceleration corresponding to which the strength of
the soil is fully mobilised – is computed with respect to
an assumed collapse mechanism, assuming rigid-
perfectly plastic behaviour for both the soil and the wall

(b) for accelerations a(t ) < ac, no relative displacements
occur between the soil and the wall, and both the inertia
forces into the soil wedge–wall system and the internal
forces in the structure increase with the applied
accelerations

(c) for accelerations a(t ) . ac, the wall experiences perma-
nent displacements, but the internal forces remain
constant and equal to the maximum value they attained
for a(t ) ¼ ac

(d ) the permanent displacements are computed by integrating
the relative acceleration, a(t ) � ac, twice over the time
intervals in which the relative velocities are non-zero.

The critical acceleration is a key ingredient not only for the
computation of the permanent displacements experienced by
the wall, but also for its structural design, as it defines the
maximum internal forces that the structure may ever experi-
ence during an earthquake.

Centrifuge dynamic tests have shown that Newmark rigid-
block analysis provides good results when applied to gravity
retaining structures (Zeng & Steedman, 2000; Huang et al.,
2009). Moreover, experimental dynamic tests carried out on
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reduced-scale models (Neelakantan et al., 1992; Richards &
Elms, 1992) and dynamic numerical analyses (Callisto &
Soccodato, 2010) have shown that a Newmark-type calcula-
tion may also be adopted, at least qualitatively, to interpret
the dynamic behaviour of embedded cantilevered walls or
retaining walls with one level of support, where the wall can
rotate when a state of limit equilibrium is attained in the
adjacent soil.

Results from both numerical (Callisto & Soccodato, 2007,
2010) and experimental (Zeng, 1990; Zeng & Steedman,
1993; Conti et al., 2012) work on the dynamic behaviour of
embedded retaining walls, however, have shown that the
Newmark approach does not describe the observed behaviour
satisfactorily. In fact, if the critical acceleration of the
system is computed with standard limit equilibrium methods,
such as those adopted in European countries and the USA
(Blum, 1931; Padfield & Mair, 1984; King, 1995; Powrie,
1996; Day, 1999; Osman & Bolton, 2004), seeking the
pseudo-static coefficient corresponding to which limit condi-
tions are attained in the system, two findings are of major
concern.

(a) Embedded walls may accumulate significant rigid
permanent displacements concurrently with an increase
of the internal forces in the structural members: that is,
permanent displacements occur even before the critical
acceleration is attained.

(b) Internal forces in cantilevered walls may be substantially
larger than those computed with conventional limit
equilibrium methods in critical conditions.

It follows that, at least for cantilevered walls, standard
pseudo-static approaches do not provide reliable or conserva-
tive values of the yield acceleration, neither for a displace-
ment-based analysis nor for a pseudo-static calculation.

On the basis of centrifuge dynamic tests carried out on
pairs of embedded propped and cantilevered walls in dry
sand, Conti et al. (2012) have shown that a Newmark analy-
sis carried out using the limit equilibrium value of the
critical acceleration would yield displacements that are much
smaller than observed, as the analysis would overlook the
displacements experienced by the wall before the accelera-
tion reaches the limit equilibrium critical value. According
to the authors, the observed behaviour may be justified by a
stress redistribution and a progressive mobilisation of the
soil strength on the passive side of the wall produced by the
earthquake.

Recent numerical studies of the dynamic behaviour of
embedded retaining walls, both cantilevered (Madabhushi &
Zeng, 2006, 2007) and with one level of support (Iai &
Kameoka, 1993; Callisto et al., 2008; Cilingir et al., 2011)
have shown interesting aspects related to the soil–structure
interaction and the constitutive modelling of the mechanical
behaviour of the soil under cyclic loading. Useful guidelines
for the seismic design of cantilevered retaining walls may be
found in Callisto & Soccodato (2010), but these are still not
exhaustive: the simplified procedure proposed by the authors
does not seem conservative, as it is based on a standard
pseudo-static calculation of the critical acceleration.

This work is a numerical investigation of the physical
phenomena that control the dynamic behaviour of embedded
cantilevered retaining walls, aimed at developing suitable
simplified procedures to be incorporated in recommendations
and codes of practice. A parametric study was carried out
on a pair of embedded cantilevered walls in dry sand,
subjected to real earthquakes scaled at different values of
the maximum acceleration. The earthquakes were chosen to
represent a significant range of dominant frequency (govern-
ing local amplification and resonance phenomena) and peak
acceleration (governing non-linearity of soil behaviour and

mobilisation of plastic strain). Based on the results of the
parametric study, suggestions are provided for the seismic
geotechnical and structural design of embedded cantilevered
walls using simplified methods.

ANALYSIS PROCEDURE
Constitutive soil model

The soil is modelled as an elastic-perfectly plastic mater-
ial with Mohr–Coulomb failure criterion, in which, during
the dynamic stage, non-linear and hysteretic behaviour is
introduced for stress paths within the yield surface through a
hysteretic model available in the library of FLAC 5.0 (Itasca,
2005). This strategy makes it possible to take into account
both the cyclic soil behaviour and the possibility of full
mobilisation of soil strength close to the excavation, at the
same time avoiding the cumbersome calibration process and
the high computational costs of more advanced constitutive
models (Kontoe et al., 2012).

The hysteretic model, which is used to update the tangent
shear modulus of the constitutive law for the soil at each
calculation step, consists in an extension to general strain
conditions of the one-dimensional non-linear models that
make use of the Masing (1926) rules to describe the unload-
ing–reloading behaviour of soil during cyclic loading. If the
simplified assumption is made that the stress state does not
depend on the number of cycles, the relationship between
shear stress, �, and shear strain, ª, can be written as

� ¼ GS(ª) � ª

¼ G0MS(ª) � ª
(1)

where GS(ª) is the secant shear modulus, G0 is the small-
strain shear modulus, and MS(ª) is the normalised secant
shear modulus, defined as

MS ¼
a

1þ exp �(log10 ª� x0)=b
� � (2)

where a, b and x0 are model parameters that can be
determined from the best fit of a specific modulus degrada-
tion curve. The tangent shear modulus, Mt, can be evaluated
by differentiating equation (1) with respect to ª. Strain
reversals during cyclic loading are detected by a change of
the sign of the scalar product between the current strain
increment and the direction of the strain path at the previous
time instant. At each strain reversal, the Masing rule is
invoked, and stress and strain axes are scaled by a factor of
0.5, resulting in hysteresis loops in the stress–strain curves
with associated energy dissipation.

As already outlined by Callisto & Soccodato (2010), an
advantage of using a truly non-linear soil model for dynamic
numerical simulations is that energy dissipation emerges
from the hysteretic behaviour of the soil, and is not intro-
duced artificially by including a frequency-dependent viscos-
ity in the equilibrium equations.

Seismic input
Three different acceleration time histories were used in

the analyses, all registered on rock outcrop during real
earthquakes: Tolmezzo (T) from the Friuli earthquake of
1976, Assisi (A) from the Umbria-Marche earthquake of
1997, and Arcelik (N) from the Kocaeli earthquake of 1999.
The choice of these three earthquakes is motivated by the
fact that they are characterised by substantially different
frequency contents. Table 1 shows the maximum values of
acceleration, amax,r, duration, T5–95, mean period, Tm (Rathje
et al., 1998), and Arias intensity, Ia: Fig. 1 shows the
acceleration time histories and the Fourier spectra of the
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three signals. The recorded signals were baseline-corrected
and low-pass-filtered at 15 Hz for compatibility with the
dimension of the grid zones in the numerical domain; more-
over, they were scaled at maximum accelerations ranging
from 0.05g to 0.5g.

Numerical model
Two-dimensional, plane-strain, finite-difference analyses of

a rectangular excavation of width B ¼ 16 m and depth
h ¼ 4 m, in a layer of dry sand with thickness Z ¼ 16 m,
were carried out. The excavation was retained by a pair of
cantilevered retaining walls.

Figure 2 shows the grid adopted in the numerical ana-
lyses, with an extension of 80 m, consisting of a total of
4838 elements, with a minimum size of 0.33 m near the
walls. Both the refinement of the mesh and the extension of
the grid were chosen after a preliminary parametric study, in
order that they did not influence the numerical results during
either the static or dynamic stages.

The soil was modelled with a constant friction angle
� ¼ 358, cohesion c9 ¼ 0, and density r ¼ 2.04 Mg/m3: A
standard non-associated flow rule was used, with angle of
dilatancy ł ¼ 0. The small-strain shear modulus is given by

G0

pref

¼ KG

p9

pref

� �0:5

(3)

where p9 is the mean effective stress, pref ¼ 100 kPa is a
reference pressure, and KG is a stiffness multiplier, set equal
to 1000. Soil parameters a ¼ 1.0, b ¼ �0.6 and x0 ¼ �1.5
were used for the normalised secant shear modulus in equa-
tion (2), derived from the best fit of the modulus degradation
curve proposed by Vucetic & Dobry (1991) for cohesionless
(PI ¼ 0) soils. Fig. 3 shows a comparison between the
modulus decay curve and the equivalent damping ratio of
the adopted model, and that suggested by Vucetic & Dobry
(1991).

The retaining walls were modelled as elastic beams con-
nected to the grid nodes with elastic-perfectly plastic inter-
faces with a friction angle � ¼ 208. The bending stiffness of
the walls was EI ¼ 2.7 3 105 kN m2/m, corresponding to
that of a wall consisting of 0.6 m diameter and 0.7 m
spacing bored piles. The walls can be considered, for all

Table 1. Ground motion parameters of input earthquakes

Record amax,r: g T5–95: s Tm: s Ia: m/s

Assisi 0.28 4.28 0.25 0.78
Tolmezzo 0.35 4.19 0.40 0.80
Arcelik 0.14 7.23 1.09 0.31
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practical purposes, as infinitely rigid (Callisto & Soccodato,
2010).

The in situ stress state was prescribed in terms of the
earth pressure coefficient at rest, � 9h=� 9v ¼ K0 (¼ 1 � sin �).
During the static stage, standard boundary conditions were
applied to the model: that is, zero horizontal displacements
along the lateral boundaries, and fixed nodes at the base of
the grid. The excavation was carried out in four successive
steps, chosen after a preliminary study in order to have the
numerical results unaffected by the calculation sequence,
during which the soil elements corresponding to 1 m of the
excavated volume were removed. In this stage the shear
modulus of the soil was set equal to 0.3G0, corresponding to
a shear strain level of about 0.1% (see Fig. 3), characteristic
of the expected level of deformation during the excavation
stage (Atkinson et al., 1993).

After the excavation, static constraints were removed from
the boundaries. The selected acceleration–time histories
were applied to the bottom nodes of the grid, together with
a zero velocity condition in the vertical direction, thus
simulating the presence of an infinitely rigid bedrock. Stan-
dard dynamic constraints (Zienkiewicz et al., 1988) were
applied to the nodes on the lateral boundaries of the grid:
that is, they were free to move in both the vertical and
horizontal directions, while being tied to one another in
order to enforce the same displacements of the two bound-
aries.

A time increment of ˜t ¼ 6.25 3 10�7 s was adopted
during the dynamic stage, in order to guarantee the stability
of the explicit time integration scheme. Moreover, a small
Rayleigh viscous damping (1%) was adopted to remove the
high-frequency noise deriving from the numerical integra-
tion, but not otherwise affecting the results of the analyses.

A total of 39 numerical analyses were carried out in this
study, as reported in Table 2. Three different values were
adopted for the embedded depth of the walls: d ¼ 3 m (Nos
1 to 9), d ¼ 4 m (Nos 10 to 21) and d ¼ 5 m (Nos 22 to
36). For the analysis with d ¼ 4 m and the Tolmezzo (T)
record scaled to 0.35g, the soil stiffness multiplier was
halved and doubled (Nos 37 and 38), and a thickness of
Z ¼ 30 m was considered for the soil layer (No. 39).

DISCUSSION OF RESULTS
Static stage

At the end of the static stage, the soil around the excava-
tion is approximately in limit equilibrium conditions, both in
front and behind the walls. Fig. 4 shows, for the case
d ¼ 4 m, the contour lines of: (a) the mobilised shear
strength into the soil, defined as the ratio, �/�lim between the
maximum shear stress and the corresponding available
strength; and (b) the maximum shear strain (in %) close to
the left wall. Fig. 4(a) also shows the horizontal stress
distribution in the soil elements at the contact with the wall,

Table 2. Summary of numerical analyses

No. Record ainp: g d: m Z: m EI: kN m2/m] KG

1 Assisi 0.05 3 16 2.7.105 1000
2 Assisi 0.10 3 16 2.7.105 1000
3 Assisi 0.20 3 16 2.7.105 1000
4 Tolmezzo 0.05 3 16 2.7.105 1000
5 Tolmezzo 0.10 3 16 2.7.105 1000
6 Tolmezzo 0.20 3 16 2.7.105 1000
7 Arcelik 0.05 3 16 2.7.105 1000
8 Arcelik 0.10 3 16 2.7.105 1000
9 Arcelik 0.20 3 16 2.7.105 1000
10 Assisi 0.05 4 16 2.7.105 1000
11 Assisi 0.10 4 16 2.7.105 1000
12 Assisi 0.20 4 16 2.7.105 1000
13 Assisi 0.35 4 16 2.7.105 1000
14 Tolmezzo 0.05 4 16 2.7.105 1000
15 Tolmezzo 0.10 4 16 2.7.105 1000
16 Tolmezzo 0.20 4 16 2.7.105 1000
17 Tolmezzo 0.35 4 16 2.7.105 1000
18 Arcelik 0.05 4 16 2.7.105 1000
19 Arcelik 0.10 4 16 2.7.105 1000
20 Arcelik 0.20 4 16 2.7.105 1000
21 Arcelik 0.35 4 16 2.7.105 1000
22 Assisi 0.05 5 16 2.7.105 1000
23 Assisi 0.10 5 16 2.7.105 1000
24 Assisi 0.20 5 16 2.7.105 1000
25 Assisi 0.35 5 16 2.7.105 1000
26 Assisi 0.50 5 16 2.7.105 1000
27 Tolmezzo 0.05 5 16 2.7.105 1000
28 Tolmezzo 0.10 5 16 2.7.105 1000
29 Tolmezzo 0.20 5 16 2.7.105 1000
30 Tolmezzo 0.35 5 16 2.7.105 1000
31 Tolmezzo 0.50 5 16 2.7.105 1000
32 Arcelik 0.05 5 16 2.7.105 1000
33 Arcelik 0.10 5 16 2.7.105 1000
34 Arcelik 0.20 5 16 2.7.105 1000
35 Arcelik 0.35 5 16 2.7.105 1000
36 Arcelik 0.50 5 16 2.7.105 1000
37 Tolmezzo 0.35 4 16 2.7.105 500
38 Tolmezzo 0.35 4 16 2.7.105 2000
39 Tolmezzo 0.35 4 30 2.7.105 1000
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together with the theoretical values of the static active and
passive pressure, computed with Lancellotta’s closed-form
solutions (Lancellotta, 2002). The soil behind the wall is in
active limit state down to 5 m from the surface, whereas in
front of the wall the passive resistance is fully mobilised
only immediately below dredge level, the horizontal stresses
being approximately constant in the remaining part of the
embedded depth. The distribution of maximum shear strain
into the soil is similar to that of the mobilised strength.
Moreover, while a maximum shear strain of 0.3% is mobi-
lised just below dredge level, an average strain level of
about 0.1% is mobilised into the whole soil volume interact-
ing with the wall during the static stage.

Dynamic behaviour of retaining walls
In this section, the dynamic behaviour of cantilevered

retaining walls is discussed with reference to analyses Nos
14 to 17, where the walls with d ¼ 4 m are subjected to the
Tolmezzo earthquake scaled to maximum input accelerations
ainp ¼ 0.05g, 0.10g, 0.20g and 0.35g.

Figure 5 shows, for the time instant when the acceleration
behind the right wall reaches its maximum value

(a) the distribution of accelerations immediately behind and
in front of the wall

(b) the contact horizontal stresses
(c) the bending moment distribution in the wall.

Figs 5(a) and 5(c) also show the critical acceleration of the
wall and the corresponding bending moment distribution,
computed using the Blum (1931) method, customarily
adopted in the UK and other European countries, and
described extensively in many works (e.g. Padfield & Mair,

1984; Bica & Clayton, 1989; King, 1995; Day, 1999), and a
limit equilibrium method outlined herein. Fig. 5(d) shows
the horizontal displacements of the wall computed at the end
of each earthquake, while in Figs 5(e)–5(i) the computed
contact stresses are plotted together with the dynamic active
and passive limit values. The earth pressure coefficients, kAE

(Okabe, 1926; Mononobe & Matsuo, 1929) and kPE (Lancel-
lotta, 2007), are computed using, at each depth, a pseudo-
static acceleration equal to the acceleration resulting from
the numerical analyses (kh ¼ a/g).

During the earthquakes, amplification phenomena around
the excavation cause the surface accelerations behind the
wall to be substantially larger than the maximum input
accelerations, with amplification factors between 1.5 (No.
17) and 3.8 (No. 14). The distribution of accelerations into
the soil is not uniform, owing to both amplification and
phase shift between the top and the bottom of the wall; in
the time instants when the acceleration reaches its maximum
value, it varies almost linearly with depth behind the wall, at
least in the retained part of the soil, while it is approxi-
mately constant below dredge level, and substantially lower
than the maximum value at surface (Fig. 5(a)).

The inertia forces in the retained soil induce an increment
of the contact stresses behind the wall, the soil being in
active limit conditions. As a consequence, the wall rotates,
mobilising the passive resistance of the soil below dredge
level progressively, until the system reaches a new equili-
brium configuration. The stronger the earthquake, the greater
the depth down to which the passive resistance of the soil is
fully mobilised (Figs 5(b), 5(f), 5(g), 5(h) and 5(i)). Both
the increment of the contact stresses behind the wall and the
lower position of the resultant of the pressure distribution in
front of the wall cause a significant increase of the bending
moments in the wall (Fig. 5(c)). At the end of the earth-
quakes, the horizontal displacements of the wall correspond
to an approximately rigid rotation around a pivot point
between 0.8d and 0.9d (Fig. 5(d)).

As far as the internal forces in the walls are concerned,
the maximum bending moments may occur at instants of
time when the acceleration at surface behind the wall is not
maximum. As an example, Fig. 6 shows, for analysis No. 17
and for the time instants at which a ¼ amax (t ¼ 5.64 s) and
M ¼Mmax (t ¼ 5.70 s): (a) the acceleration profile, (b, c) the
earth pressure distribution, (d) the bending moment distribu-
tion, and (e, f) the contour lines of the ratio �/�lim: As
already discussed, when the acceleration behind the wall
reaches its maximum value (t ¼ 5.64 s), the retained soil is
in active limit state conditions, at least down to z ¼ 6 m,
while all the available resistance in front of the wall is
mobilised down to 2 m from the excavation bottom. At this
time instant, the occurrence of a soil wedge may be ob-
served both behind (active) and in front (passive) of the wall
(Fig. 6(e)). By contrast, for t ¼ 5.70 s the soil on both sides
of the wall is far from limit conditions (Fig. 6(f)): that is,
the horizontal stresses are higher than the corresponding
active values on the retained side, while a constant fraction
of the passive resistance is mobilised below dredge level
(Fig. 6(c)). This stress distribution results in higher bending
moments in the wall, even if the accelerations in the retained
soil are about 20–30% lower than the values computed for
t ¼ 5.64 s. The behaviour exhibited by the soil–wall system
at this time instant would be hardly reproduced by a
simplified limit equilibrium approach.

Critical acceleration and limit equilibrium analysis
The critical acceleration is computed with respect to an

assumed failure mechanism, generally a rigid rotation about
a point close to the toe for embedded cantilevered walls,
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and depends solely on the geometry of the system and the
strength of the soil.

The results obtained by Callisto & Soccodato (2010) show
that the Blum method does not provide a reliable or
conservative estimate of the critical acceleration, and hence
of the maximum bending moment that the wall may ever
experience during an earthquake. There are two main rea-
sons for this.

(a) In the Blum method, the same pseudo-static acceleration is
assumed for the soil in front and behind the wall, whereas,
in general, the acceleration below dredge level is only a
small fraction of the maximum value on the retained side,
and always lower than about 0.1g (see Fig. 5(a)).

(b) The pivot point is taken to be at a depth of 0.8d from
dredge level, whereas it may be as deep as 0.9d during
strong earthquakes (see Fig. 5(d)).
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Moreover, for pseudo-static accelerations smaller than the
critical value, the Blum method assumes a constant fraction
of the soil passive resistance in front of the wall, whereas
during real earthquakes this is progressively mobilised from
the bottom of the excavation, depending on the amplitude of
the acceleration applied (see Fig. 5(b)).

To take into account all these observations, a different
pseudo-static distribution of contact stresses is used in this
work (see Fig. 7). According to this approach (e.g. Conti &
Viggiani, 2013)

(a) the active earth pressure coefficient, KAE, is computed as
a function of the assumed pseudo-static coefficient kh,

while a static earth pressure coefficient, KP, is adopted for
the passive resistance

(b) the strength of the soil in front of the wall is progressively
mobilised down to a depth �dd, as a function of kh

(c) the position of the pivot point, d0, depends on kh, being
about 0.9d for kh ¼ kc:

Using Fig. 7, the force equilibrium of the wall can be
established by considering the forces acting on the right-
hand side (FRHS) and on the left-hand side (FLHS) of the
wall, as follows.

FRHS ¼ 1
2
ªKAE(hþ d0)2 þ 1

2
ªKP(2hþ d þ d0)(d � d0) (4)

FLHS ¼ 1
2
ªKP

�dd
2 þ 1

2
ª(KP

�dd þ KAEd0)(d0 � �dd)

þ 1
2
ªKAE(d þ d0)(d � d0)

(5)

Similarly, the moment equilibrium can be established by
taking the moment about the toe of the wall, generated by
the forces acting on the right-hand side (MRHS) and on the
left-hand side (MLHS), to give

MRHS ¼ 1
2
ªKAE(hþ d0)2 1

3
(hþ d0)þ (d � d0)
� �

þ 1
6
ªKP(3hþ d þ 2d0)(d � d0)2

(6)

MLHS ¼ 1
2
ªKP

�dd
2
(d � 2

3
�dd)

þ 1
2
ª(KP

�dd þ KAEd0)(d0 � �dd)

3
d0 � �dd

3

� �
KAEd0 þ 2KP

�dd

KAEd0 þ KP
�dd

 !
þ (d � d0)

" #

þ 1
6
ªKAE(d � d0)2(d þ 2d0)

(7)

By equating FRHS ¼ FLHS and MRHS ¼ MLHS one obtains a
system of two equations in the two unknowns �dd and d0:

Figure 8 shows the maximum bending moment on the
walls computed from all the numerical analyses, as a func-
tion of the surface acceleration behind the walls at the same
time instant; analyses 37 to 39 are those carried out using
different values of the small-strain stiffness of the soil, G0,
and of the total height of the wall, H. Fig. 8 also shows the
limit equilibrium maximum bending moment, as a function
of kh, computed according to both the Blum method and the
proposed method. For completeness, the results obtained
with the earth pressure distribution adopted customarily in
the USA, and described in detail by Bowles (1988), King
(1995) and Day (1999), are also reported in the figure.
Internal forces on the walls increase as a function of the
applied acceleration, until the critical acceleration is reached.
As an example, for d ¼ 3 m and d ¼ 4 m the numerical
maximum bending moments reach a plateau for accelera-
tions greater than 0.3g and 0.48g respectively, their maxi-
mum values being about 185 kN m/m and 330 kN m/m
respectively. In this case, critical accelerations predicted by
the proposed approach, and the corresponding maximum

h

d
d0

d

K dPγ

K dAE 0γ

K dAEγ K h dPγ( )�

K h dP 0γ( )�K h dAE 0γ( )�

k kh c�

k k d dh c 0( )� �

Fig. 7. Distribution of seismic earth pressures in proposed limit
equilibrium method (from Conti & Viggiani, 2013)
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bending moments, are ac ¼ 0.29g and Mc ¼ 175 kN m/m for
d ¼ 3 m, and ac ¼ 0.48g and Mc ¼ 342 kN m/m for d ¼ 4 m,
showing a very good agreement with the numerical data. A
more dispersed trend is observed for d ¼ 5 m, where the
maximum bending moments do not seem to reach a limit
value for the earthquakes applied. The fact that the pseudo-
static approach does not always predict the numerical ob-
servations satisfactorily, at least for a , ac, is due mainly to
the fact that the soil around the excavation is not always in
limit conditions when bending moments on the walls attain
their maximum value, as already discussed. However, the
proposed method provides an accurate estimate of the maxi-
mum (critical) internal forces that the walls may ever attain
during an earthquake, whereas the Blum and US methods
always underpredict the maximum bending moments sub-
stantially. It is worth noting that the critical acceleration, and
hence the maximum bending moment, increase with d – that
is, the longer (and safer) the wall, the larger the bending
moment it has to sustain under a strong earthquake.

Newmark analysis
The horizontal displacement of the top of the wall is an

important parameter in performance-based seismic design, as
the settlements of the ground surface behind retaining struc-
tures, and hence the potential damage to adjacent buildings,
are related to the horizontal displacements of the wall (Mana
& Clough, 1981; Hsieh & Ou, 1998; Kung et al., 2007;
Wang et al., 2010). Fig. 9 shows the final horizontal
displacements of the top of the wall, u, normalised by the
total height of the wall, H, as a function of the ratio ac/amax

between the critical acceleration computed with the pseudo-
static approach outlined above, and the maximum accelera-
tion behind the walls. As expected, the displacements of the
walls increase as the intensity of the applied earthquake
increases. However, as shown by Conti et al. (2012) on the
basis of centrifuge tests, the walls can accumulate significant
displacements (u/H . 1–2%), even for accelerations lower
than the critical one, and hence before the available soil
passive resistance is fully mobilised in front of the wall.
These displacements cannot be computed by a conventional
Newmark (1965) analysis, that is, assuming a yield accelera-
tion equal to the critical value provided by the limit equili-
brium analysis. Following the procedure adopted by Conti et
al. (2012) for the interpretation of centrifuge dynamic tests,
a Newmark calculation was carried out for each analysis, in
which the yield acceleration, acN, was found by trial and
error to match computed and numerical displacements at the
end of each earthquake. As an example, Fig. 10 shows, for
analysis No. 17, (a) the acceleration time histories computed
at the soil surface, and (b) the horizontal displacements of
the top of the right wall. The yield acceleration, acN

,
required to match the computed final displacement is only a

fraction of the critical acceleration ac that corresponds to the
complete mobilisation of the soil passive strength; in other
words, had the Newmark analysis been carried out using ac,
the displacements of the wall would have been zero.

Figure 11 shows the computed values of acN
as a function

of the maximum acceleration amax, both normalised by the
limit equilibrium value of the critical acceleration, ac: Data
from centrifuge tests (Conti et al., 2012) have been also
included in the same figure for comparison. Both numerical
and experimental data indicate that acN

/ac increases with the
maximum acceleration applied, up to about amax/ac ¼ 1.0,
and it is then approximately constant, and equal to about
40%. This result is not significantly affected by the charac-
teristics of the applied earthquakes, such as frequency
content, duration or Arias intensity.

GUIDELINES FOR DESIGN
The seismic design of embedded cantilevered retaining

walls for a given value of the maximum acceleration expected
at the site, amax,1D, must address the issues both of: (a) the
geotechnical design of the wall, that is, the calculation of a
depth of embedment such that the permanent horizontal
displacement of the top of the wall at the end of the earth-
quake, taken as an indicator of the performance of the
retaining structure, is less than or equal to an admissible
value; and (b) the structural design of the wall, that is, the
definition of the structural section needed to sustain the maxi-
mum internal forces experienced by the wall during the earth-
quake. In the following, the authors try to provide guidelines
for the seismic design of retaining structures using simplified
methods, in the light of the results presented so far.
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Geotechnical design
Figure 12 is similar to Fig. 9, but this time the final

normalised displacements of the top of the wall, u/H, are
plotted as a function of the ratio ac/amax,1D, where amax,1D is
the maximum acceleration at the surface (free field) com-
puted from one-dimensional site response analyses using
FLAC. Similar to Richards & Elms (1979), the data were
interpolated with a power function, which is plotted in Fig.
12 together with the 98% confidence intervals.

For each design earthquake motion, corresponding to
which an allowable displacement is prescribed, the upper-
bound curve in Fig. 12 can be used to obtain the ratio
� ¼ ac/amax,1D and then the required critical acceleration.
Clearly, the effective value of the critical acceleration for the
wall must be the maximum among all the design earth-
quakes. Once ac is known, the depth of embedment of the
wall can be computed iteratively using the proposed limit
equilibrium approach, with kh ¼ ah/g ¼ ac/g, until the (criti-
cal) condition �dd ¼ d0 is satisfied. Any introduction of a
safety factor at this stage would ensure that the displace-
ments experienced by the wall are less than the admissible
value.

Allowable displacements less than about 3% of H would
result in a ratio ac/amax,1D . 1: that is, the wall should be
designed to have a critical acceleration larger than the maxi-
mum acceleration expected at the site (i.e. using an equiva-
lent acceleration that is larger than the maximum free-field
acceleration). This is completely different from the perform-
ance-based design of gravity retaining walls, as they will
experience permanent displacements only if their critical
acceleration is lower than the maximum acceleration of the
design earthquake (� , 1). As already discussed, this differ-
ence arises from the fact that embedded cantilevered walls
begin to rotate for accelerations lower than the critical value.

Structural design
For the structural design of retaining walls, the maximum

bending moment, Mmax, must be computed under a realistic
distribution of contact stresses between the soil and the
structure. Its value is closely related to the maximum accel-
eration at surface behind the walls, amax: As already ob-
served by Callisto & Soccodato (2010) values of amax can
only be computed taking into account soil–structure inter-
action effects, as the maximum accelerations behind retain-
ing structures depend not only on the dynamic properties and
thickness of the soil layer, but also on a number of factors,
such as the geometry of the excavation, the bending stiffness
of the wall and the embedded depth, which all affect the
natural frequency of the soil–wall system. As an example,
Fig. 13 shows the ratio amax/amax,1D between the maximum
acceleration computed behind the walls, amax, and the maxi-
mum free-field acceleration obtained by one-dimensional

seismic response analyses, amax,1D, as a function of amax,1D:
Two-dimensional phenomena clearly induce a stronger
(further) amplification than that merely associated with one-
dimensional shear wave propagation, but, at least for the
range of geometrical and mechanical factors considered in
this parametric study, the ratio amax/amax,1D is always less
than about 2, and not significantly affected by the ground
motion parameters of the earthquakes applied.

Figure 14 shows the numerical values of the maximum
bending moment, Mmax, normalised by the maximum static
bending moment, Mstat, as a function of amax/ac, together
with the pseudo-static bending moments computed according
to the proposed method. The figure shows a good agreement
between numerical and pseudo-static results, for all the
applied earthquakes. Moreover, limit equilibrium clearly
provides an accurate estimate of the maximum (critical)
internal forces that a wall with a given value of the critical
acceleration may ever attain during an earthquake, which is
therefore always a conservative value for the structural de-
sign of the wall. For this purpose, pseudo-static bending
moments can then be computed using the earth pressure
distribution outlined in this work, with a pseudo-static coef-
ficient kh ¼ amax/g. A conservative value of amax would be
amax ¼ 2amax,1D:

CONCLUSIONS
This paper has addressed the issue of the seismic design

of embedded cantilevered retaining walls, in the light of the
results obtained from an extensive set of numerical analyses
of a pair of cantilevered walls in dry sand, subjected to real
earthquakes scaled at different values of the maximum
acceleration. The results of the analyses confirm that em-
bedded cantilevered retaining walls experience permanent
displacements even before the acceleration reaches its criti-
cal value, corresponding to full mobilisation of the shear
strength of the soil.
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For the geotechnical design of the wall, if the permanent
displacement at the end of the earthquake is taken as a
performance indicator, the choice of the equivalent accelera-
tion to be used in the pseudo-static calculations should be
related to the maximum displacements that the structure can
sustain, with respect to different levels of design earthquake
motion. In this case, the relationship between the final
displacements of the top of the wall and the ratio ac/amax,1D

(Fig. 12) can be used to obtain the equivalent acceleration,
for any given allowable displacement of the wall. This can
be expressed as ah ¼ �amax,1D, where � (¼ ac/amax,1D) can be
larger than 1.

For the structural design of the wall, the maximum bend-
ing moments can be computed using a realistic distribution
of contact stresses, such as that proposed in this work, and a
conservative value of the pseudo-static acceleration:
kh ¼ amax/g ¼ 2amax,1D:

The data discussed in the paper refer only to cantilevered
walls in dry sand; further research is required to clarify the
role of the presence of the pore water, for either saturated or
unsaturated soils.
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NOTATION
a, b, x0 constants of the hysteretic model

d depth of embedment
d0 depth of pivot point
�dd depth of full mobilisation of passive soil pressure

GS secant shear modulus
G0 small-strain shear modulus

h excavation depth
KAE dynamic active earth pressure coefficient
KG stiffness multiplier
KP static passive earth pressure coefficient
MS normalised secant shear modulus
p9 mean effective stress

pref reference pressure
ª shear strain; soil unit weight
� shear stress
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